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Editorial

In this edition of our journal, we feature a pivotal research paper that examines the application
of machine learning algorithms in cancer diagnosis. Given cancer's status as one of the
leading causes of death worldwide, accurate and timely detection is crucial. This study offers
a comprehensive analysis of nineteen machine learning algorithms, evaluating their detection
accuracy and speed using a cervical cancer dataset. The research emphasizes a general
approach that could be applied to various types of cancer, making it a significant contribution
to the field of medical diagnostics.

The paper focuses on the performance of nineteen different machine learning algorithms in
diagnosing cervical cancer. To ensure the approach is broadly applicable to various cancers,
the study intentionally excludes feature selection, which is commonly used in studies focused
on specific datasets or cancer types. This decision underscores the potential for developing
versatile diagnostic systems capable of addressing multiple cancer types [1].

This edition's featured paper exemplifies the innovative and impactful research that is crucial
in the fight against cancer. By evaluating a wide range of machine learning algorithms and
employing advanced techniques like imputation and hyperparameter optimization, the study
offers a comprehensive overview of the current capabilities and future potential of machine
learning in cancer diagnostics. We are excited to share these findings with our readers and
anticipate that they will inspire further advancements and research in this critical field.

References:

1 Y. Liu, W. Wang, H. Wang, “Imputation and Hyperparameter Optimization in Cancer Diagnosis,” Journal of
Engineering Research and Sciences, vol. 2, no. 8, pp. 1-18, 2023, doi:10.55708/js0208001.
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ABSTRACT: Cancer is one of the leading causes for death worldwide. Accurate and timely detection of
cancer can save lives. As more machine learning algorithms and approaches have been applied in cancer
diagnosis, there has been a need to analyze their performance. This study has compared the detection
accuracy and speed of nineteen machine learning algorithms using a cervical cancer dataset. To make the
approach general enough to detect various types of cancers, this study has intentionally excluded feature
selection, a feature commonly applied in most studies for a specific dataset or a certain type of cancer. In
addition, imputation and hyperparameter optimization have been employed to improve the algorithms’
performance. The results suggest that when both imputation and hyperparameter optimization are
applied, the algorithms tend to perform better than when either of them is employed individually or
when both are absent. The majority of the algorithms have shown improved accuracy in diagnosis,
although with the trade-off of increased execution time. The findings from this study demonstrate
the potential of machine learning in cancer diagnosis, especially the possibility of developing versatile
systems that are able to detect various types of cancers with satisfactory performance.

KEYWORDS Machine Learning, Cervical Cancer, Imputation, Hyperparameter Optimization

1. Introduction

Cancer is a complex disease that has numerous genetic
and epigenetic variations. Depending on the part of the
body where it is developed, cancer can be classified into
different types and each comes with unique characteris-
tics. According to the World Health Organization (WHO),
among different types of cancers, cervical cancer ranks
the fourth most prevalent gynecologic malignancy among
women worldwide [1]. Since cervical cancer is generally
slow-growing, early detection through routine human pa-
pillomavirus (HPV) examination and pap smear checkup is
crucial for timely treatment and maximize patients’ chances
of survival. HPV and Pap smear tests are effective methods
for screening cervical cancer early by examining collected
cells from cervix area. HPV test can detect the human papil-
lomavirus that causes cell changes, and the pap smear test
can find precancerous cells that might develop into cancer
if not treated on time. However, periodic examination and
results assessment are not always easy due to a shortage
of medical professionals especially in developing countries
where cervical cancer is most prevalent[2].

Because of increasing availability of cancer datasets
and the exceptional ability of machine learning to identify
patterns within complex datasets, more supervised, unsu-
pervised, and semi-supervised machine learning techniques
have been applied for the diagnosis of various types of can-

cers [3]-[5] including cervical cancer [6]-[8]. Several studies
have applied machine learning on pap smear test results.
A recent review has indicated that K-nearest-neighbors
(KNN) and support vector machines (SVM) algorithms have
achieved the highest accuracy, exceeding 98.5%. However,
these reviewed algorithms have shown weaknesses of the
low classification accuracy in some classes of cells.

Most classifiers evaluated using segmented pap-smear
images are commercial software. There is a need to verify
their clinical effectiveness in developing countries where
the majority (80%) of incidents occur, and there is a shortage
of well-trained doctors and funding to purchase commer-
cially available software[9]. In [10], researchers have taken
an ensemble approach by applying five popular machine
learning methods: logistic regression (LR), decision tree
classifier (DT), SVM, multilayer perception (MLP), and KNN
to mine the relationships among different risk factors. The
average of the results has been used as the benchmark, with
the algorithm that has outperformed the benchmark as the
predictor. In the study, a gene auxiliary module has been
used to enhance the prediction result. However, such an
approach has brought an inherent issue since patients’ gene
information is often unknown.

Cervicography refers to images capturing the cervical
area, commonly used to determine the presence of cervical
cancer. Since accurate readings of cervicography require ex-
perience of well-trained medical professionals, which is not
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always available, [11] has presented a fully automated con-
volutional neural networks (CNN) based process to detect
cervical area and classify cervical cancer using cervicogra-
phy. However, the accuracy of cervical area detection is as
low as 68%, and the area under the curve (AUC) score of
cancer detection rate is 82%. Their study has compared the
prediction accuracy of three machine learning algorithms -
SVM, KNN, and the decision tree - using the UCI database
[11]. Nithya and Ilango [12] have applied five machine
learning algorithms along with various types of feature
selection techniques to explore risk factors of cervical cancer.
Although the accuracy is as high as 99% to 100%, evidence
is needed to show that the system is not overly tailored to
a specific dataset. To compare the performance of deep
learning and machine learning, researchers have evaluated
three machine learning algorithms - eXtreme Gradient Boost-
ing (XGB), SVM, and Random Forest (RF) - and one deep
learning algorithm (ResNet-50) to identify signs of cervical
cancer using cervicography images [13]. The evaluation
results suggest that deep learning has performed better
than machine learning approach by showing a 0.15-point
improvement over the average of the other three machine
learning algorithms.

Building upon the existing literature on applying ma-
chine learning in cervical cancer detection, this study ex-
tends the scope of examined algorithms to gain deeper
insights. Instead of evaluating a limited number of algo-
rithms as done in most studies, this research assesses a
comprehensive set of 19 supervised, semi-supervised, and
unsupervised algorithms. This extensive approach offers
a better understanding of the topic. Feature selection has
the advantage of improving predictions but may introduce
data overfitting issues, wherein the model is overly tailored
to a specific kind of data. Thus, this study has excluded
feature selection to detect various types of cancers. How-
ever, this approach might come with a potential trade-off
of reduced prediction accuracy. To address this concern,
we have explored whether the application of imputations
and hyperparameter optimization could enhance diagnostic
accuracy.

2. Method

2.1. Imputation

Imputation is a method to substitute missing data with
alternative values so that majority of the information in the
dataset can be preserved. Missing values are common in
medical field since much information is provided by the
patients voluntarily, patients often skip certain questions
for privacy concerns or a lack of knowledge about specific
information such as family hereditary history. The handling
of missing values is an issue that researchers cannot avoid.
Many statistical software removes instances with missing
values by default, which can result in misrepresentation
of the data, inaccurate models, and the data overfitting
problem. This is especially the case with the cancer datasets
which tend to have small size due to the challenges in
data collection and access. Such datasets typically con-
tain a smaller number of instances, making the removal of

instances with missing values impractical and inadvisable.

Imputation can keep all instances by replacing missing
data with an estimated value. This can be achieved using
various techniques among which statistical and machine
learning models are two popular methods. The statistical
models use mean, median, and mode values for numerical
features while applying the most frequent value for both
numerical and categorical features.

On the other hand, the machine learning models often
use regression and random forest techniques. The statistical
models are often more suited for large scale datasets with
missing values due to the computational efficiency, whereas
the machine learning models can handle both large and
small-scale datasets.

The theoretical foundations of both statistical and ma-
chine learning models are based on the sample and popu-
lation distribution of missing values within datasets [14].
The mathematical explanations are given as follows [14]:
To estimate the missing values from a given dataset, let X
represent the background information in a population, and
Y represent the outcome information in the sample. Then,
an estimate of the missing data in one run is denoted as
Q= 0X.7).

For the repeated imputation, given the complete set
Y = (Yops, Yimis), where Y, presents the observed and Y,
presents the missing, and the estimand Q, we have the
following equation:

P(O | Yops) = fP(Q | Yobs> Yimis)P(Ymis | Yobs)AY mis (1)

Equation (1) implies that the actual posterior distribution
of Q is calculated by averaging the complete-data posterior
distribution of Q.

As a result, the final estimate of Q and the final vari-
ance of Q are presented in Equations (2) and (3), respectively.

E(Q | Yops) = E[E(Q | Yobs> Ymis) | Yobs] (2)
V(Q I Yobs = E[V(Q | Yobss Ymis) | Yobs]
+V[E(Q | Yobn Ymis) | Yobs] (3)

Equation (2) indicates that the posterior mean of Q is cal-
culated as the average of repeated complete-data posterior
means of Q. Equation (3) indicates that the posterior variance
of Q is the sum of the average of repeated complete-data
variances of Q and the variance of repeated complete-data
posterior means of Q.

For the proper imputation, let O represent the complete-
data estimates and U be associated variance-covariance
matrices. The values of Q and U, denoted as Q.; and U,
respectively, should be approximately unbiased for Q and U:

EQ.|1X.Y,I)= 0
ani
EU«|X.Y,)=U

B, which represents the variance-covariance of Q*l
across m imputations, must be approximately unbiased for
the randomization variance of Q,,, as shown by:
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EBws | X, Y, 1) = var(Q., | X, Y, D).

2.2. Hyperparameter Optimization

In machine learning, a hyperparameter is a parameter which
can be set by the user to control the learning process. The
purpose of hyperparameter optimization is to choose a set
of hyperparameters for a learning algorithm to optimally
solve machine learning problems [15].

Under some models M of f : X — R¥, where X is the
configuration space, the Expected Improvement (EI) [16]
can be described in Equation (4), the expectation that f(x)
will negatively exceed some thresholds y*,

Ely(x) = [ max(y” = y,0pu(y | x)dy. )

As for learning algorithms such as Linear Discriminant
Analysis (LDA) and Logistics Regression (LR) that apply
Gaussain process, the procedure to optimize EI using Gaus-
sian process involves setting y* to the best value found
from the observation history H : y* = minf(x;),1 <i<n. In
Equation (4), py represents the posterior Gaussian process
distribution given the observation history H.

The optimization for tree-based learning algorithms,
such as Random Forest [17] and Regression Trees [18],
models p(x | y) and p(y) instead of p(y | x) as done in the
Gaussian process-based approach. The definition of p(x | y)
can be found in Equation (5) [16].

I(x)
g(x)

if y<y*

iy ©)

pxly) = {
Now, Equation (4) can be rewritten as Equation (6) as
shown below.

B0 = [ -5

(6)

Let y = p(y < y%), then p(x) = yi(x) + (1 — y)g(x). After
applying them to Equation (6), the optimization of EI be-
comes:

0= [ py)dy

. D) -1
Ely (0 = S5 =7

o (7 1(x)

that is, seeking points x with high probability under /(x)
and low probability under g(x).

2.3. Dataset

The cervical cancer dataset used in this study is from the
openly accessible UCI Machine Learning Repository [6].
This text-based dataset consists of 858 instances and 36
attributes, including demographic information, habit, and
medical records, and more, presented as integer or real
values. Collected from a hospital in Venezuela, the dataset
contains missing values and is highly imbalanced, with a ra-
tio of 55 positive diagnosis results to 803 negative diagnosis
result.

The cervical cancer dataset includes results from four
detection techniques: hinselmann, schiller, cytology, and
biopsy. This study selects the biopsy result as the target

variable since biopsy results provide more detailed diagnos-
tic information and offer deterministic outcomes in terms of
cell malignancy, cancer type, and cancer stage [19]. In this
study, all instances are kept, including those with missing
values. Removing instances with missing values would lead
to the exclusion of approximately 10% of true positive (ma-
licious) cases, significantly impacting the detection model’s
performance. However, two attributes, namely STDs:Time
since first diagnosis and STDs:Time since last diagnosis, are
removed because the majority of their values are missing,
with less than 9% of the values available.

2.4. Design of experiments

Four tests (See Table 1) are designed to empirically inves-
tigate the impact of imputation and hyperparameter op-
timization on the detection accuracy of machine learning
algorithms and processing time on a small-sized cancer
dataset with missing values. In all the tests, the dataset is
split to 67% for training and 33% for testing. No feature
selection is applied prior to training.

Since unsupervised learning algorithms do not use la-
beled data for training, they are not good candidates for
hyperparameter optimization. Although there have been
studies proposing strategies to optimize hyperparameters
for unsupervised learning, evaluating their optimization
outcomes can be challenging. Therefore, in this study, we
only apply hyperparameter optimization to 14 supervised
learning algorithms and one semi-supervised learning algo-
rithm (Label Propagation(LP)).

Table 1: Test Design

Test | Algorithms| Imputation| Hyperparameter
Optimization

1 19 N N

2 15 N Y

3 19 Y N

4 15 Y Y

Table 1 (Test Design) provides information on how the
four tests are conducted. The first column shows the test
number, the second column indicates the number of al-
gorithms included in each test, the third column specifies
whether imputation is applied (Y) or not (N) in that test,
and the fourth column shows whether Hyperparameter
Optimization is taken into consideration, with Y for Yes,
and N for no. The four tests are described below.

* Intest 1 and 3, all 19 algorithms are evaluated with-
out the application of hyperparameter optimization.
Feature imputation is used in test 3 but not in test 1.

¢ Intest 2 and 4, 15 algorithms are used, including one
semi-supervised learning (Label Propagation) and all
supervised learning. Hyperparameter optimization is
applied in both test 2 and 4, with imputation employed
in test 4 but not in test 2.

A total of 19 machine learning algorithms are used for
the prediction on the cervical cancer dataset. Table 2 lists 19
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of these algorithms, excluding Logistic Regression - Balanced
(LR-B) and Random Forest - Balanced (RF-B). LR-B and RF-B
are similar to Logistic Regression and Random Forest, respec-
tively, with minor variations. The only difference is the
setting of the class_weight parameter when using the Scikit
Learn library (sklearn) [20]: both LR-B and RF-B set the
class_weight to be “balanced.” Thus, we did not include LR-B
and RF-B in table 2. All listed algorithms are categorized as
unsupervised, semi-supervised, or supervised.

Cancer dataset

Do imputation?

Yes

Imputate missing values

Training data

| Choose a ML algorithm |

Do hyperparameter
optimization?

Yes

| Optimize hyperparameter ]—/

Figure 1: Workflow of prediction with imputation and hyperparameter
optimization

Testing data

|Classify with the ML algorithm |

Assification outcomy

Overall accuracy

I

Figure 1 illustrates the workflow of prediction with ap-
plication of imputation and hyperparameter optimization.
False positives in detection refer to incorrectly classified
negative instances as positives, while false negatives refer
to incorrectly classified positive instances as negatives. In
cancer diagnostics, the cost of false positives out weights the
false negatives since the former put “patients at risk with
invasive diagnostic procedures” [21].

In this study, we have chosen both Overall Accuracy
and Area Under the Receiver Operating Characteristics
(AUROC) [22] as metrics for evaluating the detection ac-
curacy. The ROC curve is plotted with sensitivity against
specificity: sensitivity is the ratio of true positives, defined
as TPR = 1=, and specificity is the proportion of true
negatives, presented as FPR = —L—, where TP stands for
True Positive, TN True Negative, FP False Positive, and FIN
False Negative. A higher AUROC value indicates a better
accuracy with a smaller false positive rate. An AUROC of
1.0 suggests a perfect classifier with 100% accuracy. The
Overall Accuracy is calculated as the ratio of the number of
correctly classified instances to the total number of instances,
that iS, %

The tests are implemented in Python 3.11 using the Scikit-
learn [20] and Imbalanced Learn [23] libraries. They have
been executed on a Dell Precision 5820 GPU workstation

equipped with an Intel Xeon Processor (4 cores, 4.1 GHz)
and an NVIDIA Quadro P2000 graphics card (5GB VRAM,
4 DisplayPort connectors).

3. Results

This section presents results from the four tests, including
accuracy, execution time details in attached tables in the Ap-
pendix, along with AUROC curves. A summary of findings
for each test is provided in Table 3.

The following three subsections provide details on how
imputation, hyperparameter optimization, and the com-
bination of these two methods impact machine learning
algorithms’ prediction accuracy and execution time for cer-
vical cancer diagnosis.

3.1. Impact of Imputation

We compare the two sets of results to determine the impact
of imputation on the cervical cancer dataset. The first set
includes the filtered dataset and imputed dataset without
hyperparameter optimization for test 1 and test 3 (section
3.1.2). The second set includes the filtered dataset and
imputed dataset with hyperparameter optimization for test
2 and test 4 (section 3.1.3).

3.1.1. Imputation Strategies

As mentioned in section 2.1, statistical and machine learning
models are two popular imputation methods. In this study,
both models have been explored for imputing the missing
values in the cervical cancer dataset. Specifically, we have
applied the statistical model using the most frequent value
approach and the machine learning model using Random
Forest for imputation, in both test 3 and test 4. Table 4 com-
pares the Overall Accuracy and AUROC obtained through
imputation using these two approaches in test 3 with 19
learning algorithms. The results indicate that imputation
with Random Forest outperforms imputation with the most
frequent value method, with 15 out of 19 algorithms demon-
strating higher Overall Accuracy and 12 out of 19 algorithms
showing better AUROC scores. In test 4 with 15 algorithms,
the comparison between the two imputation approaches
consistently indicates the better performance of the Random
Forest approach. 13 out of 15 algorithms achieve better
AUROC scores and 14 out of 15 algorithms obtain better
Overall Accuracy. Thus, for the remainder of the paper,
we report the findings based on imputation with Random
Forest when imputation is applied.

3.1.2. Comparison of Results from Test 1 and Test 3

Table 5 and Table 7 report the results from test 1 and test 3,
respectively. The comparisons of the accuracy and speed
performance of the 19 machine learning algorithms on the fil-
tered dataset and imputed dataset without hyperparameter
optimization (Table 5 and Table 7) are described below.

* We have observed that all algorithms achieve higher
Overall Accuracy with the imputed dataset compared
to the filtered dataset, with improvements ranging
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Table 2: List of Machine Learning Algorithms Examined

Type

Machine learning algorithms

Unsupervised

Copula-Based Outlier Detection (COPOD) [24]
K-Nearest Neighbor (KNN) [25]
Subspace Outlier Detection (SUOD) [26]

Semi-supervised

Self Training (ST) [27]
Label Propagation (LP)[28]

Supervised

Balanced Bagging [29]

Adaptive Boosting (AdaBoost) [30]

Balanced Random Forest [23]

Light Gradient Boosting Machine (LightGBM) [31]
Linear Discriminant Analysis (LDA) [32]

Logistics Regression (LR) [33]

Complement Naive Bayes (NB) [34]

Neural Networks (NN) - Multi-Layer Perceptrons [35]
v-Support Vector Machines (NuSVM) [36]
Random Forest (RF) [17]

Support Vector Machine (SVM) [37]

eXtreme Gradient Boosting (XGBoost) [38]

from 0.40% to 3.42%. Six algorithms, including Ad-
aBoost, LightGBM, RF, RE-B, XGBoost, and LP, experi-
ence a decrease in AUROC scores ranging from 0.01
to 0.08 when using the imputed dataset compared
to the filtered dataset. The remaining 13 algorithms
show higher AUROC scores with the imputed dataset.
Among them, LR, NB, NvSVM, and COPOD achieve a
significant improvement of at least 0.14, with NuSVM
achieving the highest improvement of 0.20. The other 9
algorithms show more modest improvements, limited
to 0.09 or lower.

* NN, RF-B, SVM and ST execute faster with the imputed
dataset compared to the filtered dataset, resulting in
saving more than 15% of execution time. BB, B-RF,
and LR take slightly shorter execution time (ranging
from 2% to 7%) with the imputed dataset. NB and CO-
POD show similar execution times with both datasets.
XGBoost, RF, SUOD and LR-B take slightly longer exe-
cution time (ranging from 3% to 9%) with the imputed
dataset. The execution times of AdaBoost, LightGBM,
LDA, NuSVM, LP, and KNN are much longer, ranging
from 16% to 55%, on the imputed dataset compared
to the filtered one.

3.1.3. Comparison of Results from Test 2 and Test 4

The findings from the comparisons of 15 algorithms” ac-
curacy and execution time on the filtered dataset and the
imputed dataset with hyperparameter optimization (Table
6 and Table 8) indicate the following:

¢ All algorithms require longer execution time, ranging
from 0.02 to 1.8 times, with the imputed dataset com-
pared to the filtered one. Among them, SVM requires
the longest additional time.

e All the tested algorithms demonstrate an improve-
ment in Overall Accuracy with the imputed dataset,
with the highest improvement being 3.27% (in LR).

As for AUROC scores, RF and LightGBM experience
a slight decrease of 0.03 and 0.04, respectively, when
using the imputed dataset. The remaining algorithms

show an improvement, with the highest improvement
being 0.23 (in SVM).

3.2. Impact of hyperparameter optimization

To determine the impact of hyperparameter optimization
on the cervical cancer dataset, we conduct a comparison
between the two sets of results. The first set of results is
from test 1 and test 2, and the second set is from test 3 and
test 4. This study applies the grid search strategy to identify
the optimal hyperparameter settings for an algorithm.

3.2.1. Comparison of Results from Test 1 and Test 2

Table 9 provides details of hyperparameter settings applied
to the machine learning algorithms used in test 2, including
14 supervised learning and 1 semi-supervised learning. Ta-
ble 5 and 6 report the results from test 1 and 2, respectively.
Both tests have removed the missing values, while test 2 has
also applied hyperparameter optimization. The following
findings on prediction accuracy and speed are observed:

¢ The findings indicate that the application of hyper-
parameter optimization does not significantly impact
the Overall Accuracy of six algorithms: BB, AdaBoost,
LightGBM, LDA, NN, and NuSVM. However, slight
decreases in Overall Accuracy (ranging from 0.45% to
1.36%) are observed for B-RF, LR, RF and XGBoost,
when hyperparameter optimization is applied. The re-
maining four algorithms demonstrate improved Over-
all Accuracy with hyperparameter optimization. LR-B
and LP show slight improvements (0.45% and 0.90%,
respectively), while NB, RF-B, and SVM exhibit better
improvements (ranging from 1.81% to 5.43%). Specifi-
cally, NB shows the highest improvement of 5.43%.

Regarding AUROC scores, the performance of BB, B-
RF, LDA, LR-B, NN, and NuSVMare the same with
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Table 3: Summary of Results

Test No. | Description Results
1 3 unsupervised; Table 5 presents the details of the results from Test 1.
2 semi-supervised; Fig. 2, 3, and 4 illustrate the AUROC curves.
14 supervised; Overall, supervised learning algorithms have performed
No imputation; the best in AUROC values, followed by semi-supervised,
No hyperparameter op. | and then unsupervised. 1 supervised learning (BB) has
the highest AUROC score of 0.90, followed by 3 supervised
learning (B-RF, LDA and LR-B) with a score of 0.89; The
highest Overall Accuracy of 95.93% is achieved by two su-
pervised learning (BB and LightGBM), followed by one
semi-supervised learning (ST) with accuracy of 95.48%. All
19 algorithms have execution time of less than 0.77 second.
2 0 unsupervised; Table 6 presents the details of the results from Test 2.
1 semi-supervised; Fig. 5 and 6 illustrate the AUROC curves.
14 supervised; 5 supervised learning (BB, B-RF, LDA, LR-B and RF) have the
No imputation; best AUROC values between 0.89 and 0.9, among which LDA
Hyperparameter op. also has the one of the shortest processing time of only 0.37
second among all 15 algorithms. 13/14 supervised learning
have Overall Accuracy of over 92.76%. 3 supervised learning
(BB, LightGBM, and LR-B) and 1 semi-supervised learning
(LP) have the highest Overall Accuracy of 95.93%. LP also
has one of the shortest execution times, taking 0.86 seconds.
Only 4 algorithms have execution time of less than 1 second,
5 algorithms take more than 30 seconds, and XGBoost has
the longest execution time of 97.89 seconds.
3 3 unsupervised; Table 7 presents the details of the results from Test 3.
2 semi-supervised; Fig. 7,8 , and 9 illustrate the AUROC curves.
14 supervised; The top performers in AUROC are 4 supervised learning -
Imputation; i.e., BB, B-RF, LDA, and LR-B with the values of 0.96, 0.95,
No hyperparameter op. | 0.95, and 0.95 respectively, among which LDA also has one
of the shortest processing time(0.01 second). All but two
algorithms (KNN and NB) have Overall Accuracy higher
than 90%.
4 0 unsupervised; Table 8 presents the details of the results from Test 4.
1 semi-supervised; Fig. 10 and 11 illustrate the AUROC curves.
14 supervised; 8 out of 14 supervised learning (BB, AdaBoost, B-RF, LDA,
Imputation; LR-B, RE-B, SVM, and XGBoost) have AUROC values be-
Hyperparameter op. tween 0.95 and 0.96, among which LDA has the shortest
execution time in test 4 (0.43 second). All 15 algorithms have
Overall Accuracy of over 91.5%, 11 of them have processing
time more than 1 second among which XGBoost has the
longest execution time of 105.23 second.

and without the application of hyperparameter op-
timization on this dataset. LP and LR experience a
slight decrease in AUROC scores (ranging from 0.02
to 0.03) when hyperparameter optimization is applied
compared to when it is not. The most significant de-
crease decreases in the AUROC score are observed in
NB and RF, with reductions of around 0.11.

¢ With the application of hyperparameter optimization,
all tested algorithms experience considerably longer
execution times compared to their counterparts with-
out optimization. NB, LDA, LR-B, NN, and NuSVM
take over less than 50 times longer to execute, with NB
taking 9 times longer as the shortest. LR takes more
than 50 times but less than 68 times longer to execute.

The remaining algorithms take much longer to exe-
cute, ranging from 161 (LP) to 1240 times (XGBoost),
when hyperparameter optimization is applied.

3.2.2. Comparison of Results from Test 3 and Test 4

Table 7 and Table 8 present the results of test 3 and test
4, respectively. In both tests, imputation has been applied
to the dataset, with hyperparameter optimization being
applied in test 4, but not in test 3. Table 10 describes the
hyperparameter settings applied to the machine learning
algorithms used in test 4, including 14 supervised learning
and 1 semi-supervised learning.

¢ The application of hyperparameter optimization does
not impact the Overall Accuracy for LDA, NN, and
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Table 4: Imputation with Most Frequent Value vs. Random Forest

. Imputation (Most Frequent) | Imputation (Random Forest)
Algorithms OVEraH(%) AUROCq OVErall(%) AUROC
BB 95.07 0.92 97.18 0.96
AdaBoost 93.66 0.68 95.77 0.74
B-RF 95.77 0.93 96.13 0.95
LightGBM | 95.77 0.74 96.83 0.72
LDA 96.48 0.93 96.83 0.95
LR 96.13 0.75 97.54 0.87
LR-B 95.42 0.87 96.48 0.95
NB 89.44 0.74 87.32 0.90
NN 94.72 0.66 95.42 0.74
NuSVM 95.77 0.74 96.83 0.92
RF 96.48 0.77 96.48 0.75
RF-B 95.42 0.66 94.72 0.56
SVM 93.66 0.50 94.37 0.50
XGBoost 95.42 0.77 96.83 0.75
ST 96.82 0.79 98.94 0.91
LP 96.11 0.73 95.76 0.74
COPOD 90.81 0.76 89.25 0.71
KNN 87.99 0.63 87.10 0.65
SUOD 90.11 0.73 89.25 0.71

RF; the result remains the same regardless of whether
it is applied. BB, LR, and NuSVM experience slight
decrease in Overall Accuracy, ranging from 0.35%
(BB) to 1.06% (LR). The remaining algorithms show
improvements in Overall Accuracy at different levels.
B-RF, Light GBM, and XGBoost have slight increase
(<=0.7%). AdaBoost and LP have an increase over 1%
but less than 2%. RF-B, SVM, and NB show better im-
provement, increasing in the range of 2.11% to 4.23%,
with NB receiving the highest improvement.

The AUROC scores of BB, B-RF, LDA, and LR-B are
not affected by whether the optimization is applied
to the dataset. However, other algorithms show an
impact from the optimization. LR, NB, NuSVM, and
RF experience a reduction in scores, ranging from 0.03
to 0.12, when optimization is applied. The other seven
algorithms demonstrate an improvement in AUROC
scores with the optimization. LP, NN, and LightGBM
show a slight improvement of 0.01, 0.03, and 0.06, re-
spectively, while AdaBoost, XGBoost, RF-B, and SVM
show an increase ranging from 0.21 to 0.46, with SVM
achieving the highest improvement of 0.46.

¢ Similar to the observation described in section 3.2.1
about the significant increase in speed when hyper-
parameter optimization is applied, all algorithms in
test 4 take significantly longer to execute, ranging
from 23 to 1450 times longer, with LDA requiring the
shortest additional time (23) and SVM requiring the
longest (1450) compared to without hyperparameter
optimization.

3.3. Impact of hyperparameter optimization and imputation

The impact of applying both hyperparameter optimization
and imputation is evaluated based on the findings from test

1 (Table 5) and test 4 (Table 8) in appendix section.

The results indicate that the application of both hyperpa-
rameter optimization and imputation has a positive impact
on the detection accuracy, including both Overall Accuracy
and AUROC scores.

Overall Accuracy improves for all algorithms when both
techniques are applied. BB and RF show a slight improve-
ment of around 0.6%. B-RF, LightGBM, LDA, LR-B, NN,
NuSVM, and XGBoost demonstrate increases ranging from
1% to 1.91%. AdaBoost, LR, NB, LP, RF-B, and SVM show
higher accuracy improvements of over 2%), with SVM and
NB achieving significant increases of 4.88% and 7.39%, re-
spectively.

AUROC scores are improved for most algorithms except
for LightGBM, LP, and RF, which experience a slight de-
crease ranging from 0.01 to 0.14. BB, B-RF, LDA, LR-B, NB,
and NN demonstrate a slight increase, with values ranging
from 0.05 to 0.08. The remaining algorithms, including Ad-
aBoost, RF-B, SVM, and XGBoost, receive increases ranging
from 0.14 to a maximum of 0.46 (SVM).

The application of both approaches significantly in-
creases the execution time for all algorithms. Consistent
with the findings in sections 3.2.1 and 3.2.2, the execution
time of each algorithm increases ranging from 10 to 1342
times compared to when neither approach is applied. NB
takes the shortest additional time (10 times), while XGBoost
takes the longest time (1342 times) compared to when the
approaches are not used.

3.4. Discussion

In this study, we are interested in comparing the perfor-
mance of machine learning applications in cancer diagnosis,
especially approaches that are flexible enough to detect dif-
ferent kinds of cancers without compromising accuracy. To
achieve this goal, we have examined the impact of imputa-
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tion and hyperparameter optimization on the performance
of algorithms using a cervical cancer dataset. Three criteria
- execution speed, overall diagnosis accuracy, and AUROC
scores are used to evaluate performance. Since the cost of
false positive is high in cancer diagnosis, and a good AUROC
score indicates low false positive rate, it is a more important
criteria in this study. Based on whether imputation and
hyperparameter optimization is included, we have split the
algorithms into four tests.

Missing values are common in medical data, and statis-
tical and machine learning are two popular methods that
handle missing data. By comparing the performance of
Random Forest, a common machine learning method, and
the most frequent value method in statistics, we found that
machine learning approach outperforms statistical approach
as an imputation method in this study. This finding echoes
with our discussion in section 2.1 that machine learning is
well suited to process dataset with missing values, especially
when the dataset is small.

Results of this study show that the four top performers
are all supervised learning: BB, B-RF, LDA, and LR-B, among
which the performance of LDA is especially noticeable by
consistently delivering the most accurate diagnosis within
the shortest time across all four tests. These four supervised
learning definitely merit more attention in future studies.

Examination of findings from the four tests shows the
following;:

1) when both imputation and hyperparameter optimiza-
tion are absent in test 1, supervised and semi-supervised
learning have performed well in Overall Accuracy, 15 out of
16 algorithms have scored over 92.31%. However, in terms of
AUROC, the top performers (BB, B-RF, LDA, and LR-B) only
have AUROC value of 0.89, none has values over 0.9. SVM, a
popular supervised learning algorithm, has performed the
worst: its AUROC value is only 0.5. Unsupervised learning
algorithms have not performed well, all three have AUROC
values below 0.7. Although the execution time in test 1
is fast(none is over 0.77 second), the overall low AUROC
values is definitely not satisfactory.

2) To examine the impact of imputation, we have con-
ducted two comparisons. One set of comparison is between
results from test 1 and test 3. The result shows that when
only imputation is applied, the change in execution time is
marginal and yet the improvement of Overall Accuracy and
AUROC is impressive compared to when both methods are
absent. All algorithms have increased the Overall Accuracy,
and 68% of the algorithms have improved on their AUROC
scores. The other set of comparison is between results from
test 2 and test 4. When both imputation and hyperparameter
optimization are applied, compared to when only hyper-
parameter optimization is applied, all 15 algorithms have
increased their execution times. The good news is that
the Overall Accuracy of all algorithms has improved, and
most AUROC values have increased. These two sets of
comparisons suggest that the employment of imputation
could improve the prediction accuracy without extending
the execution time.

3) To evaluate the impact of hyperparameter optimiza-
tion, we have also carried out two set of comparisons. One
set of comparison is between test 1 and 2. When only hyper-

parameter optimization is applied in test 2, the execution
time of all algorithms have increased significantly than when
both methods are absent (test 1). 11 out of 15 algorithms
have execution time of more than 1 second whereas none
of the algorithms has run time over 1 second when both
methods are absent in test 1. XGBoost in test 2 even has run
time as high as 97 seconds. 7 algorithms have increased their
Overall Accuracy and 8 out of 15 algorithms have improved
their AUROC scores. The other set of comparison is between
test 3 and 4. The results show that when both methods are
present (test 4), the execution time for majority of the algo-
rithms is significantly longer than when only imputation is
present (test 3): only 4 algorithms have execution time of
less than 1 second in test 4, whereas all but 2 algorithms have
less than 1 second in test 3. 9 algorithms have improved
their Overall Accuracy and AUROC scores, among which
the AUROC score improvements are especially noticeable
for three supervised learning algorithms: RF-B, SVM, XG-
Boost, with improvement of 28%, 92%, and 71% respectively.
The findings from these two sets of comparisons show that
inclusion of hyperparameter optimization could lengthen
the execution time while improving the prediction accuracy,
especially for some algorithms such as RF-B, SVM, and
XGBoost.

4) Comparison of all 4 tests shows that overall, the inclu-
sion of both imputation and hyperparameter optimization
does deliver the best AUROC values, with 53% score more
than 0.95 and 0.96, whereas none from test 1, 20% from test
2, 21% from test 3 has such values.

To summarize, our study has shown how the applica-
tion of both imputation and hyperparameter optimization
methods in machine learning could improve the detection
accuracy. Also, by taking all features of the data into con-
sideration, although the diagnosis accuracy of the classifier
is not as high as 99%-100% as observed in other systems
that apply various feature selection [12], the performance
is satisfactory with the inclusion of both imputations and
hyperparameters optimization. In addition, by not having
feature selection, the classifier can avoid the overfitting prob-
lems that are common in many studies, and can potentially
be applied in diagnosing various types of cancers.

This study does come with its limitations. Firstly, al-
though we have examined as many as 19 different machine
learning algorithms, most are supervised learning algo-
rithms with only two being semi-supervised and three
being unsupervised. To gain comprehensive understand-
ing on the performance differences among different types
of algorithms, it would be better to consider more semi-
supervised and unsupervised machine algorithms in future
studies. Secondly, one cervical cancer dataset is applied to
evaluate the diagnosis performance of different algorithms.
To improve the generalizability of the findings, we will use
cervical cancer datasets from different sources upon the data
availability. Also, to investigate whether how algorithms dif-
fer from each other, it would be advisable to include datasets
with various types of cancers for evaluation. Thirdly, the
dataset used in this study is text based. Since images are
extensively used in cancer diagnosis, it would be preferable
to include image-based datasets in further studies.
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4. Conclusion

With the increasing popularity of machine learning ap-
plications in cancer diagnosis, there has been a need to
evaluate the performance of these algorithms and identify
approaches that could improve their performance. This
study contributes to the literature by examining the can-
cer detection performance of as many as 19 supervised,
semi-supervised, unsupervised learning machine learning
algorithms. To investigate ways that expand the types of
cancers that the algorithms could accurately detect, this
study has investigated how the inclusion and exclusion of
imputation and hyperparameter optimization would impact
performance using a cervical cancer dataset. The results sug-
gest that applying both hyperparameter optimization and
imputation methods could impact detection performance
much better than employing each of them independently or
none of them. This study has provided insights on creating
versatile classifiers that could deliver solid results.

5. Availability of data and materials

The cervical cancer dataset that the current study has ana-
lyzed are openly available in UCI Machine Learning Repos-
itory, the web address is https://archive.ics.uci.edu/
ml/datasets/Cervical+cancer+%28Risk+Factors%29.
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Table 5: Results - Test 1

Algorithm | Time False | False Correct | Overall | AUROC
(sec) Neg. Pos. /221 (%)
BB 0.03 3 6 212 95.93% | 0.90
AdaBoost | 0.06 8 3 210 95.02% | 0.76
B-RF 0.22 3 7 211 95.48% | 0.89
LightGBM | 0.06 7 2 212 95.93% | 0.79
LDA 0.02 3 7 211 95.48% | 0.89
LR 0.06 10 3 208 94.12% | 0.70
LR-B 0.10 3 7 211 95.48% | 0.89
NB 0.02 7 28 186 84.16% | 0.73
NN 0.93 9 3 209 94.57% | 0.73
NuSVM 0.02 9 3 209 94.57% | 0.73
RF 0.14 11 2 208 94.12% | 0.67
RF-B 0.16 11 1 209 94.57% | 0.67
SVM 0.02 17 0 204 92.31% | 0.50
XGBoost | 0.08 6 4 211 95.48% | 0.81
LP 0.01 8 3 210 95.02% | 0.76
ST 0.01 7 3 211 95.48% | 0.79
COPOD 0.01 16 11 194 87.78% | 0.64
KNN 0.01 20 15 186 84.16% | 0.51
SUOD 1.03 15 10 196 88.69% | 0.67

Note: imputation (no), hyperparameter optimization (no).

Table 6: Results - Test 2

Algorithm | Time False | False Correct | Overall | AUROC
(sec) Neg. Pos. /221 (%)
BB 6.94 3 6 212 95.93% | 0.90
AdaBoost | 22.09 |5 6 210 95.02% | 0.84
B-RF 5991 |3 8 210 95.02% | 0.89
LightGBM | 2150 | 6 3 212 95.93% | 0.82
LDA 0.37 3 7 211 95.48% | 0.89
LR 4.40 11 4 206 93.21% | 0.67
LR-B 4.09 3 6 212 95.93% | 0.90
NB 0.21 12 11 198 89.59% | 0.62
NN 46.09 |9 3 209 94.57% | 0.73
NuSVM 0.79 9 3 209 94.57% | 0.73
RF 34.65 |15 1 205 92.76% | 0.56
RF-B 3414 |3 5 213 96.38% | 0.90
SVM 5.22 9 4 208 94.12% | 0.73
XGBoost | 96.89 | 5 6 210 95.02% | 0.84
LP 0.86 9 0 212 95.93% | 0.74

Note: imputation(no), hyperparameter optimization(yes).
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Table 7: Results - Test 3

Algorithm | Time False | False Correct | Overall | AUROC
(sec) Neg. Pos. /284 (%)
BB 0.03 1 8 275 96.83% | 0.95
AdaBoost | 0.08 9 4 271 95.42% | 0.71
B-RF 0.20 1 9 274 96.48% | 0.95
LightGBM | 0.08 9 1 274 96.48% | 0.72
LDA 0.02 1 8 275 96.83% | 0.95
LR 0.06 4 3 277 97.54% | 0.87
LR-B 0.11 1 9 274 96.48% | 0.95
NB 0.02 1 35 248 87.32% | 0.90
NN 0.80 7 5 272 95.77% | 0.77
NuSvVM 0.02 2 6 276 97.18% | 0.93
RF 0.15 13 2 269 94.72% | 0.59
RF-B 0.11 12 1 271 95.42% | 0.62
SVM 0.01 16 0 268 94.37% | 0.50
XGBoost | 0.08 8 1 275 96.83% | 0.75
LP 0.01 8 4 272 95.77% | 0.74
ST 0.01 5 1 278 97.89% | 0.84
COPOD 0.01 19 6 259 91.20% | 0.78
KNN 0.02 26 13 245 86.27% | 0.55
SUOD 1.12 20 7 257 90.49% | 0.74

Note: imputation(yes), hyperparameter optimization (no).

Table 8: Results - Test 4

Algorithm | Time False | False Correct | Overall | AUROC
(sec) Neg. Pos. /284 (%)
BB 7.08 1 9 274 96.48% | 0.95
AdaBoost | 26.88 |1 7 276 97.18% | 0.96
B-RF 6350 |1 7 276 97.18% | 0.96
LightGBM | 26.69 7 1 276 97.18% | 0.78
LDA 043 1 8 275 96.83% | 0.95
LR 4.80 7 3 274 96.48% | 0.78
LR-B 5.24 1 7 276 97.18% | 0.96
NB 0.22 6 18 260 91.55% | 0.78
NN 6849 |6 6 272 95.77% | 0.80
NuSVM 0.86 3 7 274 96.48% | 0.89
RF 36.07 | 15 0 269 94.72% | 0.53
RF-B 3711 |1 6 277 97.54% | 0.96
SVM 1464 |1 7 276 97.18% | 0.96
XGBoost | 104.79 |1 7 276 97.18% | 0.96
LP 0.93 8 0 276 97.18% | 0.75

Note: imputation (yes), hyperparameter optimization (yes).
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Table 9: Hyperparameter Setting for test 2

Algorithm

Hyperparameter setting

BB
AdaBoost
B-RF
LightGBM

LDA
LR
LR-B
NB
NN

NuSVM
RF

RF-B
SVM
XGBoost

LP

'n_estimators”: 100

"learning_rate’: 0.01, 'n_estimators”: 300

‘criterion”: ‘gini’, ‘'max_depth”: 1, 'n_estimators’: 500
"learning_rate”: 0.1, ‘'max_depth”: 10,

‘n_estimators”: 100, 'scale_pos_weight”: 6

‘solver”: ‘svd’, ‘tol’: 0.0001

‘C’: 100, ’penalty’: 12, "solver’: 'newton-cg’

'C’: 1.0, 'penalty”: '12’, 'solver”: ‘liblinear’

‘alpha’: 9

‘activation”: ‘relu’, “alpha’: 0.05, "hidden_layer_sizes”: (10, 30, 10),
"learning_rate”: “adaptive’, ‘solver’: ‘adam’

‘gamma’: 0.001, nu”: 0.1

‘criterion”: ‘gini’, ‘'max_depth”: 5, 'n_estimators’: 500
‘criterion”: “entropy’, ‘'max_depth”: 3, 'n_estimators”: 200
'C’: 1.0, ‘gamma’: 0.001, 'kernel”: 'linear’
‘colsample_bytree’: 1.0, ‘gamma’: 2, 'max_depth”: 3,
‘min_child_weight”: 1, “subsample’: 1.0

‘gamma’: 0.1, 'kernel”: ’knn’, 'n_neighbors”: 3

Table 10: Hyperparameter settings for test 4

Algorithm

Hyperparameter setting

BB
AdaBoost
B-RF
LightGBM

LDA
LR
LR-B
NB
NN

NuSVM
RF

RF-B

SVM
XGBoost

LP

'n_estimators’: 100

"learning_rate”: 0.001, 'n_estimators”: 100

‘criterion”: “gini’, ‘'max_depth”: 1, 'n_estimators”: 200
"learning_rate”: 0.1, ‘'max_depth”: 10,

‘n_estimators”: 100, 'scale_pos_weight”: 6

’solver’: 'svd’, "tol’: 0.1

'C’: 1.0, 'penalty”: '12’, 'solver”: ‘liblinear’

'C’: 0.1, 'penalty”: '12’, ’solver”: 'newton-cg’

‘alpha’: 9

“activation”: ‘relu’, “alpha’: 0.0001, "hidden_layer_sizes”: (20,),
"learning_rate’: “constant’, 'solver”: ‘adam’

‘gamma’: 0.01, 'nu”: 0.1

‘criterion”: “entropy’, ‘'max_depth’”: 3,

'n_estimators’: 200

‘criterion”: “gini’, ‘'max_depth’: 3,

'n_estimators”: 500

'C’: 1.0, ‘gamma’: 0.001, 'kernel”: ‘linear’
‘colsample_bytree”: 0.8, ‘gamma’: 1.5, ‘max_depth”: 3,
‘min_child_weight”: 10, 'subsample”: 1.0

‘gamma’: 0.1, 'kernel’: 'knn’, 'n_neighbors”: 3
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AUROC Curves for Supervised Learning Algorithms

1.0 A

0.8 1

o
[o)]
|

True Positive Rate
I
N

0.2 A

0.0 A

BB (AUC = 0.90)
AdaBoost (AUC = 0.76)
B-RF (AUC = 0.89)
LightGBM (AUC = 0.79)
LDA (AUC = 0.89)

[ LR (AUC = 0.70)

LR-B (AUC = 0.89)

‘ NB (AUC = 0.73)

| NN (AUC = 0.73)

| NuSVM (AUC = 0.73)
RF (AUC = 0.67)

RF-B (AUC = 0.67)
SVM (AUC = 0.50)
XGBoost (AUC = 0.81)
——+ Random Guess

0.0 0.2 0.4 0.6 0. 1.0
False Positive Rate

[ee]

Figure 2: Test 1: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter Optimization]

AUROC Curves for Semi-Supervised Learning Algorithms
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Figure 3: Test 1: AUROC of Applying 2 Semi-Supervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter

Optimization]
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True Positive Rate

AUROC Curves for Unsupervised learning
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Figure 4: Test 1: AUROC of Applying 3 Unsupervised Learning Algorithms on the Cervical Dataset [No Imputation, No Hyperparameter Optimization]
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Figure 5: Test 2: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [No Imputation, Hyperparameter Optimization]
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AUROC Curves for Semi-Supervised Learning Algorithms
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Figure 6: Test 2: AUROC of Applying 1 Semi-Supervised Learning Algorithms on the Cervical Dataset [No Imputation, Hyperparameter Optimization]
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Figure 7: Test 3: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]
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AUROC Curves for Semi-Supervised Learning Algorithms
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Figure 8: Test 3: AUROC of Applying 2 Semi-Supervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]
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Figure 9: Test 3: AUROC of Applying 3 Unsupervised Learning Algorithms on the Cervical Dataset [Imputation, No Hyperparameter Optimization]
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AUROC Curves for Supervised Learning Algorithms
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Figure 10: Test 4: AUROC of Applying 14 Supervised Learning Algorithms on the Cervical Dataset [Imputation, Hyperparameter Optimization]
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Figure 11: Test 4: AUROC of Applying 1 Semi-Supervised Learning Algorithms on the Cervical Dataset [Imputation, Hyperparameter Optimization]
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