- Open Access
- Article
HivePool: An Exploratory Visualization System for Honey Beehive Data
by Tinghao Feng , Sophie Columbia , Christopher Campell and Rahman Tashakkori
Computer Science Department, Appalachian State University, Boone, 28608, USA
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 3, Issue 9, Page # 61-74, 2024; DOI: 10.55708/js0309004
Keywords: Time Series Data Analysis, Event Visualization, Honey Beehive Data
Received: 20 August 2024, Revised: 12 September 2024, Accepted: 13 September 2024, Published Online: 26 September 2024
(This article belongs to the Special Issue Special Issue on Multidisciplinary Sciences and Advanced Technology 2024 & Section Biochemical Research Methods (BRM))
APA Style
Feng, T., Columbia, S., Campell, C., & Tashakkori, R. (2024). HivePool: An exploratory visualization system for honey beehive data. Journal of Engineering Research and Sciences, 3(9), 61-74. https://doi.org/10.55708/js0309004
Chicago/Turabian Style
Feng, Tinghao, Sophie Columbia, Christopher Campell, and Rahman Tashakkori. “HivePool: An Exploratory Visualization System for Honey Beehive Data.” Journal of Engineering Research and Sciences 3, no. 9 (2024): 61-74. https://doi.org/10.55708/js0309004.
IEEE Style
T. Feng, S. Columbia, C. Campell, and R. Tashakkori, “HivePool: An Exploratory Visualization System for Honey Beehive Data,” Journal of Engineering Research and Sciences, vol. 3, no. 9, pp. 61-74, 2024, doi: 10.55708/js0309004.
Honey bee health is crucial for global ecosystems, but traditional data analysis methods often struggle to capture the complex interplay between bee behavior and environmental factors. To bridge this gap, we developed HivePool, a novel data visualization and analysis tool designed to empower beekeepers and researchers with deeper insights into these interactions. This paper explores HivePool’s functionalities, focusing on its interactive visualizations and innovative time-oriented pattern recognition for event prediction. By leveraging time series visualization techniques, HivePool allows users to explore not only static relationships between environmental variables but also how these variables change dynamically leading up to specific events within the hive. The paper showcases HivePool’s effectiveness through two use cases: data-driven event exploration and example-driven event prediction. Overall, HivePool equips beekeepers and researchers with a powerful set of tools, facilitating a deeper understanding of bee behavior and environmental influences, ultimately leading to improved beehive health and management strategies.
- O. US EPA, “Colony Collapse Disorder”, 2013, doi:10.1007/springerreference_123456.
- “Appalachian Multipurpose Apiary Informatics Systems (App- MAIS)”, doi:10.1007/springerreference_654321, NC ROI 2021-24.
- L. Richardson, C. Campell, R. Tashakkori, W. O’Brien, S. E. Davis, “Appmais simple data visualization app”, “SoutheastCon 2023”, pp. 366–370, 2023, doi:10.1109/SoutheastCon51012.2023.10114962.
- T. Feng, S. Arkle, C. Campell, R. Tashakkori, “Bee vis: A comprehensive honey bee data visualization, exploration, and analysis system”, “SoutheastCon 2024”, pp. 1274–1281, 2024, doi:10.1109/SoutheastCon52093.2024.10500272.
- R. Tashakkori, N. P. Hernandez, A. Ghadiri, A. P. Ratzloff, M. B. Crawford, “A honeybee hive monitoring system: From surveillance cameras to raspberry pis”, “SoutheastCon 2017”, pp. 1–7, 2017, doi:10.1109/SECON.2017.7925367.
- R. Tashakkori, A. S. Hamza, M. B. Crawford, “Beemon: An iot-based beehive monitoring system”, Computers and Electronics in Agriculture, vol. 190, p. 106427, 2021, doi:10.1016/j.compag.2021.106427.
- D. J. Kale, R. Tashakkori, R. M. Parry, “Automated beehive surveil- lance using computer vision”, “SoutheastCon 2015”, pp. 1–3, 2015, doi:10.1109/SECON.2015.7132991.
- R. Tashakkori, A. Ghadiri, “Image processing for honey bee hive health monitoring”, “SoutheastCon 2015”, pp. 1–7, 2015, doi:10.1109/SECON.2015.7133029.
- A. R. Braga, D. G. Gomes, R. Rogers, E. E. Hassler, B. M. Freitas, J. A. Cazier, “A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies”, Computers and Electronics in Agriculture, vol. 169, p. 105161, 2020, doi:10.1016/j.compag.2019.105161.
- A. Kviesis, V. Komasilovs, O. Komasilova, A. Zacepins, “Applica- tion of fuzzy logic for honey bee colony state detection based on temperature data”, Biosystems Engineering, vol. 193, pp. 90–100, 2020, doi:10.1016/j.biosystemseng.2020.03.011.
- S. Cecchi, S. Spinsante, A. Terenzi, S. Orcioni, “A smart sensor-based measurement system for advanced bee hive monitoring”, Sensors, vol. 20, no. 9, p. 2726, 2020, doi:10.3390/s20092726.
- C. Sun, P. Gaydecki, “A visual tracking system for honey bee (hymenoptera: Apidae) 3d flight trajectory reconstruction and analysis”, Journal of Insect Science, vol. 21, no. 2, p. 17, 2021, doi:10.1093/jisesa/ieab010.
- T. Sledevič, V. Abromavičius, “Toward bee motion pattern identi- fication on hive landing board”, “2023 IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream)”, pp. 1–4, IEEE, 2023, doi:10.1109/eStream57549.2023.10123456.
- G. Voudiotis, S. Kontogiannis, C. Pikridas, “Proposed smart monitor- ing system for the detection of bee swarming”, Inventions, vol. 6, no. 4, p. 87, 2021, doi:10.3390/inventions6040087.
- A. Zacepins, A. Kviesis, E. Stalidzans, M. Liepniece, J. Meitalovs, “Re- mote detection of the swarming of honey bee colonies by single-point temperature monitoring”, Biosystems engineering, vol. 148, pp. 76–80, 2016, doi:10.1016/j.biosystemseng.2016.05.013.
- M.-T. Ramsey, M. Bencsik, M. I. Newton, M. Reyes, M. Pioz, D. Crauser, N. S. Delso, Y. Le Conte, “The prediction of swarming in honeybee colonies using vibrational spectra”, Scientific reports, vol. 10, no. 1, p. 9798, 2020, doi:10.1038/s41598-020-66836-2.
- T. Feng, Y. Hu, J. Yang, T. Polk, Y. Zhao, S. Liu, Z. Yang, “Timepool: Visually answer “which and when” questions on univariate time series”, “2023 IEEE Visualization and Visual Analytics (VIS)”, pp. 201–205, 2023, doi:10.1109/VIS54172.2023.00049.
- W. Aigner, S. Miksch, H. Schumann, C. Tominski, Visualization of time-oriented data, Springer Science & Business Media, 2011, doi:10.1007/978-0-85729-079-3.
- W. Playfair, The commercial and political atlas: representing, by means of stained copper-plate charts, the progress of the commerce, revenues, expen- diture and debts of england during the whole of the eighteenth century, T. Burton, 1801.
- B. Ondov, N. Jardine, N. Elmqvist, S. Franconeri, “Face to face: Evaluating visual comparison”, IEEE transactions on visu- alization and computer graphics, vol. 25, no. 1, pp. 861–871, 2018, doi:10.1109/TVCG.2018.2865234.
- A. Gogolou, T. Tsandilas, T. Palpanas, A. Bezerianos, “Comparing similarity perception in time series visualizations”, IEEE transactions on visualization and computer graphics, vol. 25, no. 1, pp. 523–533, 2018, doi:10.1109/TVCG.2018.2865235.
- L. Chittaro, C. Combi, G. Trapasso, “Data mining on temporal data: a visual approach and its clinical application to hemodialysis”, Journal of Visual Languages & Computing, vol. 14, no. 6, pp. 591–620, 2003, doi:10.1016/j.jvlc.2003.09.001.
- W. Javed, B. McDonnel, N. Elmqvist, “Graphical perception of multi- ple time series”, IEEE transactions on visualization and computer graphics, vol. 16, no. 6, pp. 927–934, 2010, doi:10.1109/TVCG.2010.162.
- J. Zhao, F. Chevalier, E. Pietriga, R. Balakrishnan, “Exploratory anal- ysis of time-series with chronolenses”, IEEE Transactions on Visual- ization and Computer Graphics, vol. 17, no. 12, pp. 2422–2431, 2011, doi:10.1109/TVCG.2011.195.
- R. Kincaid, H. Lam, “Line graph explorer: scalable display of line graphs using focus+ context”, “Proceedings of the working con- ference on Advanced visual interfaces”, pp. 404–411, ACM, 2006, doi:10.1145/1133265.1133331.
- T. Saito, H. N. Miyamura, M. Yamamoto, H. Saito, Y. Hoshiya,
T. Kaseda, “Two-tone pseudo coloring: Compact visualization for one-dimensional data”, “2005 IEEE Symposium on Information Visu- alization”, pp. 173–180, IEEE, 2005, doi:10.1109/INFVIS.2005.1532143. - B. Lee, N. H. Riche, A. K. Karlson, S. Carpendale, “Sparkclouds: Visualizing trends in tag clouds”, IEEE transactions on visualiza- tion and computer graphics, vol. 16, no. 6, pp. 1182–1189, 2010, doi:10.1109/TVCG.2010.194.
- J. Heer, N. Kong, M. Agrawala, “Sizing the horizon: the effects of chart size and layering on the graphical perception of time series visualizations”, “Proceedings of the SIGCHI Conference on Hu- man Factors in Computing Systems”, pp. 1303–1312, ACM, 2009, doi:10.1145/1518701.1518897.
- C. Perin, F. Vernier, J.-D. Fekete, “Interactive horizon graphs: improv- ing the compact visualization of multiple time series”, “Proceedings of the SIGCHI Conference on Human Factors in Computing Systems”, pp. 3217–3226, ACM, 2013, doi:10.1145/2470654.2466441.
- P. Federico, S. Hoffmann, A. Rind, W. Aigner, S. Miksch, “Quali- zon graphs: Space-efficient time-series visualization with qualitative abstractions”, “Proceedings of the 2014 International Working Con- ference on Advanced Visual Interfaces”, pp. 273–280, ACM, 2014, doi:10.1145/2598153.2598180.
- R. Bade, S. Schlechtweg, S. Miksch, “Connecting time-oriented data and information to a coherent interactive visualization”, “Proceedings of the SIGCHI conference on Human factors in computing systems”, pp. 105–112, ACM, 2004, doi:10.1145/985692.985707.
- K. B. Schloss, C. C. Gramazio, A. T. Silverman, M. L. Parker, A. S. Wang, “Mapping color to meaning in colormap data visualizations”, IEEE transactions on visualization and computer graphics, vol. 25, no. 1, pp. 810–819, 2018, doi:10.1109/TVCG.2018.2865147.
- J. Liu, A. Prouzeau, B. Ens, T. Dwyer, “Design and evaluation of interactive small multiples data visualisation in immersive spaces”, “2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)”, pp. 588–597, IEEE, 2020, doi:10.1109/VR46266.2020.00079.
- M. Krstajic, E. Bertini, D. Keim, “Cloudlines: Compact display of event episodes in multiple time-series”, IEEE transactions on visu- alization and computer graphics, vol. 17, no. 12, pp. 2432–2439, 2011, doi:10.1109/TVCG.2011.179.
- M. T. Fischer, D. Seebacher, R. Sevastjanova, D. A. Keim, M. El-Assady, “CommAID: Visual analytics for communication analysis through interactive dynamics modeling”, Computer Graphics Forum, vol. 40, no. 3, pp. 25–36, 2021, doi:10.1111/cgf.14256.
- M. L. Larrea, D. K. Urribarri, “Visualization technique for comparison of time-based large data sets”, M. Naiouf, E. Rucci, F. Chichizola, L. De Giusti, eds., “Cloud Computing, Big Data & Emerging Top- ics”, pp. 179–187, Springer International Publishing, Cham, 2021, doi:10.1007/978-3-030-84825-5_16.
- M. Monroe, R. Lan, H. Lee, C. Plaisant, B. Shneiderman, “Tem- poral event sequence simplification”, IEEE transactions on visual- ization and computer graphics, vol. 19, no. 12, pp. 2227–2236, 2013, doi:10.1109/TVCG.2013.200.
- D. Klimov, Y. Shahar, M. Taieb-Maimon, “Intelligent selection and retrieval of multiple time-oriented records”, Journal of Intelligent Infor- mation Systems, vol. 35, no. 2, pp. 261–300, 2010, doi:10.1007/s10844- 008-0095-2.
- J. A. Fails, A. Karlson, L. Shahamat, B. Shneiderman, “A vi- sual interface for multivariate temporal data: Finding patterns of events across multiple histories”, “2006 IEEE Symposium On Vi- sual Analytics Science And Technology”, pp. 167–174, IEEE, 2006, doi:10.1109/VAST.2006.261421.
- B. L. Harrison, R. Owen, R. M. Baecker, “Timelines: an interactive system for the collection and visualization of temporal data”, “Graph- ics Interface”, pp. 141–141, Canadian Information Processing Society, 1994, doi:10.20380/GI1994.18.
- C. J. Atman, “Design timelines: Concrete and sticky representations of design process expertise”, Design Studies, vol. 65, pp. 125–151, 2019, doi:10.1016/j.destud.2019.10.001.
- T. Feng, J. Yang, M.-C. Eppes, Z. Yang, F. Moser, “Evis: Visually analyzing environmentally driven events”, IEEE Transactions on Vi- sualization and Computer Graphics, vol. 28, no. 1, pp. 912–921, 2022, doi:10.1109/TVCG.2021.3114867.
- P. Buono, A. Aris, C. Plaisant, A. Khella, B. Shneiderman, “Interactive pattern search in time series”, “Visualization and Data Analysis 2005”, vol. 5669, pp. 175–186, International Society for Optics and Photonics, 2005, doi:10.1117/12.587256.
- T. Fujiwara, N. Sakamoto, J. Nonaka, K. Yamamoto, K.-L. Ma, et al., “A visual analytics framework for reviewing multivariate time-series data with dimensionality reduction”, IEEE Transactions on Visual- ization and Computer Graphics, vol. 27, no. 2, pp. 1601–1611, 2020, doi:10.1109/TVCG.2020.3030341.
- R. Takami, Y. Takama, “Visual analytics interface for time series data based on trajectory manipulation”, “2018 IEEE/WIC/ACM Inter- national Conference on Web Intelligence (WI)”, pp. 342–347, 2018, doi:10.1109/WI.2018.00-58.
- S. Cheng, K. Mueller, W. Xu, “A framework to visualize tem- poral behavioral relationships in streaming multivariate data”, “2016 New York Scientific Data Summit (NYSDS)”, pp. 1–10, 2016, doi:10.1109/NYSDS.2016.7747810.
- B. Bach, C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, P. Dragicevic, “Time curves: Folding time to visualize patterns of temporal evolution in data”, IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 559–568, 2016, doi:10.1109/TVCG.2015.2467851.
- S. van den Elzen, D. Holten, J. Blaas, J. J. van Wijk, “Reducing snap- shots to points: A visual analytics approach to dynamic network exploration”, IEEE Transactions on Visualization and Computer Graphics, vol. 22, no. 1, pp. 1–10, 2016, doi:10.1109/TVCG.2015.2468078.
- T. Schreck, T. Tekušová, J. Kohlhammer, D. Fellner, “Trajectory- based visual analysis of large financial time series data”, ACM SIGKDD Explorations Newsletter, vol. 9, no. 2, pp. 30–37, 2007, doi:10.1145/1345448.1345453.
- T. Kohonen, Self-organizing maps, Springer Science & Business Media, 2012, doi:10.1007/978-3-642-56927-2.
- K. Toohey, M. Duckham, “Trajectory similarity measures”, Sigspatial Special, vol. 7, no. 1, pp. 43–50, 2015, doi:10.1145/2811234.2811240.
- N. Magdy, M. Sakr, T. Abdelkader, K. Elbahnasy, “Review on trajectory similarity measures”, 2015, doi:10.1109/IntelCIS.2015.7397286.
- D. Hu, L. Chen, H. Fang, Z. Fang, T. Li, Y. Gao, “Spatio-temporal trajectory similarity measures: A comprehensive survey and quan- titative study”, IEEE Transactions on Knowledge and Data Engineering, 2023, doi:10.1109/TKDE.2023.3241234.
- C. Faloutsos, M. Ranganathan, Y. Manolopoulos, “Fast subsequence matching in time-series databases”, SIGMOD Rec., vol. 23, no. 2, p. 419–429, 1994, doi:10.1145/191843.191925.
- H. Alt, M. Godau, “Computing the fréchet distance between two polygonal curves”, International Journal of Computational Geometry & Applications, vol. 5, no. 01n02, pp. 75–91, 1995, doi:10.1142/S0218195995000064.
- M.-P. Dubuisson, A. K. Jain, “A modified hausdorff distance for object matching”, “Proceedings of 12th international confer- ence on pattern recognition”, vol. 1, pp. 566–568, IEEE, 1994, doi:10.1109/ICPR.1994.576361.
- E. Keogh, C. A. Ratanamahatana, “Exact indexing of dynamic time warping”, Knowledge and information systems, vol. 7, pp. 358–386, 2005, doi:10.1007/s10115-004-0154-5.
- M. Vlachos, G. Kollios, D. Gunopulos, “Discovering similar multidimensional trajectories”, “Proceedings 18th international conference on data engineering”, pp. 673–684, IEEE, 2002, doi:10.1109/ICDE.2002.994784.
- H. Wang, K. Liu, “User oriented trajectory similarity search”, “Pro- ceedings of the ACM SIGKDD International Workshop on Urban Computing”, pp. 103–110, 2012, doi:10.1145/2346496.2346515.
- W. Zheng, R. Zhou, Z. Zhang, Y. Zhong, S. Wang, Z. Wei,
H. Ji, “Understanding the tourist mobility using gps: How simi- lar are the tourists?”, Tourism management, vol. 71, pp. 54–66, 2019, doi:10.1016/j.tourman.2018.09.011. - E. Frentzos, K. Gratsias, Y. Theodoridis, “Index-based most similar tra- jectory search”, “2007 IEEE 23rd International Conference on Data En- gineering”, pp. 816–825, IEEE, 2006, doi:10.1109/ICDE.2007.367926.
- S. Wang, Z. Bao, J. S. Culpepper, Z. Xie, Q. Liu, X. Qin, “Torch: A search engine for trajectory data”, “The 41st international ACM SIGIR conference on research & development in information retrieval”, pp. 535–544, 2018, doi:10.1145/3209978.3210047.
- R. Tashakkori, A. S. Hamza, M. B. Crawford, “Beemon: An IoT-based beehive monitoring system”, Computers and Electronics in Agriculture, vol. 190, p. 106427, 2021, doi:10.1016/j.compag.2021.106427.