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Editorial 
In this issue, we explore advancements in computational neuroscience and machine learning, 
focusing on Liquid State Machines (LSMs) and their application in solving classification 
problems. LSMs, inspired by the workings of the brain, are an intriguing class of recurrent 
neural networks known for their ability to process time-varying inputs. This featured research 
paper delves into a critical yet often overlooked aspect of LSMs: the influence of liquid state 
representation on performance. By proposing a novel model that leverages spike synchrony 
over spike rate, the study presents a significant step forward in enhancing LSM performance 
and aligning it more closely with biological neural coding. 

Traditionally, LSMs solve classification problems by decoding internally generated neural 
states through spike rate-based vector representations. This prevalent method, however, 
neglects the interspike timing, a crucial element of biological neural coding. The reliance on 
spike rate alone can obscure vital temporal information, potentially compromising the 
performance of LSMs in classification tasks. The paper proposes an innovative approach to 
liquid state representation that incorporates temporal information extracted from spike trains, 
focusing on spike synchrony rather than rate. This model constructs feature vectors from the 
temporal patterns of spikes, capturing the nuanced timing relationships between spikes that 
are often ignored in rate-based models [1]. 

This edition's featured research paper offers a groundbreaking perspective on liquid state 
representation in LSMs, emphasizing the importance of temporal information and spike 
synchrony. By addressing the limitations of traditional rate-based models, the proposed 
approach enhances classification performance and aligns LSMs more closely with biological 
neural coding. These advancements not only improve our understanding of neural networks 
but also have far-reaching implications for the future of machine learning and AI. 

References: 
[1] N. Pajot, M. Boukadoum, “Neural Synchrony-Based State Representation in Liquid State Machines, an

Exploratory Study,” Journal of Engineering Research and Sciences, vol. 2, no. 11, pp. 1–14, 2023,
doi:10.55708/js0211001.
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ABSTRACT: Solving classification problems by Liquid State Machines (LSM) usually ignores the 
influence of the liquid state representation on performance, leaving the role to the reader circuit. In 
most studies, the decoding of the internally generated neural states is performed on spike rate-based 
vector representations. This approach occults the interspike timing, a central aspect of biological neural 
coding, with potentially detrimental consequences on the LSM performance. In this work, we propose 
a model of liquid state representation that builds the feature vectors from temporal information 
extracted from the spike trains, hence using spike synchrony instead of rate. Using pairs of Poisson-
distributed spike trains in noisy conditions, we show that such model outperforms a rate-only model 
in distinguishing two spike trains regardless of the sampling frequency of the liquid states or the noise 
level. In the same vein, we suggest a synchrony-based measure of the separation property (SP), a core 
feature of LSMs regarding classification performance, for a more robust and biologically plausible 
interpretation. 
 
KEYWORDS: Liquid state machine, state representation, temporal decoding, separation property, 
classification 

 
1. Introduction 

Liquid State Machines (LSMs) are generic models of 
computation inspired by biological cortical circuits. As such, 
they are well suited for real-time, online and anytime 
computations, and they can under certain circumstances 
exhibit unlimited computational power [1].  One important 
aspect of LSMs is their conceptual simplicity and relative 
ease of implementation in comparison to multilayer 
networks with error backpropagation training. LSMs have 
been tested with relative success in a variety of experimental 
contexts: identification of spoken words, voice, phonemes 
[2], [3], [4] and musical instruments [5], [6], robotics [7], 
movement prediction [8]; classification of musical styles [9], 
seismic data for military vehicles [10], nuclear stockpile data 
[3]; recognition of signature counterfeits  [11], and even the 
study of biological neurons [12]. However, the LSM 
performance for classification tasks is variable [13], [14], 
[15], [16], potentially due to the randomly connected and 
untrained liquid regardless of application. Several authors 

have investigated liquid optimization approaches to raise 
the performance of LSMs, including Genetic Algorithms 
[13], [17], Separation Driven Synaptic Modification [18], 
Reinforcement Learning [17], Particle Swarm Optimization 
[19], and a number of different learning methods for 
temporal representations of artificial spiking neural 
networks (statistics, Hebbian learning, gradient estimation, 
linear algebra formalisms, etc.) that are reviewed in [20].   

Still, the research on LSMs rarely focuses on the 
influence of the liquid state representations on performance. 
In most studies, the decoding of the discrete input spike 
trains relies on rate-based feature vectors used as inputs to 
a classifier. The rate coding typically counts the number of 
spikes in arbitrary time bins and filters the results with an 
exponential kernel due to its shape resemblance to the 
postsynaptic currents in biological neurons [21]. This 
ignores the spike timing, with potentially detrimental 
consequences on LSM classification performance. In this 
work, we propose a model of the liquid states that is based 
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on temporal information extracted from the input spike 
trains, aiming to improve classification performance 
without increasing the liquid’s dimensionality. We show 
that this model outperforms a rate-based model at 
classifying Poisson-distributed spike trains in noisy 
conditions regardless of the sampling frequency of the 
liquid states. We therefore suggest a synchrony-based 
measure of the Separation Property (SP) of LSMs, for a more 
robust and biologically plausible interpretation. 

This paper is divided as follows: the next section 
provides a brief description of the LSM model, with 
examples of use in classification problems. In section III, we 
focus on the common rate-based representation of liquid 
states to show that it leaves apart critical temporal 
information about spike trains. We also review the known 
measures of SP and underline the absence of synchrony-
based methods to quantify it. Section IV proposes a novel 
representation of the liquid state based on spike metrics, as 
well as a composite state model that incorporates both rate 
and temporal representations in a composite feature vector. 
We also describe the methodology used to test performance 
hypotheses about synchrony in the context of classifying 
Poisson-distributed input spike trains, as well as the 
correlation of performance with SP measures. We present 
the simulation results in Section V before a discussion and 
conclusions.  

2. The Liquid State Machine Model (LSM) 

Figure 1 summarizes the processing steps in the LSM 
model, showing the input signal encoding (a, b), the spatio-
temporal propagation within the liquid (c), the liquid state 
vector coding (d) and the interpretation by a readout 
mechanism (e).  The core of the LSM is the neural liquid, or 
microcircuit, which consists in a grid of interconnected 

artificial spiking neurons, usually in 3-dimensional space by 
analogy to biological cortical columns (see Figure 1.c). The 
neurons occupy the nodes of this structure and are usually 
connected by randomly generated synapses. Due to its 
inputs and recurrent connections, the liquid forms a 
dynamic system endowed with the memory of previous 
states [4], [22], [23]. As a result, it continuously projects 
input signals onto a high-dimensional space. This mapping 
fosters the emergence of spatiotemporal patterns 
(trajectories, or “time-varying changes in the active state” [24], 
p. 114) that may be identified by simple, memoryless 
readouts [13], [3], as long as two major constraints are 
enforced: the Approximation Property (AP) and the 
Separation Properties (SP); AP guarantees that the readout 
can approximate any function of the liquid states to an 
arbitrary level of accuracy, whereas SP ensures that 
trajectories produced in the liquid by different input stimuli 
are well differentiated. 

The readout maps liquid states to meaningful outputs; in 
the case of classification, it projects state vectors onto classes. 
Similar to Support Vector Machines, the capability to 
separate complex trajectories by linear discriminators is 
guaranteed by the fact that the “the dimension of the state space 
exceeds the ‘complexity’ of the trajectories” [24].  

The readout is the only LSM element that requires 
training, which may confer an advantage to the model over 
alternative architectures, since training a recurrent network 
of artificial spiking neurons can be a hard problem. 
However, the way the liquid states are encoded to serve as 
input feature vectors to the readout may play a role in 
achieving peak performance. This subject seems to have 
been largely ignored by the research community and most 
studies represent the liquid states by the same approach: 

Figure 1: Typical Liquid State Machine model 

http://www.jenrs.com/
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measuring the spike rate in preset time intervals. Therefore, 
any potential phase information benefit is lost. 

2.1. Models of Liquid States 

Two broad approaches to represent the liquid states can 
be seen in the literature: sampling of analog signals [25], 
[10], such as the postsynaptic potential or the neural 
membrane voltage [26] and spike train decoding [23], [27], 
[28], [29], [8], [24]. T the typical representation in the latter 
is a state matrix obtained by filtering the discrete spike 
trains generated within the liquid after exposure to a 
stimulus ([3], [13], [30], [27], [10]). The filtering step is 
typically performed by convolution with an exponential 
kernel due to its resemblance to the shape of postsynaptic 
currents [21]. As a result, the spike firings within a liquid 
composed of N neurons are converted into an N-
dimensional continuous signal [24], and each element of the 
state matrix stores the sampled values of this signal for a 
given observation interval, sampling rate, and neuron in the 
liquid. This representation is in effect a “rate code” (whereas 
small bin sizes can turn the representation into a 
“coincidence detector” [21]). 

Although widely used to represent the liquid states, 
rate-based feature vectors miss a key aspect of the neural 
code: the actual timing of spike emissions, hence neglecting 
phase information [20], [31], [32]. On the other hand, it is 
now accepted that neural coding cannot be fully understood 
by only examining the rate of spike firing [33], [18], [34], [35], 
[36], [32], [31], and that the spike timing also encodes 
information. Hence, the synchrony between spike trains 
may be a cornerstone for understanding neural codes, as 
“temporal codes employ those features of the spiking activity that 
cannot be described by the firing rate.” [32]  

The temporal decoding of liquid states has already been 
suggested before. In [29], the authors underline the potential 
power of the temporal relationships between the spike 
trains in the liquid, while [3] advocates the use of readouts 
that incorporate spike timings, but no study has examined 
the respective efficiency of synchrony-based and rate-based 
approaches. Similarly, SP models that consider the 
synchrony between spike trains in the liquid are rare [18]. 

2.2. Separation Property 

The Separation Property evaluates the amount of 
“separation between the trajectories of internal states” [23] that 
are triggered in the liquid by two different input stimuli. 
The more separation, the easier it is for a readout endowed 
with the approximation property to distinguish between 
two different state trajectories in the liquid. This 

macroscopic property of the liquid can thus contribute to 
LSM classification performance. 

While SP is widely regarded as a crucial predictor of 
performance, there is little consensus on how to measure it. 
The literature reveals different views, including statistical 
methods [13], [3], [37], and linear algebra formalisms [14] or 
vector distances between filtered firing rates [23], [1], [37]. 
For instance, Maass [23], [1] expresses SP as the Euclidean 
distance between the filtered state vectors of each neuron 
(Gaussian kernel), Dockendorf [37] uses both the Van 
Rossum [38] metric – which exploits the notion of distance 
between filtered states – and a custom measure based on the 
cross-correlation of spike times, Legenstein and Maass [14] 
link SP to the number of linearly independent variables in 
the state matrix, suggesting that the rank of the matrix is a 
good measure of separation, and Goodman and Ventura [3] 
and Hourdakis and Trahanias [13] use statistical methods to 
measure SP, with the former relying on centroids and the 
latter on Fisher’s Discriminant Ratio (FDR). In the following 
section, we describe our synchrony matrix-based approach 
to liquid state representation, the methodology used to 
investigate the ensuing effect on classification performance, 
and we underline the relationship between the Separation 
property and LSM performance. 

3. Classification with temporal liquid state 
representations 

The proposed liquid state representation is based on the 
synchrony level between spike trains during a given time 
window, as quantified by metrics that evaluate the temporal 
similarity between the spike trains emitted by neuron pairs 
in the liquid. Thus, the metrics operate on spike timings 
rather than counts and, as stated in [39], p. 146, “If a spike 
metric leads to a high-fidelity representation, then the temporal 
features that it captures are candidates for neural codes.”  

3.1. Synchrony matrix representation of liquid states 

The synchrony matrix is constructed thanks to the 
Adaptive Spike Distance (ADS) metric ([40], [41], [42], [43], 
[44], [45]), although any other bivariate spike metric may be 
employed. We chose ADS for its sensitivity to spikes 
coincidence and the fact that it does not rely on a time-scale 
parameter. 

Given two spike trains #1 and #2 of duration T, ADS is 
calculated by averaging their instantaneous “dissimilarity 
profiles”, which measure how coincident the two spike 
trains are at any point in time. We have: 

𝐷𝐷𝑠𝑠 = 1
𝑇𝑇 ∫ 𝑆𝑆(𝑡𝑡)𝑑𝑑𝑡𝑡𝑇𝑇

𝑡𝑡=0              (1) 

http://www.jenrs.com/
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where Ds quantifies the overall dissimilarity between the 
two spike trains over T, and S(t) provides a joint measure of 
their instantaneous dissimilarity profiles at each time t. S(t) 
is defined by: 

        𝑆𝑆(𝑡𝑡)  =  𝑆𝑆1(𝑡𝑡)𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(2)(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡)𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(1)(𝑡𝑡) 
2〈𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑛𝑛)(𝑡𝑡)〉𝑛𝑛2

           (2) 

where x(i)isi(t) stands for the instantaneous interspike interval 
of spike train #i, 〈𝑥𝑥𝐼𝐼𝑆𝑆𝐼𝐼(𝑛𝑛)(𝑡𝑡)〉𝑛𝑛 is the mean interspike interval 
for both spike trains, and S1(t) and S2(t) are given by: 

       𝑆𝑆𝑖𝑖(𝑡𝑡) =  𝛥𝛥𝑡𝑡𝑃𝑃
(𝑖𝑖)(𝑡𝑡)𝑥𝑥𝐹𝐹(𝑖𝑖)(𝑡𝑡)+ 𝛥𝛥𝑡𝑡𝐹𝐹

(𝑖𝑖)(𝑡𝑡)𝑥𝑥𝑃𝑃(𝑖𝑖)(𝑡𝑡)
𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)(𝑡𝑡) ,    𝑖𝑖 = 1,2    (3) 

In the previous equation, for spike train #i, x(i)P(t) and 
x(i)F(t) are the time latency to the closest previous spike and 
closest following spike at time t, respectively, and ΔtP(i) and 
ΔtF(i) are the same latency from one of these spikes to the 
nearest one in the other spike train. For example, ΔtP(1) is 
defined as: 

𝛥𝛥𝑡𝑡𝑃𝑃(1)(𝑡𝑡)  =  𝑚𝑚𝑖𝑖𝑚𝑚(|𝑡𝑡𝑃𝑃(1)(𝑡𝑡)  −  𝑡𝑡𝑖𝑖(2)|)             (4) 

where 𝑡𝑡𝑃𝑃(1)(𝑡𝑡) is the time of occurrence of the closest 
previous spike in spike train #1 at time t, and 𝑡𝑡𝑖𝑖(2) is the time 
of occurrence of the ith spike in spike train #2. A more 
comprehensive description of ADS with graphical 
illustrations can be found in [46]. Table 1 provides the 
example of a synchrony matrix for a liquid made of 4 
neurons, where d(a, b) evaluates the dissimilarity between 
the spike trains of neurons a and b as with equation (1).  

 Given the symmetry of the synchrony matrix and its 
zero diagonal, the final representation may consist only in 
the lower triangular matrix expressed as a vector. For a 
liquid composed of N neurons, the size E of this vector is: 

𝐸𝐸 =  ∑ 𝑚𝑚𝑁𝑁
𝑛𝑛=1  =  (1+𝑁𝑁)𝑁𝑁

2
−  𝑁𝑁  (5) 

3.2. Composite-state vector 

 Theoretically, rate and synchrony represent 
complementary information, since they encode two aspects 
of the spiking within a liquid (see [39], p.148, for an in vivo 
example). Therefore, taking inspiration from [10], we can 
enhance the representation of liquid states by combining 
filtered rates and synchrony information. Then, the size of 

the features vector extracted from the liquid would increase 
by N. For example, N=8 would lead to a vector of 8 rate 
elements (one for each neuron) and 28 synchrony elements 
(from equation 5). We expect this composite state 
representation to lead to better classification results than by 
only using rate-based or synchrony-based representations. 

A. SP quantification with spike metrics 

Using the hypothesis that the spike trains generated for 
different classes of input signals are significantly dissimilar 
(i.e., distant or unsynchronized), SP expresses the average 
spike train dissimilarities in the liquid. To build this 
synthetic measure out of spike distance metrics, we proceed 
similarly to getting the Fisher’s discriminant ratio (FDR) of 
a 2-class classification problem: 

1) For each stimulus belonging to one of the classes, we 
build the list of corresponding liquid states, composed 
of the spike trains of each neuron in the liquid for the 
duration of the experiment. 

2) we then sample pairs of liquid states by including one 
from one class and one from the other. 

3) we measure the dissimilarity for each sampled pair with 
a distance metric. The separation measure is the mean 
of the obtained results. 

 In this paper, we test cost-based measures (Victor-
Purpura distance [47], [48], vector embedding (Van Rossum 
distance [38], Schreiber Similarity [49], Hunter-Milton 
Reliability [50]), scale-free measures (Spike 
Synchronization, ISI Distance, Spike Distance [51], [52], [40], 
[41], [42], [43], [44], [45] and statistical methods (Jolivet 
Coincidence [53]. The methodology for verifying the 
efficiency of these new approaches in described next. 

4. Methodology of Testing 

To test the performance of each model, we aggregate 
and compare the error rates of randomly generated LSMs at 
classifying Poisson-distributed spike trains, using rate-
based, synchrony-based and composite liquid state 
representations. As a corollary, we also quantify how the 
synchrony-based SP measures correlate with the error rate.  

4.1. Experimental setup 

Three hundred random liquids are generated and fed 
with as many jittered versions of two template spike trains. 
These input signals are generated by adding temporal noise 
(“jitter”) to each template. Hence, each spike of the template 
is randomly shifted in time by an amount drawn from a 
uniform distribution with mean 0 and standard deviation 
equal to the desired jitter level. The values used in this paper 

Table 1: Example of a synchrony matrix for a 4-neuron LSM. 

Neuron 1 2 3 4 

1 0 d(1,2) d(1,3) d(1,4) 

2 d(2,1) 0 d(2,3) d(2,4) 

3 d(3,1) d(3,2) 0 d(3,4) 

4 d(4,1) d(4,2) d(4,3) 0 

http://www.jenrs.com/
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(1 ms, 4 ms, 10 ms) are loosely inspired by [23] who used 4 
ms and 8 ms in their “high jitter” experimental contexts. 

the original spike train pair, of which 200 are used to train 
the readout and 100 to collect the testing error.  

Table 2: Classification experiments and corresponding spike train templates 

Experiment  First spike train before and after filtering Second spike train before and after filtering 

1: Two high-frequency spike trains 
( ƛ1= ƛ2=100) 

  

2: Two low-frequency spike trains 
( ƛ1= ƛ2=20) 

  

3: One high-frequency spike train (ƛ1=  
100) and one low-frequency  spike 

train (ƛ2=20) 

  

http://www.jenrs.com/
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The spike output from the LSM is recorded, sampled, 
and processed in three different ways to represent the liquid 
states: 

1. Sampling and exponential filtering by convolving the 
spike trains with an exponential kernel of width 0.3 
(rate coding); 

2. Sampling and calculating the synchrony matrix 
(synchrony coding); 

Aggregating the two previous representations into a 
composite one (composite coding). 

Three different experiments are conducted to evaluate 
the LSM classification performance, each one involving a 
pair of random Poisson distributed spike trains. Table 2 
indicates the ƛ value of each train (taken from [40]) with 
example realizations before and after filtering for rate 
coding. Each experiment considers 300 jittered variations of  

4.2. Neural Microcircuit 

The liquid is organized as a 2x2x2 column (two layers of 
2x2 neural grids), composed of 80% excitatory and 20% 
inhibitory Leaky Integrate and Fire (LIF) neurons as in [54], 
with dynamic synapses. A single input neuron connects to 
the liquid pool, and static synapses are set randomly based 
on the physical distance between pairs of neurons. The 
probability of establishing a connection is as follows [30]: 

  𝑝𝑝 = 𝐶𝐶𝑒𝑒−�
𝐷𝐷(𝑎𝑎,𝑏𝑏)

λ �
2

   (6) 

 where λ is a connection parameter that controls both the 
average number of connections and the average distance 
between connected neurons [45], D(a, b) is the Euclidean 
distance between two neurons a and b, and C is a scaling 
parameter influenced by the excitatory or inhibitory effect 
of the connected neurons. In this study, λ was set to 2 so that 
any pair of neurons in the liquid column might be 
connected, and C was set to different values taken from 
previous studies ([23], [30]) and based on measures taken 
from cortical brain areas [30]. By default, they are set at 0.3 
(for a connection between a pair of Excitatory-Excitatory 
neurons), 0.2 (Excitatory-Inhibitory), 0.4 (Inhibitory-
Excitatory), and 0.1 (Inhibitory-Inhibitory). All other 
parameters are left untouched. 

The chosen dimensions for the liquid allow for a large 
range of performance levels throughout the tests, 
depending only on the neuron type and connection 
topology of the liquids. We can easily generate drastically 
different liquid configurations, which in turn endow each 
LSM with largely different performance levels. An example 
of a 2x2x2 microcircuit is presented in Figure 2, where the 

neurons shown in cyan are excitatory, and those in magenta 
are inhibitory. The input neuron is the one located at 
position (0,0,0). 

 
Figure 2: 2x2x2 neural microcircuit 

The neural dynamics are set by the following membrane 
voltage equation (from [55] and [56]): 

𝜏𝜏𝑚𝑚
𝑑𝑑𝑉𝑉𝑚𝑚
𝑑𝑑𝑡𝑡

= −�𝑉𝑉𝑚𝑚 − 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑖𝑖𝑛𝑛𝑟𝑟� + 𝑅𝑅𝑚𝑚�𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛(𝑡𝑡) + 𝐼𝐼𝑖𝑖𝑛𝑛𝑖𝑖𝑟𝑟𝑖𝑖𝑡𝑡 + 𝐼𝐼𝑛𝑛𝑛𝑛𝑖𝑖𝑟𝑟𝑟𝑟�  (7) 

where τm represents the membrane time constant, Vm the 
membrane potential, Vresting the resting membrane potential, 
Rm the input resistance, Isyn the current supplied by the 
synapses (also called “post-synaptic current” or PSC), Iinject 
an optional background current and Inoise is a Gaussian 
random variable with mean 0 and a given variance. At time 
t = 0, Vm is set to a default voltage Vinit. During the course of 
the simulation, a spike is emitted if Vm exceeds a threshold 
Vthresh: the membrane potential is then reset to a given voltage 
Vreset and remains at this level for the duration of the absolute 
refractory period Trefract. Table 3 summarizes the values of 
these parameters during simulations. They are the default 
values of the simulation tool (see simulation tool subsection 
below).  

       The amplitude of the postsynaptic current (Isyn) depends 
on previous spike activity, which constitutes a form of short- 
term plasticity (the model is described in [57]). The total 
post-synaptic current going into a neuron j from all the 
neurons i connected to it after a spike is described by the 
following equation: 

𝐼𝐼𝑟𝑟𝑠𝑠𝑛𝑛(𝑡𝑡) =  ∑ 𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡)𝑖𝑖      (8) 

Table 3: default parameters of the neural membrane model 

Parameter Description Value 

Cm Membrane capacitance 3e-08 F 

Rm Membrane resistance 1e+06 Ω 

Vthresh Spike threshold -0.045 V 

Vresting Membrane voltage at rest -0.06 V 

Vinit Initial voltage condition -0.06 V 

Vreset Post-spike voltage -0.06 V 

Trefract Maximum refraction period 0.003 s 

Inoise Standard deviation of added noise 0 A 

Iinject Injected current 0 A 

http://www.jenrs.com/


N. Pajot et al., Neural Synchrony in LSM 
 

www.jenrs.com                                     Journal of Engineering Research and Sciences, 2(11): 01-14, 2023                                             7 

where 
𝐼𝐼𝑖𝑖𝑖𝑖(𝑡𝑡) =  𝑤𝑤𝑖𝑖𝑖𝑖 . 𝑒𝑒𝑥𝑥𝑝𝑝( −𝑡𝑡

𝜏𝜏𝑠𝑠𝑠𝑠𝑛𝑛
)     (9) 

and Iij(t) is the post-synaptic current flowing from neuron i 
and j; wij is the synaptic strength of the connection, and 𝜏𝜏𝑟𝑟𝑠𝑠𝑛𝑛 
is the synaptic time constant.  

      Contrary to static synapses, wij varies with previous 
spike trains for dynamic synapses as follows [57]: 

𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑊𝑊. 𝑟𝑟𝑛𝑛 .𝑢𝑢𝑛𝑛         (10) 

where W is the absolute synaptic efficiency (or weight); rn 
and un quantify the short-term depressing and facilitating 
effects after spike n has been fired. The two variables are 
described by the following two equations [57]: 

𝑟𝑟𝑛𝑛+1 =  𝑟𝑟𝑛𝑛(1 − 𝑢𝑢𝑛𝑛+1). exp �−𝛿𝛿𝑡𝑡
𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟

� + 1 − exp �−𝛿𝛿𝑡𝑡
𝜏𝜏𝑟𝑟𝑟𝑟𝑟𝑟

�       (11) 

and 

𝑢𝑢𝑛𝑛+1 =  𝑢𝑢𝑛𝑛. exp � −𝛿𝛿𝑡𝑡
𝜏𝜏𝑓𝑓𝑎𝑎𝑟𝑟𝑖𝑖𝑓𝑓

� + 𝑈𝑈(1 − 𝑢𝑢𝑛𝑛 . 𝑒𝑒𝑥𝑥𝑝𝑝 � −𝛿𝛿𝑡𝑡
𝜏𝜏𝑓𝑓𝑎𝑎𝑟𝑟𝑖𝑖𝑓𝑓

�)      (12) 

       As indicated in [45], the absolute synaptic weights for a 
given connection are drawn from a gamma distribution 
with mean W and standard deviation (𝑊𝑊. 𝑆𝑆𝑆𝑆𝑊𝑊). 𝛿𝛿𝑡𝑡 is the 
elapsed time between spike n and n+1; 𝜏𝜏𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓  and 𝜏𝜏𝑟𝑟𝑟𝑟𝑖𝑖 are the 
time constants of the facilitating and depressing plasticity 
effects respectively. U is a constant describing the fraction of 
the absolute synaptic efficiency used. The values of these 
parameters are indicated in Table 4. 

2. Sampling, memory and decoding liquid states – The liquid 
states must be sampled in time in order to construct the 
input state vectors to the readout, with the sampling time 
window having an impact on classification performance. 
Although LSMs are known to possess “the capability to hold 
and integrate information from past input segments over several 
hundred ms” ([40], p.8), shorter sampling intervals typically 
provide less spike information. The scarcity of spike 
information in these samples can make classification harder, 
for an increased classification error rate. Thus, the memory 
span capability of LSMs plays a crucial role in providing 

liquid state samples with information from the past, 
effectively enriching them through the temporal integration 
of input stimuli: any state of the liquid will then keep some 
memory of previous states, which allows the readout to be 
memoryless. 

 
Pathological synchrony Over-stratification 

Figure 3. Example of two pathological liquids (from [46]) 

The role of memory in the classification performance of 
LSMs is relatively under-studied, but two extreme spike 
train patterns can emerge from pathological liquids: over-
stratification ([15], [3]) and pathological synchrony [15]. The 
former happens when spikes are not propagated for a long 
enough time, resulting in a lack of memory capacity; the 
latter is the result of infinite feedback loops within the 
neurons, effectively spiking in synchrony and obfuscating 
the “real”, important states. Figure 3 shows an example of 
each case. 

Another important parameter to consider is Tau, the 
synaptic time constant controlling the time required for the 
postsynaptic response to fade to zero after being injected 
with current. Figure 4 illustrates the examples of an input 
spike train, the postsynaptic response and the resulting 
spike train for three different values of Tau.  

 In this work, Tau is set to 0.25, a value that increases the 
overall performance across all tests and all liquid state 
representations while avoiding temporal stratification and 
pathological synchrony.  The choice of sampling rates (10 
Hz, 4 Hz and 2 Hz) was inspired by similar values used in 
the literature [3], [2], [8], [29], [10]. 

Tau = 0.01 
 

Tau = 0.1 Tau = 0.25 

Figure 4. Illustration of the effect of different values of the synaptic time constant on spike trains. 
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4.3. Readout 

A simple linear regression was chosen to avoid the potential 
impact of more advanced techniques such as multi-layer 
perceptrons, Support Vector Machines, etc., which may 
provide hard to interpret results due to their own 
capabilities. Thus, the predicted class value 𝒚𝒚�i  of a feature 
state vector 𝒙𝒙𝒊𝒊 is given by: 

𝒚𝒚�𝒊𝒊 = 𝒎𝒎 .𝒙𝒙𝒊𝒊 + 𝑏𝑏   (13) 

where m, the slope of the separating hyperplane and b, the 
intercept, are estimated using the least squares method. The 
output of this simple readout is passed through a step 
function for binary classification: for a given value n 
returned by the regression, the class y[n] is given by the 
following equation: 

𝑦𝑦[𝑚𝑚]  =  { −1,𝑚𝑚 <= 0;  1,𝑚𝑚 > 0} (14) 

4.4. Simulation tool 

We use CSIM (Circuit SIMulator, [58]), a neural network 
simulator that can handle LSM models with different 
neuron and synapse models. CSIM is built in C++ for 
performance considerations and provides an easy-to-use 
MATLAB interface. This tool uses the exponential Euler 
method of numerical integration, with a default time step 
for the update of 0.1 ms. A thorough description and a 
comparison to other simulators are provided in [55] and 
[59]. Each stimulus is simulated for 1000ms, and we used 
the default parameter values indicated in Table 3 for the 
neural dynamics (equation 7) and in Table 4 for the synaptic 
dynamics (equations 8 to 12) 

4.5. Aggregate measure of error 

The classification error of each simulation is measured 
as the MAE (Mean Average Error) of the training and testing 
steps (only the testing results are presented herein). The 
aggregate error for all 300 LSMs is the median of the 
individual errors. We chose the median over the mean 
because it mitigates outlier effects due to the large variations 
of performance observed in different LSMs, thus providing 
a “truer” portrait of performance. These measures are 
compared for equality at a 99% confidence level by a 
Wilcoxon rank-sum test for medians (the mean MAEs are 
also recorded and tested for equality using a t-Test for 
validation purposes). The results obtained for the “filtered 
rates” representation serve as a baseline for the other tests. 

In all, 27 experiments are performed, each with a unique 
combination of the following parameters: 

- 3 sample rates (10 Hz, 4 Hz, 2 Hz); 

- 3 levels of jitter (1 ms, 4 ms, 10 ms); 

- 3 stimuli pairs frequency patterns (100-100 Hz, 20-
20 Hz and 100-20 Hz). 

5. Results 

We begin with the efficiency of the temporal coding of 
liquid states and the roles of sampling rate, jitter and 
memory capabilities. Then, we consider the problem of 
larger liquids and finally present the results on the new 
models of SP. 

5.1. Filtered rates vs. Synchrony matrix vs. composite 
representations. 

Figure 5 reports the MAE results for the three types of liquid 
state representations averaged across all 27 experiments and 
sample frequencies. It shows a significantly better 

Table 4: Default parameters of the dynamic synapse model 

Parameter Description Value 

W(EE) Mean synaptic weight (Excitatory-Excitatory 
connection) 

30e-9 

W(EI) Mean synaptic weight (Inhibitory-Excitatory 
connection) 

-19e-9 

W(II) Mean synaptic weight (Inhibitory-Inhibitory 
connection) 

-19e-9 

W(IE) Mean synaptic weight (Excitatory-Inhibitory 
connection) 

60e-9 

SHW Multiplier of the standard deviation of synaptic 
weights 

0.7 

U(EE) Synaptic efficacy utilization (Excitatory-Excitatory 
connection) 

0.5 

U(EI) Synaptic efficacy utilization (Inhibitory-Excitatory 
connection) 

0.25 

U(II) Synaptic efficacy utilization (Inhibitory-Inhibitory 
connection) 

0.32 

U(IE) Synaptic efficacy utilization (Excitatory-Inhibitory 
connection) 

0.05 

𝜏𝜏𝑟𝑟𝑟𝑟𝑖𝑖(EE) Time constant for depression (Excitatory-Excitatory 
connection) 

1.1 s 

𝜏𝜏𝑟𝑟𝑟𝑟𝑖𝑖(EI) Time constant for depression (Inhibitory-Excitatory 
connection) 

0.7 s 

𝜏𝜏𝑟𝑟𝑟𝑟𝑖𝑖(II) Time constant for depression (Inhibitory-Inhibitory 
connection) 

0.144 s 

𝜏𝜏𝑟𝑟𝑟𝑟𝑖𝑖(IE) Time constant for depression (Excitatory-Inhibitory 
connection) 

0.125 s 

𝜏𝜏𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(EE) Time constant for facilitation (Excitatory-Excitatory 
connection) 

0.05 s 

𝜏𝜏𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(EI) Time constant for facilitation (Inhibitory-Excitatory 
connection) 

0.02 s 

𝜏𝜏𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(II) Time constant for facilitation (Inhibitory-Inhibitory 
connection) 

0.06 s 

𝜏𝜏𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖𝑓𝑓(IE) Time constant for facilitation (Excitatory-Inhibitory 
connection) 

1.2 s 
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performance of the composite-state approach over the other 
state representations (36% better than using filtered rates).  

 
Figure 5. Classification performance as a function of liquid state representation. 

The synchrony-matrix state representations ranked 
second behind the composite-state approach on average, 
but the synchrony-only representations performed slightly 
worse than the rate-based ones when the stimuli pairs were 
of different spike emission rates (i.e., 100 Hz and 20 Hz). In 
this case, the difference between the rates of emission led to 
clearly distinct rate-based representations, resulting in 
better performance as seen in Figure 6. 

 
Figure 6. Classification performance as a function of input frequency  type. 

5.2. Impact of the sampling frequency 

Figure 7 shows that higher sampling rates degrade the 
classification performance. This can be explained by the fact 
that less information is then conveyed by each sample, albeit 
temporal resolution is increased.  

 
Figure 7: Classification performance as a function of input sampling rate. 

 
Figure 8. Classification performance for different spike train jitter levels 

5.3. Impact of jitter on performance 

Here also, increased levels of temporal noise decrease 
performance as may be expected. The degradation is 
significant as shown in Figure 8, but it appears to be less 
important than when using different sampling frequencies. 
Even a 10 ms jitter (representing between 10% and 50% of 
the stimulus base frequency) has a limited effect on 
classification error. 

B. Effect of a bigger cortical column 

The previous observations remain valid for a 3x3x3 
LSM. Figure 9 shows the relative performance of each liquid 
state representation and for each of the three pairs of input 
stimuli. Again, the composite-state approach shows a 
significant improvement over the classical and the 
synchrony matrix methods. There are, however, caveats to 
the extensibility of the synchrony matrix approach as 
discussed in the next section. 

 
Figure 9. Median MAE for a 3x3x3 liquid 

5.4. Role of memory 

As expected, the value of Tau had a deep impact on 
performance. The difference between best and worst 
performance across a few sample points corresponding to 
Tau values ranging from 0 to 1.5 can be as high à 22.81% in 
the cast of the composite-state representations (see Table 4). 
It is also clear from Figure 10 that the relationship between 
memory and performance is nonlinear and dependent on 
the type of liquid state representation. 
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Table 4: Impact of memory on performance 

 Filtered Rates Synchrony Matrix Composite 

Minimum Error 0.3073 0.3005 0.2309 

Maximum Error 0.3607 0.3560 0.2992 

Variation 14.81% 15.59% 22.81% 

5.5. Separation measures 

We expect a negative correlation between the 
Separation measure and classification error. The magnitude 
of this correlation is an indication of how good a predictor 
of performance SP is. As shown in Figure 11, FDR performs 
best among the “classical” SP measures (Centroids, Ranks, 
Van Rossum distance, Gaussian distance). On the other 
hand, the newly introduced separation measures based on 
spike metrics seem to correlate even more with the 
classification performance of LSMs. The measures based on 
spike synchronization, ISI-distance (and its adaptive 
variant), adaptive rate-independent spike distance, and 
Schreiber correlation all correlate below the -0.5 mark. 

 
Figure 10. Performance as a function of Tau, the synaptic time constant 

 
Figure 11. Correlation of SP measurement type with performance 

 
Figure 12. Correlation of SP measures with performance for a rate-based 
state representation 

However, this synthetic chart shown in Figure 11 hides 
the local discrepancies between the different measures, 
since some of them perform significantly better in certain 
situations. For instance, Figure 12 shows that FDR correlates 
generally better with rate-based representations, but Figure 
13 shows the opposite for synchrony-based representations 
(either using a synchrony matrix or a composite-state 
representation).  

 
Figure 13. Correlation of SP measures with performance for synchrony-
based and composite representations 

6. Discussion and future research 

At the core of each LSM study lies a neuron/synapse 
simulator for validation. It is not only a model of 
computation, but also a simplified model of the cortical 
columns found in real-life neural systems. This biological 
inspiration suggests that neuroscientific discoveries 
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regarding the understanding of the “neural code” may also 
enhance the computational model. We discuss below our 
findings on rate and temporal coding, the role of SP as a 
performance predictor, and the influence of sampling and 
memory on performance before ending this paper with a 
short review of the results of other comparable studies and 
concluding. 

6.1. Rate and temporal decoding 

The temporal decoding of liquid states can easily match 
the levels of LSM classification performance reached by 
rate-decoding approaches, while composite state feature 
vectors go beyond: they allowed to raise the overall 
performance without increasing the LSM dimensionality, 
even in the context of highly noisy inputs. These findings 
point to the critical role of phase information and temporal 
decoding in LSM classification, encouraging more research 
to explore temporal coding and decoding schemes. For 
instance, more encoding strategies based on phase 
information or absolute spike timings ought to be 
investigated (see [60] for inspiration), as well as more 
advanced spike rate estimation mechanisms (several of 
them are presented in [61]). With regards to performance, 
this study also found that the liquid state sampling 
frequency (in the light of its relationship to memory 
capabilities) and the topology of connections are critical 
factors, and they could thus become targets of optimization 
for peak performance. But, as the next subsection shows, the 
currently proposed measures of SP do not correlate well 
enough with LSM classification performance. 

On the negative side, one major limitation of the 
synchrony matrix representation of liquid states is that the 
matrix grows with liquid size, with a quadratic impact on 
the synchrony vector size (equation 5). For example, for a 
2x2x2 liquid, the number of elements of the feature vector is 
28 as already mentioned, and for a 4x4x4 liquid, this number 
reaches 2080 (from equation 5 with N=64). Large feature 
vectors tend to promote overfitting: for instance, the linear 
regression that we use as a classifier quickly becomes 
overwhelmed with them. Several ideas can be put forward 
to cope with large-size liquids and reduce the 
dimensionality of the feature vectors. They include: 

– Principal Component Analysis of the synchrony 
matrices for dimensionality reduction. 

– Hierarchical construction of liquids: connecting a large 
liquid to gradually smaller ones until a suitably small 
liquid is found. 

– Stochastic sampling of pairs of neurons in the liquid and 
subsequent reconstruction of the synchrony and rate 
information (also suggested in [5]). 

– Temporal filtering and fuzzification: creating aggregate 
spike trains from liquid subregions (for example, we 
filter 2x2x2 regions in a 6x6x6 liquid to create a 3x3x3 
“aggregate” liquid) and applying a form of temporal 
filtering, replacing multiple spikes emitted within a 
certain “fuzzy” timeframe by a single one at the mean of 
the that interval. 

However, although temporal decoding may be a 
promising technique, it does not solve the performance 
variability across liquids. One way to address this problem 
is to determine performance predictors and engineer more 
efficient liquids. 

6.2. Performance predictors and liquid optimization 

The differences between “classical” SP and synchrony-
based measures seem to highlight some complementarity 
between the two approaches. On average, our measure of 
SP roughly explained 50% of the performance of an artificial 
classification experiment (the absolute amount of 
correlation between SP and generalization error was, at best, 
slightly over 0.5). So, a question remains: what is missing 
from SP measures that could explain the missing 50%? Two 
very broad hypotheses can be put forward: 

a) Other performance predictors should be used instead 
of or in conjunction with SP; 

b) Our evaluation of  SP is incomplete or deficient: some 
crucial information may not be captured by statistical 
methods, linear algebra or spike distance metrics. 

While more SP measures (Bray-Curtis [62] and other 
vector distances [63], etc.) should be tested, we think that a 
custom, composite SP measure built out of rate and 
synchrony information should also  be investigated. Indeed, 
synchrony-based or hybrid measures tend to correlate 
better with synchrony-based state representations while 
statistical measures perform better with rate-based 
representations. These results seem to hint that the ideal 
separation measure could be a hybrid of FDR and 
synchrony metrics, exploiting the idea that phase and rate 
information are complementary representations of the same 
spiking activity. 

6.3. Memory and state sampling frequency 

Our results also show that the memory capacity of a 
liquid has an impact on classification performance, 
particularly when using composite-state representations 
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(over 22% gap between best and worst performance, 
significantly higher than for rate-based or synchrony-only 
representations). Determining the optimal memory 
parameters and sampling frequency to extract enough 
information while preserving temporal resolution and 
avoiding pathological memory conditions deserves 
attention. The standard approach to divide the time axis into 
same-duration bins can create two problems: a) empty 
states, b) window boundary issues, especially for synchrony 
calculation (spikes fired just before or after the time window 
boundaries are not accounted for).  

We observed a significant degradation of performance 
when the state sampling frequency was increased 
(illustrated in Figure 7), attributed to the decline of the 
information content of each sample and the increased time 
resolution. The reduction of the width of the sampling time 
window has two consequences: 

a) More state samples required to cover the entire 
simulation , with the compounded sampling error most 
likely increased (i.e., the probability of missing relevant 
spikes at the boundaries of each time window). 

b)  Lower average number of spikes that can be captured 
in each sample, which in turn augments the impact of 
missed spikes on the total count of spike firings. 

These two combined effects can lead to less reliable feature 
vectors. Low spiking activity also happens during network 
“warm up”, as discussed in [6] and [17].  A solution to these 
problems may be to use interleaved sampling with window 
smoothing as done in automatic voice recognition systems. 

6.4. Related work on LSM performance 

Several authors have explored the question of the 
classification performance of the LSM model and 
highlighted its strengths and limitations in various contexts, 
but there seems to be a relative dearth of results comparable 
to ours, as methodologies and data vary significantly across 
studies. It is also worth noting that we have deliberately left 
out research on readout performance, although works such 
as [64] show that this crucial element of the LSM model can 
also be improved. 

Putting aside the previous caveats, the conclusions we 
draw from this work are very much in line with those of the 
seminal work of Maass and al. [23] who validated the role 
of SP in LSM performance using a globally comparable 
method. In our work, we looked at this problem from the 
angle of liquid state representations, but numerous studies 
have focused on other aspects and suggested techniques to 

increase both the separability and the generalization 
properties of an LSM. The list includes: 

- Optimizing the connection topology and the synaptic 
weights ([65], [19], [13], [17], [18]); 

- Careful selection or mixtures of neuron types ([23], 
[66], [16], [1]); 

- Addition of parallel columns [23]; 

- Construction of hierarchical liquids [16]; 

- Correct choice or composition of liquid state 
representations [10]; 

- Selection of the right memory parameters [3]; 

- Usage of ensemble techniques [5]. 

In addition, the problem of quantifying SP remains open. 
In [62] and [37], the authors indicate that their own custom 
measure of SP outperforms those based on either the 
ubiquitous Gaussian distance or the Van Rossum metric, but 
they did not provide correlation results with actual 
performance. Similarly, compelling evidence of a strong 
correlation between classification performance and SP is 
reported in [14]. The measures proposed by [3], [18] and [13] 
correlate to levels up to 0.79, 0.68 and 0.86 respectively, 
whereas our own results show an average correlation of 
only slightly above the 0.5 mark, a discrepancy than can be 
explained by the differences in the methodologies and 
validation contexts.  

7. Conclusion 

In this paper, we have shown through simulation 
experiments that the temporal decoding of spike trains by 
evaluation of the synchrony between pairs of neurons in the 
liquid can improve the LSM performance for classification 
tasks. We have also shown that the Separation Property, a 
fundamental characteristic of LSMs, can reliably be 
measured by spike metrics.  

While there is a strong consensus in the research 
community that the classification performance of the LSM 
model can be raised, no definitive solution has yet emerged. 
We believe that more research is needed to improve the 
aforementioned approaches and/or combine their strengths 
to improve the LSM core performance in classifying time-
varying input data. We also think that the results presented 
here should be tested and validated on a larger scale. 
Moreover, if the temporal decoding of liquid states 
improves classification performance, its efficiency in a less 
artificial context remains to validate. 
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