- Open Access
- Article
Fingerprint Bio-metric: Confronting Challenges, Embracing Evolution, and Extending Utility – A Review
by Diptadip Maiti 1, , Madhuchhanda Basak 2 and Debashis Das 3
1 Department of CSE, Techno India University, West Bengal, 700091, India
2 Department of CSE, Brainware University, West Bengal, 700125, India
3 Departmentof CSE , Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex, West Bengal, 700074, India
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 3, Issue 9, Page # 26-60, 2024; DOI: 10.55708/js0309003
Keywords: Biometric Authentication, Fingerprint Identification System, Biometric Security, Biometric
Application
Received: 07 August 2024, Revised: 14 September 2024, Accepted: 17 September 2024, Published Online: 22 September 2024
(This article belongs to the Special Issue Special Issue on Multidisciplinary Sciences and Advanced Technology 2024 & Section Biochemical Research Methods (BRM))
APA Style
Maiti, D., Basak, M., & Das, D. (2024). Fingerprint bio-metric: Confronting challenges, embracing evolution, and extending utility-A review. Journal of Engineering Research and Sciences, 3(9), 26-60. https://doi.org/10.55708/js0309003
Chicago/Turabian Style
Maiti, Diptadip, Madhuchhanda Basak, and Debashis Das. “Fingerprint Bio-metric: Confronting Challenges, Embracing Evolution, and Extending Utility-A Review.” Journal of Engineering Research and Sciences 3, no. 9 (2024): 26-60. https://doi.org/10.55708/js0309003.
IEEE Style
D. Maiti, M. Basak, and D. Das, “Fingerprint Bio-metric: Confronting Challenges, Embracing Evolution, and Extending Utility-A Review,” Journal of Engineering Research and Sciences, vol. 3, no. 9, pp. 26-60, 2024, doi: 10.55708/js0309003.
As documented in recent research, this review offers a thorough examination of the intricate subject of fingerprint authentication, including a wide range of issues and applications. Addressing problems like non-linear deformations and enhancing picture quality, which are frequently reduced by sophisticated improvement and alignment techniques are important components of fingerprint image authentication. Countering security concerns such as spoofing is a major focus of Automated Fingerprint Identification Systems and necessitates the use of sophisticated cryptographic techniques and liveness detection. In order to accomplish speedier identification processes, the paper emphasizes the advancements made in fingerprint indexing and retrieval, with a focus on deep learning technologies and minutiae-based methodologies. Furthermore, fingerprint authentication is used for a variety of age groups, including neonates, where it is essential for identification verification and the management of medical records. The paper also highlights the wider uses of fingerprint technology, such as improved crime detection skills, insights into age-related features, and contributions to medical diagnostics. This review provides a thorough overview of the latest developments and potential future directions in fingerprint authentication by combining state-of-the-art methodologies and analysing technical details, implementation challenges, and security issues. This captures the dynamic and important role of this biometric technology.
- R. Ramotowski, Lee and Gaensslen’s advances in fingerprint technology, CRC press, 2012.
- Y. Xu, G. Lu, Y. Lu, D. Zhang, “High resolution fingerprint recog- nition using pore and edge descriptors”, Pattern Recognition Letters, vol. 125, pp. 773–779, 2019, doi:10.1016/j.patrec.2019.08.006.
- P. Tertychnyi, C. Ozcinar, G. Anbarjafari, “Low-quality fingerprint classification using deep neural network”, IET Biometrics, vol. 7, no. 6, pp. 550–556, 2018, doi:10.1049/iet-bmt.2018.5074.
- A. A. Paulino, J. Feng, A. K. Jain, “Latent fingerprint matching using descriptor-based hough transform”, IEEE Transactions on Information Forensics and Security, vol. 8, no. 1, pp. 31–45, 2012, doi:10.1109/ijcb.2011.6117483.
- S. S. Arora, E. Liu, K. Cao, A. K. Jain, “Latent fingerprint matching: performance gain via feedback from exemplar prints”, IEEE Transac- tions on Pattern Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2452–2465, 2014, doi:10.1109/tpami.2014.2330609.
- M. A. Medina-Pérez, A. M. Moreno, M. Á. F. Ballester, M. García- Borroto, O. Loyola-González, L. Altamirano-Robles, “Latent finger- print identification using deformable minutiae clustering”, Neurocom- puting, vol. 175, pp. 851–865, 2016, doi:10.1016/j.neucom.2015.05.130.
- A. Sankaran, A. Jain, T. Vashisth, M. Vatsa, R. Singh, “Adaptive latent fingerprint segmentation using feature selection and random decision forest classification”, Information Fusion, vol. 34, pp. 1–15, 2017, doi:10.1016/j.inffus.2016.05.002.
- W. Bian, S. Ding, W. Jia, “Collaborative filtering model for enhancing fingerprint image”, IET Image Processing, vol. 12, no. 1, pp. 149–157, 2018, doi:10.1049/iet-ipr.2017.0059.
- J. Li, J. Feng, C.-C. J. Kuo, “Deep convolutional neural network for latent fingerprint enhancement”, Signal Processing: Image Communi- cation, vol. 60, pp. 52–63, 2018, doi:10.1016/j.image.2017.08.010.
- K. Cao, A. K. Jain, “Automated latent fingerprint recognition”, IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 4, pp. 788–800, 2018, doi:10.1109/tpami.2018.2818162.
- R. P. Krish, J. Fierrez, D. Ramos, F. Alonso-Fernandez, J. Bigun, “Improving automated latent fingerprint identification using ex- tended minutia types”, Information Fusion, vol. 50, pp. 9–19, 2019, doi:10.1016/j.inffus.2018.10.001.
- K. Cao, D.-L. Nguyen, C. Tymoszek, A. K. Jain, “End-to-end latent fingerprint search”, IEEE Transactions on Information Forensics and Security, vol. 15, pp. 880–894, 2019, doi:10.1109/tifs.2019.2930487.
- A. J. Sanchez-Fernandez, L. F. Romero, D. Peralta, M. A. Medina- Pérez, Y. Saeys, F. Herrera, S. Tabik, “Asynchronous process- ing for latent fingerprint identification on heterogeneous cpu- gpu systems”, IEEE Access, vol. 8, pp. 124236–124253, 2020, doi:10.1109/access.2020.3005476.
- N. D. Kalka, M. Beachler, R. A. Hicklin, “Lqmetric: a latent finger- print quality metric for predicting afis performance and assessing the value of latent fingerprints”, Journal of Forensic Identification, vol. 70, no. 4, pp. 443–463, 2020.
- X. Huang, P. Qian, M. Liu, “Latent fingerprint image enhance- ment based on progressive generative adversarial network”, “Proceedings of the IEEE/CVF Conference on Computer Vi- sion and Pattern Recognition Workshops”, pp. 800–801, 2020, doi:10.1109/cvprw50498.2020.00408.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, “End- to-end automated latent fingerprint identification with improved dcnn-fft enhancement”, Frontiers in Robotics and AI, vol. 7, p. 594412, 2020, doi:10.3389/frobt.2020.594412.
- M. Liu, P. Qian, “Automatic segmentation and enhancement of latent fingerprints using deep nested unets”, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1709–1719, 2020, doi:10.1109/tifs.2020.3039058.
- S. Gu, J. Feng, J. Lu, J. Zhou, “Latent fingerprint registration via matching densely sampled points”, IEEE Transactions on In- formation Forensics and Security, vol. 16, pp. 1231–1244, 2020, doi:10.1109/tifs.2020.3032041.
- D. Agarwal, A. Bansal, “A utility of pores as level 3 features in latent fingerprint identification”, Multimedia Tools and Applications, vol. 80, no. 15, pp. 23605–23624, 2021, doi:10.1007/s11042-020-10207-x.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, “Latent fingerprint identification system based on a local combination of minutiae feature points”, SN Computer Science, vol. 2, no. 3, p. 206, 2021, doi:10.1007/s42979-021-00615-7.
- S. M. Hilles, A. Liban, O. A. Miaikil, A. M. Altrad, Y. A. B. El- Ebiary, M. M. Hilles, J. Contreras, “Latent fingerprint enhancement and segmentation technique based on hybrid edge adaptive dtv model”, “2021 2nd International Conference on Smart Comput- ing and Electronic Enterprise (ICSCEE)”, pp. 8–13, IEEE, 2021, doi:10.1109/icscee50312.2021.9498025.
- S. M. Hilles, A. Liban, A. M. Altrad, O. A. Miaikil, Y. A. B. El- Ebiary, J. Contreras, M. M. Hilles, “Adaptive latent fingerprint image segmentation and matching using chan-vese technique based on edtv model”, “2021 2nd International Conference on Smart Com- puting and Electronic Enterprise (ICSCEE)”, pp. 2–7, IEEE, 2021, doi:10.1109/icscee50312.2021.9497996.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, “Auto- matic latent fingerprint identification system using scale and rota- tion invariant minutiae features”, International Journal of Information Technology, vol. 14, no. 2, pp. 1025–1039, 2022, doi:10.1007/s41870- 020-00508-7.
- H. İ. Öztürk, B. Selbes, Y. Artan, “Minnet: Minutia patch embedding network for automated latent fingerprint recognition”, “Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog- nition”, pp. 1627–1635, 2022, doi:10.1109/cvprw56347.2022.00169.
- S. Gu, J. Feng, J. Lu, J. Zhou, “Latent fingerprint indexing: Ro- bust representation and adaptive candidate list”, IEEE Transactions on Information Forensics and Security, vol. 17, pp. 908–923, 2022, doi:10.1109/tifs.2022.3154296.
- N. D. S. Cunha, H. M. Gomes, L. V. Batista, “Residual m-net with frequency-domain loss function for latent fingerprint en- hancement”, “2022 35th SIBGRAPI Conference on Graphics, Pat- terns and Images (SIBGRAPI)”, vol. 1, pp. 198–203, IEEE, 2022, doi:10.1109/sibgrapi55357.2022.9991793.
- E. Marasco, M. He, L. Tang, Y. Tao, “Demographic effects in latent fingerprint matching and their relation to image quality”, “Proceed- ings of the 2022 7th International Conference on Machine Learning Technologies”, pp. 170–179, 2022, doi:10.1145/3529399.3529427.
- A. B. V. Wyzykowski, A. K. Jain, “Synthetic latent finger- print generator”, “Proceedings of the IEEE/CVF Winter Confer- ence on Applications of Computer Vision”, pp. 971–980, 2023, doi:10.1109/wacv56688.2023.00103.
- Y. Zhu, X. Yin, J. Hu, “Fingergan: a constrained fingerprint generation scheme for latent fingerprint enhancement”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, doi:10.1109/tpami.2023.3236876.
- S. A. Grosz, A. K. Jain, “Latent fingerprint recognition: Fusion of local and global embeddings”, IEEE Transactions on Information Forensics and Security, 2023, doi:10.1109/tifs.2023.3314207.
- R. Jindal, S. Singla, “Latent fingerprint recognition using hybrid ant colony optimization and cuckoo search.”, Int. Arab J. Inf. Technol., vol. 20, no. 1, pp. 19–28, 2023, doi:10.34028/iajit/20/1/3.
- A. B. V. Wyzykowski, A. K. Jain, “A universal latent fingerprint enhancer using transformers”, arXiv preprint arXiv:2306.00231, 2023, doi:10.48550/arXiv.2306.00231.
- R. K. Dubey, J. Goh, V. L. Thing, “Fingerprint liveness detection from single image using low-level features and shape analysis”, IEEE Transactions on Information Forensics and Security, vol. 11, no. 7, pp. 1461–1475, 2016, doi:10.1109/tifs.2016.2535899.
- Z. Xia, R. Lv, Y. Zhu, P. Ji, H. Sun, Y.-Q. Shi, “Fingerprint liveness de- tection using gradient-based texture features”, Signal, Image and Video Processing, vol. 11, pp. 381–388, 2017, doi:10.1007/s11760-016-0936-z.
- T. Chugh, K. Cao, A. K. Jain, “Fingerprint spoof buster: Use of minutiae-centered patches”, IEEE Transactions on Informa- tion Forensics and Security, vol. 13, no. 9, pp. 2190–2202, 2018, doi:10.1109/tifs.2018.2812193.
- C. Yuan, X. Sun, Q. J. Wu, “Difference co-occurrence matrix using bp neural network for fingerprint liveness detection”, Soft Computing, vol. 23, no. 13, pp. 5157–5169, 2019, doi:10.1007/s00500-018-3182-1.
- C. Yuan, X. Chen, P. Yu, R. Meng, W. Cheng, Q. J. Wu, X. Sun, “Semi- supervised stacked autoencoder-based deep hierarchical semantic feature for real-time fingerprint liveness detection”, Journal of Real- Time Image Processing, vol. 17, pp. 55–71, 2020, doi:10.1007/s11554- 019-00928-0.
- J. Fei, Z. Xia, P. Yu, F. Xiao, “Adversarial attacks on fingerprint liveness detection”, EURASIP Journal on Image and Video Processing, vol. 2020, pp. 1–11, 2020, doi:10.1186/s13640-020-0490-z.
- Y. Zhang, C. Gao, S. Pan, Z. Li, Y. Xu, H. Qiu, “A score- level fusion of fingerprint matching with fingerprint live- ness detection”, IEEE Access, vol. 8, pp. 183391–183400, 2020, doi:10.1109/access.2020.3027846.
- W. Jian, Y. Zhou, H. Liu, “Densely connected convolutional network optimized by genetic algorithm for fingerprint live- ness detection”, IEEE Access, vol. 9, pp. 2229–2243, 2020, doi:10.1109/access.2020.3047723.
- O. F. Onifade, P. Akinde, F. O. Isinkaye, “Circular gabor wavelet algorithm for fingerprint liveness detection”, Journal of Advanced Computer Science & Technology, vol. 9, no. 1, pp. 1–5, 2020, doi:10.14419/jacst.v9i1.29908.
- R. Agarwal, A. S. Jalal, K. Arya, “A multimodal liveness detection using statistical texture features and spatial analysis”, Multime- dia Tools and Applications, vol. 79, no. 19, pp. 13621–13645, 2020, doi:10.1007/s11042-019-08313-6.
- Y. Zhang, S. Pan, X. Zhan, Z. Li, M. Gao, C. Gao, “Fldnet: Light dense cnn for fingerprint liveness detection”, IEEE Access, vol. 8, pp. 84141–84152, 2020, doi:10.1109/access.2020.2990909.
- J. Kolberg, M. Grimmer, M. Gomez-Barrero, C. Busch, “Anomaly detection with convolutional autoencoders for fingerprint pre- sentation attack detection”, IEEE Transactions on Biometrics, Be- havior, and Identity Science, vol. 3, no. 2, pp. 190–202, 2021, doi:10.1109/tbiom.2021.3050036.
- C. Yuan, S. Jiao, X. Sun, Q. J. Wu, “Mfffld: A multimodal-feature- fusion-based fingerprint liveness detection”, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 648–661, 2021, doi:10.1109/tcds.2021.3062624.
- S. Agarwal, C. R. Chowdary, V. Sourabh, “Eazy learning: An adap- tive variant of ensemble learning for fingerprint liveness detection”, arXiv preprint arXiv:2103.02207, 2021, doi:10.48550/arXiv.2103.02207.
- S. B. Sandouka, Y. Bazi, N. Alajlan, “Transformers and generative adversarial networks for liveness detection in multitarget fingerprint sensors”, Sensors, vol. 21, no. 3, p. 699, 2021, doi:10.3390/s21030699.
- A. Verma, V. K. Gupta, S. Goel, A. K. Yadav, D. Yadav, et al., “Mod- eling fingerprint presentation attack detection through transient liveness factor-a person specific approach.”, Traitement du Signal, vol. 38, no. 2, 2021, doi:10.18280/ts.380206.
- C. Yuan, Q. Cui, X. Sun, Q. J. Wu, S. Wu, “Fingerprint liveness detection using an improved cnn with the spatial pyramid pooling structure”, “Advances in Computers”, vol. 120, pp. 157–193, Elsevier, 2021, doi:10.1016/bs.adcom.2020.10.002.
- Z. İ. Özkiper, Z. Turgut, T. Atmaca, M. A. Aydın, “Fingerprint liveness detection using deep learning”, “2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)”, pp. 129–135, IEEE, 2022, doi:10.1109/ficloud57274.2022.00025.
- R. C. Contreras, L. G. Nonato, M. Boaventura, I. A. G. Boaventura, F. L. Dos Santos, R. B. Zanin, M. S. Viana, “A new multi-filter framework for texture image representation improvement using set of pattern descriptors to fingerprint liveness detection”, IEEE Access, vol. 10, pp. 117681–117706, 2022, doi:10.1109/access.2022.3218335.
- A. Almehmadi, “A behavioral-based fingerprint liveness and will- ingness detection system”, Applied Sciences, vol. 12, no. 22, p. 11460, 2022, doi:10.3390/app122211460.
- S. Agarwal, A. Rattani, C. R. Chowdary, “A-ilearn: An adap- tive incremental learning model for spoof fingerprint detec- tion”, Machine Learning with Applications, vol. 7, p. 100210, 2022, doi:10.1016/j.mlwa.2021.100210.
- D. Agarwal, A. Bansal, “Fingerprint liveness detection through fusion of pores perspiration and texture features”, Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 4089–4098, 2022, doi:10.1016/j.jksuci.2020.10.003.
- K. Zhang, S. Huang, E. Liu, H. Zhao, “Lfldnet: Lightweight finger- print liveness detection based on resnet and transformer”, Sensors, vol. 23, no. 15, p. 6854, 2023, doi:10.3390/s23156854.
- A. Galli, M. Gravina, S. Marrone, D. Mattiello, C. Sansone, “Ad- versarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detection”, IET Biometrics, vol. 12, no. 2, pp. 102–111, 2023, doi:10.1049/bme2.12106.
- M. Nishanth, H. K. MR, K. N. MG, S. Kamal, T. Rao, K. Ashwini, “Fingerprint liveness detection using deep learning”, “2023 Interna- tional Conference on Computational Intelligence for Information, Security and Communication Applications (CIISCA)”, pp. 383–388, IEEE, 2023, doi:10.1109/ciisca59740.2023.00079.
- Y. Myshkovskyi, M. Nazarkevych, “Robustness of fingerprint live- ness detection based on convolutional neural networks”, https://ceur- ws.org/Vol-3550/short13.pdf, 2023.
- C. Li, J. Hu, “A security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structures”, IEEE Transactions on Information Forensics and Security, vol. 11, no. 3, pp. 543–555, 2015, doi:10.1109/tifs.2015.2505630.
- T. Murakami, T. Ohki, K. Takahashi, “Optimal sequential fusion for multibiometric cryptosystems”, Information fusion, vol. 32, pp. 93–108, 2016, doi:10.1016/j.inffus.2016.02.002.
- Z. Jin, A. B. J. Teoh, B.-M. Goi, Y.-H. Tay, “Biometric cryptosystems: a new biometric key binding and its implementation for finger- print minutiae-based representation”, Pattern Recognition, vol. 56, pp. 50–62, 2016, doi:10.1016/j.patcog.2016.02.024.
- S. Rajendran, M. Doraipandian, “Biometric template security trig- gered by two dimensional logistic sine map”, Procedia computer science, vol. 143, pp. 794–803, 2018, doi:10.1016/j.procs.2018.10.387.
- A. A. Al-Saggaf, “Secure method for combining cryptography with iris biometrics.”, J. Univers. Comput. Sci., vol. 24, no. 4, pp. 341–356, 2018.
- G. Panchal, D. Samanta, S. Barman, “Biometric-based cryptog- raphy for digital content protection without any key storage”, Multimedia Tools and Applications, vol. 78, pp. 26979–27000, 2019, doi:10.1007/s11042-017-4528-x.
- A. A. Khan, V. Kumar, M. Ahmad, “An elliptic curve cryptography based mutual authentication scheme for smart grid communications using biometric approach”, Journal of King Saud University-Computer and Information Sciences, 2019, doi:10.1016/j.jksuci.2019.04.013.
- S. Sapkal, S. Kakarwal, R. Deshmukh, “Template security of mul- timodal biometric system with face and fingerprint images using fuzzy vault method”, CSI Journal of Computing, vol. 3, no. 3, pp. 36–40, 2020, doi:10.21275/v5i3.nov162389.
- V. Rajasekar, J. Premalatha, K. Sathya, “Enhanced biometric recog- nition for secure authentication using iris preprocessing and hy- perelliptic curve cryptography”, Wireless communications and mobile computing, vol. 2020, pp. 1–15, 2020, doi:10.21203/rs.2.23196/v1.
- F. S. Babamir, M. Kırcı, “A multibiometric cryptosystem for user authentication in client-server networks”, Computer Networks, vol. 181, p. 107427, 2020, doi:10.1016/j.comnet.2020.107427.
- R. A. Rajan, P. Kumaran, “Multi-biometric cryptosystem using graph for secure cloud authentication”, Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6437–6444, 2020, doi:10.3233/jifs-179724.
- R. Dwivedi, S. Dey, M. A. Sharma, A. Goel, “A fingerprint based crypto-biometric system for secure communication”, Journal of Am- bient Intelligence and Humanized Computing, vol. 11, pp. 1495–1509, 2020, doi:10.1007/s12652-019-01437-5.
- P. S. Chanukya, T. Thivakaran, “Multimodal biometric cryptosystem for human authentication using fingerprint and ear”, Multimedia Tools and Applications, vol. 79, no. 1, pp. 659–673, 2020, doi:10.1007/s11042- 019-08123-w.
- J. Peng, B. Yang, B. B. Gupta, A. A. Abd El-Latif, “A biometric cryp- tosystem scheme based on random projection and neural network”, Soft Computing, vol. 25, pp. 7657–7670, 2021, doi:10.1007/s00500-021- 05732-2.
- S. Barzut, M. Milosavljević, S. Adamović, M. Saračević, N. Maček,
M. Gnjatović, “A novel fingerprint biometric cryptosystem based on convolutional neural networks”, Mathematics, vol. 9, no. 7, p. 730, 2021, doi:10.3390/math9070730. - W. El-Shafai, F. A. H. E. Mohamed, H. M. Elkamchouchi,
M. Abd-Elnaby, A. Elshafee, “Efficient and secure cancelable biometric authentication framework based on genetic encryp- tion algorithm”, IEEE Access, vol. 9, pp. 77675–77692, 2021, doi:10.1109/access.2021.3082940. - H. A. A. El-Hameed, N. Ramadan, W. El-Shafai, A. A. Khalaf, H. E. H. Ahmed, S. E. Elkhamy, F. E. A. El-Samie, “Cancelable biometric secu- rity system based on advanced chaotic maps”, The Visual Computer, pp. 1–17, 2021, doi:10.1007/s00371-021-02276-2.
- O. Ouda, K. Nandakumar, A. Ross, “Cancelable biometrics vault: A secure key-binding biometric cryptosystem based on chaffing and winnowing”, “2020 25th International Conference on Pattern Recognition (ICPR)”, pp. 8735–8742, IEEE, 2021, doi:10.1109/icpr48806.2021.9412957.
- R. Sreemol, M. S. Kumar, A. Sreekumar, “Improvement of security in multi-biometric cryptosystem by modulus fuzzy vault algorithm”, “2021 International conference on advances in computing and com- munications (ICACC)”, pp. 1–7, IEEE, 2021, doi:10.1109/icacc- 202152719.2021.9708136.
- L. A. Elrefaei, A. M. Al-Mohammadi, “Machine vision gait-based biometric cryptosystem using a fuzzy commitment scheme”, Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 2, pp. 204–217, 2022, doi:10.1016/j.jksuci.2019.10.011.
- X. Chang, W. Li, A. Yan, P. W. M. Tsang, T.-C. Poon, “Asymmetric cryptosystem based on optical scanning cryptography and elliptic curve algorithm”, Scientific Reports, vol. 12, no. 1, p. 7722, 2022, doi:10.21203/rs.3.rs-1148931/v1.
- A. Kuznetsov, D. Zakharov, E. Frontoni, L. Romeo, R. Rosati, “Deep learning based fuzzy extractor for generating strong keys from biometric face images”, “2022 IEEE 9th Interna- tional Conference on Problems of Infocommunications, Sci- ence and Technology (PIC S&T)”, pp. 421–426, IEEE, 2022, doi:10.1109/picst57299.2022.10238643.
- N. Hamian, M. Bayat, M. R. Alaghband, Z. Hatefi, S. M. Pournaghi, “Blockchain-based user re-enrollment for biometric authentication systems”, International Journal of Electronics and Information Engineer- ing, vol. 14, no. 1, pp. 18–38, 2022, doi:10.6636/IJEIE.202206.
- S. D. Patil, R. Raut, R. H. Jhaveri, T. A. Ahanger, P. V. Dhade, A. B. Kathole, K. N. Vhatkar, et al., “Robust authentication system with privacy preservation of biometrics”, Security and Communication Networks, vol. 2022, 2022, doi:10.1155/2022/7857975.
- L. A. Abou Elazm, W. El-Shafai, S. Ibrahim, M. G. Egila, H. Shawkey, M. K. Elsaid, N. F. Soliman, H. N. AlEisa, F. E. Abd El-Samie, “Efficient hardware design of a secure cancellable biometric cryp- tosystem”, Intell. Autom. Soft Comput., vol. 36, no. 1, pp. 929–955, 2023, doi:10.32604/iasc.2023.031386.
- H. A. A. Eldawy, W. El-Shafai, E. E.-D. Hemdan, G. M. El-Banby, F. E. A. El-Samie, “A robust cancellable face and palmprint recogni- tion system based on 3d optical chaos-dna cryptosystem”, Optical and Quantum Electronics, vol. 55, no. 11, p. 970, 2023, doi:10.1007/s11082- 023-04840-7.
- P. Kaur, N. Kumar, “Enhanced biometric cryptosystem using ear & iris modality based on binary robust independent elementary feature”, “2023 6th International Conference on Information Sys- tems and Computer Networks (ISCON)”, pp. 1–6, IEEE, 2023, doi:10.1109/iscon57294.2023.10112197.
- A. Sedik, A. A. A. El-Latif, M. A. Wani, F. E. A. El-Samie, N. A.-S. Bauomy, F. G. Hashad, “Efficient multi-biometric secure-storage scheme based on deep learning and crypto-mapping techniques”, Mathematics, vol. 11, no. 3, p. 703, 2023, doi:10.3390/math11030703.
- S. Nagaraju, R. Nagendra, S. Balasundaram, R. K. Kumar, “Bio- metric key generation and multi round aes crypto system for im- proved security”, Measurement: Sensors, vol. 30, p. 100931, 2023, doi:10.1016/j.measen.2023.100931.
- M. Sandhya, M. V. Prasad, “Securing fingerprint templates using fused structures”, IET Biometrics, vol. 6, no. 3, pp. 173–182, 2017, doi:10.1049/iet-bmt.2016.0008.
- A. Roy, N. Memon, A. Ross, “Masterprint: Exploring the vulner- ability of partial fingerprint-based authentication systems”, IEEE Transactions on Information Forensics and Security, vol. 12, no. 9, pp. 2013–2025, 2017, doi:10.1109/tifs.2017.2691658.
- J. Kim, A. B. J. Teoh, “One-factor cancellable biometrics based on indexing-first-order hashing for fingerprint authentication”, “2018 24th International Conference on Pattern Recognition (ICPR)”, pp. 3108–3113, IEEE, 2018, doi:10.1109/icpr.2018.8545565.
- X. Wang, H. Li, “One-factor cancellable palmprint recognition scheme based on oiom and minimum signature hash”, IEEE Access, vol. 7, pp. 131338–131354, 2019, doi:10.1109/access.2019.2938019.
- G. S. Walia, K. Aggarwal, K. Singh, K. Singh, “Design and analysis of adaptive graph-based cancelable multi-biometrics approach”, IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1, pp. 54–66, 2020, doi:10.1109/tdsc.2020.2997558.
- J. R. Pinto, M. V. Correia, J. S. Cardoso, “Secure triplet loss: Achieving cancelability and non-linkability in end-to-end deep biometrics”, IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 2, pp. 180–189, 2020, doi:10.1109/tbiom.2020.3046620.
- H. Wang, X. Dong, Z. Jin, A. B. J. Teoh, M. Tistarelli, “Security analysis of cancellable biometrics using constrained-optimized similarity-based attack”, arXiv preprint arXiv:2006.13051, 2020, doi:10.1109/wacvw52041.2021.00012.
- A. K. Trivedi, D. M. Thounaojam, S. Pal, “Non-invertible cancellable fingerprint template for fingerprint biometric”, Computers & Security, vol. 90, p. 101690, 2020, doi:10.1016/j.cose.2019.101690.
- U. Sharma, P. Tomar, S. S. Ali, N. Saxena, R. S. Bhadoria, “Optimized authentication system with high security and privacy”, Electronics, vol. 10, no. 4, p. 458, 2021, doi:10.3390/electronics10040458.
- H. Wang, X. Dong, Z. Jin, A. B. J. Teoh, M. Tistarelli, “Interpretable se- curity analysis of cancellable biometrics using constrained-optimized similarity-based attack”, “Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision”, pp. 70–77, 2021, doi:10.1109/wacvw52041.2021.00012.
- N. F. Soliman, A. D. Algarni, W. El-Shafai, F. E. A. El-Samie, G. Banby, et al., “An efficient gcd-based cancelable biometric algorithm for single and multiple biometrics.”, Computers, Materials & Continua, vol. 69, no. 2, 2021, doi:10.32604/cmc.2021.016980.
- W. Yang, S. Wang, M. Shahzad, W. Zhou, “A cancelable biometric au- thentication system based on feature-adaptive random projection”, Journal of Information Security and Applications, vol. 58, p. 102704, 2021, doi:10.1016/j.jisa.2020.102704.
- H. Zhang, W. Bian, B. Jie, D. Xu, J. Zhao, “A complete user au- thentication and key agreement scheme using cancelable biomet- rics and puf in multi-server environment”, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5413–5428, 2021, doi:10.1109/tifs.2021.3128826.
- X. Dong, Z. Jin, L. Zhao, Z. Guo, “Biocancrypto: An ldpc coded bio-cryptosystem on fingerprint cancellable template”, “2021 IEEE international joint conference on biometrics (IJCB)”, pp. 1–8, IEEE, 2021, doi:10.1109/ijcb52358.2021.9484391.
- B. Samira, R. H. Lamia, E. B. A. Najoua, “Biometric template security using watermarking reinforcement based cancellable transforma- tion”, “2021 International Conference on Cyberworlds (CW)”, pp. 270–277, IEEE, 2021, doi:10.1109/cw52790.2021.00052.
- T. M. Dang, T. D. Nguyen, T. Hoang, H. Kim, A. B. J. Teoh, D. Choi, “Avet: a novel transform function to improve cancellable biometrics security”, IEEE Transactions on Information Forensics and Security, vol. 18, pp. 758–772, 2022, doi:10.1109/tifs.2022.3230212.
- B. A. El-Rahiem, M. Amin, A. Sedik, F. E. A. E. Samie, A. M. Iliyasu, “An efficient multi-biometric cancellable biometric scheme based on deep fusion and deep dream”, Journal of Ambient Intelligence and Hu- manized Computing, pp. 1–13, 2022, doi:10.1007/s12652-021-03513-1.
- A. M. Ayoup, A. A. Khalaf, W. El-Shafai, F. E. A. El-Samie, F. Alrad- dady, S. M. S. Eldin, “Cancellable multi-biometric template genera- tion based on arnold cat map and aliasing.”, Computers, Materials & Continua, vol. 72, no. 2, 2022, doi:10.32604/cmc.2022.025902.
- J. Kim, Y. G. Jung, A. B. J. Teoh, “Multimodal biometric template pro- tection based on a cancelable softmaxout fusion network”, Applied Sciences, vol. 12, no. 4, p. 2023, 2022, doi:10.3390/app12042023.
- A. M. Ayoup, A. Khalaf, F. Alraddady, F. Abd El-Samie, W. El- Safai, S. Eldin, “Selective cancellable multi-biometric template generation scheme based on multi-exposure feature fusion”, In- tell. Autom. Soft Comput., vol. 33, no. 1, pp. 549–565, 2022, doi:10.32604/iasc.2022.024379.
- A. Sedik, A. A. A. El-Latif, M. El-Affendi, H. Mostafa, “A cancelable biometric system based on deep style transfer and symmetry check for double-phase user authentication”, Symmetry, vol. 15, no. 7, p. 1426, 2023, doi:10.3390/sym15071426.
- S. M. S. Eldin, A. Sedik, S. S. Alshamrani, A. M. Ayoup, “Cancellable multi-biometric feature veins template generation based on sha- 3 hashing.”, Computers, Materials & Continua, vol. 75, no. 1, 2023, doi:10.32604/cmc.2023.030789.
- Y. Jiang, P. Shen, L. Zeng, X. Zhu, D. Jiang, C. Chen, “Cancelable biometric schemes for euclidean metric and cosine metric”, Cyberse- curity, vol. 6, no. 1, p. 4, 2023, doi:10.1186/s42400-023-00137-0.
- O. S. Faragallah, E. A. Naeem, W. El-Shafai, N. Ramadan, H. E.-d. H. Ahmed, M. M. A. Elnaby, I. Elashry, S. E. El-Khamy, F. E. A. El-Samie, “Efficient chaotic-baker-map-based cancelable face recognition”, Jour- nal of Ambient Intelligence and Humanized Computing, pp. 1–39, 2023, doi:10.1007/s12652-021-03398-0.
- S. Yamamoto, H. Inaba, “Cancellable biometric authentication system by image style transfer”, “2023 IEEE 12th Global Confer- ence on Consumer Electronics (GCCE)”, pp. 794–797, IEEE, 2023, doi:10.1109/gcce59613.2023.10315291.
- F. Turroni, D. Maltoni, R. Cappelli, D. Maio, “Improving fin- gerprint orientation extraction”, IEEE Transactions on Informa- tion Forensics and Security, vol. 6, no. 3, pp. 1002–1013, 2011, doi:10.1109/tifs.2011.2150216.
- S. Li, A. C. Kot, “An improved scheme for full fingerprint reconstruc- tion”, IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1906–1912, 2012, doi:10.1109/tifs.2012.2212012.
- J. Galbally, S. Marcel, J. Fierrez, “Image quality assessment for fake biometric detection: Application to iris, fingerprint, and face recogni- tion”, IEEE transactions on image processing, vol. 23, no. 2, pp. 710–724, 2013, doi:10.1109/tip.2013.2292332.
- H.-W. Jung, J.-H. Lee, “Noisy and incomplete fingerprint classifi- cation using local ridge distribution models”, Pattern recognition, vol. 48, no. 2, pp. 473–484, 2015, doi:10.1016/j.patcog.2014.07.030.
- S. Mathur, A. Vjay, J. Shah, S. Das, A. Malla, “Methodology for partial fingerprint enrollment and authentication on mobile devices”, “2016 International Conference on Biometrics (ICB)”, pp. 1–8, IEEE, 2016, doi:10.1109/icb.2016.7550093.
- T. Chugh, S. S. Arora, A. K. Jain, N. G. Paulter, “Benchmarking fingerprint minutiae extractors”, “2017 International conference of the biometrics special interest group (BIOSIG)”, pp. 1–8, IEEE, 2017, doi:10.23919/biosig.2017.8053498.
- G. S. E. Ekladious, R. Sabourin, E. Granger, “Learning global-local distance metrics for signature-based biometric cryptosystems”, Cryp- tography, vol. 1, no. 3, p. 22, 2017, doi:10.3390/cryptography1030022.
- R. D. Labati, A. Genovese, E. Munoz, V. Piuri, F. Scotti, “A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks”, Pattern Recognition Letters, vol. 113, pp. 58–66, 2018, doi:10.1016/j.patrec.2017.04.001.
- R. Gupta, M. Khari, D. Gupta, R. G. Crespo, “Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction”, Information Sciences, vol. 530, pp. 201–218, 2020, doi:10.1016/j.ins.2020.01.031.
- F. Liu, Y. Zhao, G. Liu, L. Shen, “Fingerprint pore matching us- ing deep features”, Pattern Recognition, vol. 102, p. 107208, 2020, doi:10.1016/j.patcog.2020.107208.
- W. Yang, S. Wang, K. Yu, J. J. Kang, M. N. Johnstone, “Secure finger- print authentication with homomorphic encryption”, “2020 Digital Image Computing: Techniques and Applications (DICTA)”, pp. 1–6, IEEE, 2020, doi:10.1109/dicta51227.2020.9363426.
- B. T. Ahmed, O. Y. Abdulhameed, “Fingerprint authentica- tion using shark smell optimization algorithm”, UHD Jour- nal of Science and Technology, vol. 4, no. 2, pp. 28–39, 2020, doi:10.21928/uhdjst.v4n2y2020.pp28-39.
- T. Kim, Y. Oh, H. Kim, “Efficient privacy-preserving fingerprint- based authentication system using fully homomorphic encryption”, Security and Communication Networks, vol. 2020, pp. 1–11, 2020, doi:10.1155/2020/4195852.
- M. Golec, S. S. Gill, R. Bahsoon, O. Rana, “Biosec: A biometric authen- tication framework for secure and private communication among edge devices in iot and industry 4.0”, IEEE Consumer Electronics Mag- azine, vol. 11, no. 2, pp. 51–56, 2020, doi:10.1109/mce.2020.3038040.
- M. Lebcir, S. Awang, A. Benziane, “Reversible watermarking tech- nique for fingerprint authentication based on dct”, IOP Conference Series: Materials Science and Engineering, vol. 769, no. 1, p. 012070, 2020, doi:10.1088/1757-899x/769/1/012070.
- D. Valdes-Ramirez, M. A. Medina-Pérez, R. Monroy, “An ensemble of fingerprint matching algorithms based on cylinder codes and mtriplets for latent fingerprint identification”, Pattern Analysis and Ap- plications, vol. 24, pp. 433–444, 2021, doi:10.1007/s10044-020-00911-7.
- I. Joshi, R. Kothari, A. Utkarsh, V. K. Kurmi, A. Dantcheva, S. D. Roy, P. K. Kalra, “Explainable fingerprint roi segmentation using monte carlo dropout”, “Proceedings of the IEEE/CVF Winter Con- ference on Applications of Computer Vision”, pp. 60–69, 2021, doi:10.1109/wacvw52041.2021.00011.
- P. Terhörst, A. Boller, N. Damer, F. Kirchbuchner, A. Kuijper, “Mide- con: Unsupervised and accurate fingerprint and minutia quality assessment based on minutia detection confidence”, “2021 IEEE International Joint Conference on Biometrics (IJCB)”, pp. 1–8, IEEE, 2021, doi:10.1109/ijcb52358.2021.9484404.
- F. Pandey, P. Dash, D. Samanta, M. Sarma, “Asra: Automatic singular value decomposition-based robust fingerprint image alignment”, Multimedia Tools and Applications, vol. 80, pp. 15647–15675, 2021, doi:10.1007/s11042-021-10560-5.
- A. Muhammed, N. C. Mhala, A. R. Pais, “A novel fingerprint template protection and fingerprint authentication scheme using visual se- cret sharing and super-resolution”, Multimedia Tools and Applications, vol. 80, no. 7, pp. 10255–10284, 2021, doi:10.1007/s11042-020-10095-1.
- R. C. Contreras, L. G. Nonato, M. Boaventura, I. A. G. Boaventura, B. G. Coelho, M. S. Viana, “A new multi-filter framework with sta- tistical dense sift descriptor for spoofing detection in fingerprint authentication systems”, “International Conference on Artificial Intelligence and Soft Computing”, pp. 442–455, Springer, 2021, doi:10.1007/978-3-030-87897-9_39.
- M. S. El_Tokhy, “Robust multimodal biometric authentication al- gorithms using fingerprint, iris and voice features fusion”, Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 647–672, 2021, doi:10.3233/jifs-200425.
- A. Bedari, S. Wang, W. Yang, “A secure online fingerprint authenti- cation system for industrial iot devices over 5g networks”, Sensors, vol. 22, no. 19, p. 7609, 2022, doi:10.3390/s22197609.
- A. Siswanto, A. Efendi, E. A. Kadir, “Fingerprint authentication in smart home environment based on embedded system”, “2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)”, pp. 1–6, IEEE, 2022, doi:10.1109/iceccme55909.2022.9988711.
- N. Pradeep, J. Ravi, “An revolutionary fingerprint authentication approach using gabor filters for feature extraction and deep learning classification using convolutional neural networks”, “Innovations in Electronics and Communication Engineering: Proceedings of the 9th ICIECE 2021”, pp. 349–360, Springer, 2022, doi:10.1007/978-981- 16-8512-5_38.
- A. F. Y. Althabhawee, B. K. O. C. Alwawi, “Fingerprint recognition based on collected images using deep learning technology”, IAES International Journal of Artificial Intelligence, vol. 11, no. 1, p. 81, 2022, doi:10.11591/ijai.v11.i1.pp81-88.
- P. Singh, H. Samuel, F. Jaafar, D. Ameyed, “Enhancing biometric security with combinatorial and permutational multi-fingerprint authentication strategies”, “2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intel- ligence and Computing, Intl Conf on Cloud and Big Data Com- puting, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)”, pp. 1–7, IEEE, 2022, doi:10.1109/picom/cbdcom/cy55231.2022.9927942.
- Y. Chen, Y. Yu, L. Zhai, “ InfinityGauntlet : Expose smartphone fingerprint authentication to brute-force attack”, “32nd USENIX Security Symposium (USENIX Security 23)”, pp. 2027–2041, 2023.
- A. Popli, S. Tandon, J. J. Engelsma, A. Namboodiri, “A unified model for fingerprint authentication and presentation attack detection”, “Handbook of Biometric Anti-Spoofing: Presentation Attack De- tection and Vulnerability Assessment”, pp. 77–99, Springer, 2023, doi:10.1109/ijcb52358.2021.9484382.
- H. Choi, S. Woo, H. Kim, “Blind-touch: Homomorphic encryption- based distributed neural network inference for privacy-preserving fingerprint authentication”, arXiv preprint arXiv:2312.11575, 2023, doi:10.1609/aaai.v38i20.30200.
- E. Marasco, M. Albanese, V. V. R. Patibandla, A. Vurity, S. S. Sri- ram, “Biometric multi-factor authentication: On the usability of the fingerpin scheme”, Security and Privacy, vol. 6, no. 1, p. e261, 2023, doi:10.1002/spy2.261.
- R. Deshmukh, P. Yannawar, “Avao enabled deep learning based person authentication using fingerprint”, “First International Con- ference on Advances in Computer Vision and Artificial Intelligence Technologies (ACVAIT 2022)”, pp. 327–346, Atlantis Press, 2023, doi:10.2991/978-94-6463-196-8_26.
- D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J. Benitez, “Fast fingerprint identification for large databases”, Pattern Recognition, vol. 47, no. 2, p. 588–602, 2014, doi:10.1016/j.patcog.2013.08.002.
- M. Lastra, J. Carabaño, P. D. Gutiérrez, J. M. Benítez, F. Herrera, “Fast fingerprint identification using gpus”, Information Sciences, vol. 301, pp. 195–214, 2015, doi:10.1016/j.ins.2014.12.052.
- Y. Su, J. Feng, J. Zhou, “Fingerprint indexing with pose constraint”, Pattern Recognition, vol. 54, pp. 1–13, 2016, doi:10.1016/j.patcog.2016.01.006.
- J. Khodadoust, A. M. Khodadoust, “Fingerprint indexing based on minutiae pairs and convex core point”, Pattern Recognition, vol. 67, pp. 110–126, 2017, doi:10.1016/j.patcog.2017.01.022.
- D. Song, Y. Tang, J. Feng, “Aggregating minutia-centred deep con- volutional features for fingerprint indexing”, Pattern Recognition, vol. 88, pp. 397–408, 2019, doi:10.1016/j.patcog.2018.11.018.
- J. J. Engelsma, K. Cao, A. K. Jain, “Learning a fixed-length fingerprint representation”, IEEE transactions on pattern analy- sis and machine intelligence, vol. 43, no. 6, pp. 1981–1997, 2019, doi:10.1109/tpami.2019.2961349.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, “Cnnai: a convolution neural network-based latent fingerprint matching using the combination of nearest neighbor arrange- ment indexing”, Frontiers in Robotics and AI, vol. 7, p. 113, 2020, doi:10.3389/frobt.2020.00113.
- V. Anand, V. Kanhangad, “Pore-based indexing for fingerprints acquired using high-resolution sensors”, Pattern Analysis and Appli- cations, vol. 23, pp. 429–441, 2020, doi:10.1007/s10044-019-00805-3.
- H. P. Singh, P. Dimri, S. Tiwari, M. Saraswat, “Segmentation tech- niques through machine based learning for latent fingerprint index- ing and identification”, 2020, doi:10.56042/jsir.v79i3.68640.
- I. Pérez-Sánchez, B. Cervantes, M. A. Medina-Pérez, R. Monroy, O. Loyola-González, S. García, F. Herrera, “An indexing algorithm based on clustering of minutia cylinder codes for fast latent fin- gerprint identification”, IEEE Access, vol. 9, pp. 85488–85499, 2021, doi:10.1109/access.2021.3088314.
- Y. Xu, Y. Lu, F. Chen, G. Lu, D. Zhang, “High resolution fingerprint retrieval based on pore indexing and graph comparison”, IEEE Transactions on Information Forensics and Security, vol. 17, pp. 226–236, 2021, doi:10.1109/tifs.2021.3139219.
- J. M. S. Soares, L. Barbosa, P. A. L. Rego, R. P. Magalhães,
J. A. F. de Macêdo, “Using inverted index for fingerprint search”, Journal of Information and Data Management, vol. 12, no. 5, 2021, doi:10.5753/jidm.2021.1918. - G. Arora, S. Kalra, A. Bhatia, K. Tiwari, “Palmhashnet: Palm- print hashing network for indexing large databases to boost identification”, IEEE Access, vol. 9, pp. 145912–145928, 2021, doi:10.1109/access.2021.3123291.
- R. Balasundaram, G. F. Sudha, “Retrieval performance analysis of multibiometric database using optimized multidimensional spectral hashing based indexing”, Journal of King Saud University- Computer and Information Sciences, vol. 33, no. 1, pp. 110–117, 2021, doi:10.1016/j.jksuci.2018.02.003.
- D. Osorio-Roig, T. Schlett, C. Rathgeb, J. Tapia, C. Busch, “Exploring quality scores for workload reduction in biometric identification”, “2022 International Workshop on Biometrics and Forensics (IWBF)”, pp. 1–6, IEEE, 2022, doi:10.1109/iwbf55382.2022.9794533.
- G. Arora, A. Singh, A. Nigam, H. M. Pandey, K. Tiwari, “Fkpindexnet: An efficient learning framework for finger-knuckle-print database indexing to boost identification”, Knowledge-Based Systems, vol. 239, p. 108028, 2022, doi:10.1016/j.knosys.2021.108028.
- P. Drozdowski, F. Stockhardt, C. Rathgeb, C. Busch, “Signal-level fusion for indexing and retrieval of facial biometric data”, IET Biometrics, vol. 11, no. 2, pp. 141–156, 2022, doi:10.1049/bme2.12063.
- D. Osorio-Roig, L. J. Gonzalez-Soler, C. Rathgeb, C. Busch, “Privacy-preserving multi-biometric indexing based on fre- quent binary patterns”, arXiv preprint arXiv:2310.03091, 2023, doi:10.1109/tifs.2024.3386310/mm1.
- S. A. Grosz, A. K. Jain, “Afr-net: Attention-driven fingerprint recog- nition network”, IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, doi:10.1109/tbiom.2023.3317303.
- M. Kumar, D. Kumar, “An efficient gravitational search decision forest approach for fingerprint recognition”, Kuwait Journal of Science, vol. 50, no. 2A, 2023, doi:10.48129/kjs.20635.
- A. K. Jain, S. S. Arora, L. Best-Rowden, K. Cao, P. S. Sudhish, A. Bhat- nagar, Y. Koda, “Giving infants an identity: Fingerprint sensing and recognition”, “Proceedings of the Eighth International Conference on Information and Communication Technologies and Development”, pp. 1–4, 2016, doi:10.1145/2909609.2909612.
- A. K. Jain, S. S. Arora, K. Cao, L. Best-Rowden, A. Bhatnagar, “Fingerprint recognition of young children”, IEEE Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1501–1514, 2016, doi:10.1109/tifs.2016.2639346.
- J. J. Engelsma, D. Deb, K. Cao, A. Bhatnagar, P. S. Sudhish, A. K. Jain, “Infant-id: Fingerprints for global good”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3543–3559, 2021, doi:10.1109/tpami.2021.3057634.
- I. Widiatmika, I. N. Piarsa, A. Syafiandini, “Recognition of the baby footprint characteristics using wavelet method and k-nearest neigh- bor (k-nn)”, Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 12, no. 1, pp. 41–52, 2021, doi:10.24843/lkjiti.2021.v12.i01.p05.
- H. I. Yoshinori Koda, “Fundamental study of neonate fin- gerprint recognition using fingerprint classification”, 2022, doi:10.1109/biosig55365.2022.9897017.
- N. Nelufule, Y. Moolla, S. Ntshangase, A. de Kock, “Biometric recog- nition of infants using fingerprints”, Tech. rep., EasyChair, 2023, doi:10.1109/ictas56421.2023.10082749.
- T. O. Odu, T. Ogunfunmi, M. O. Olaniyan, I. A. Samuel, “Multi- instance contingent fusion for the verification of infant fingerprints”, “World Conference on Information Systems for Business Manage- ment”, pp. 197–207, Springer, 2023, doi:10.1155/2024/7728707.
- M. Bahzad, L. M. Labib, M. Elhosseini, M. Badawy, “M2brtpc: A novel modified multimodal biometric recognition for toddlers and pre-school children approach”, Mansoura Engineering Journal, vol. 48, no. 5, p. 5, 2023, doi:10.58491/2735-4202.3069.
- M. Shabil, H. Fadewar, “Fingerprint recognition of newborns and toddlers using pre-trained model under convolution neural net- works”, Journal of Data Acquisition and Processing, vol. 38, no. 2, p. 234, 2023, doi:10.5281/zenodo.7766329.
- K. Rajaram, N. B. Amma, S. Selvakumar, “Convolutional neural network based children recognition system using contactless finger- prints”, International Journal of Information Technology, vol. 15, no. 5, pp. 2695–2705, 2023, doi:10.1007/s41870-023-01306-7.
- M. Kazi, K. Kale, R. S. Mehsen, A. Mane, V. Humbe, Y. Rode, S. Dab- hade, N. Bansod, A. Razvi, P. Deshmukh, “Face, fingerprint, and signature based multimodal biometric system using score level and decision level fusion approaches”, IETE Journal of Research, pp. 1–20, 2023, doi:10.1080/03772063.2023.2217784.
- S. A. El_Rahman, A. S. Alluhaidan, “Enhanced multimodal biometric recognition systems based on deep learning and traditional methods in smart environments”, Plos one, vol. 19, no. 2, p. e0291084, 2024, doi:10.1371/journal.pone.0291084.
- H. Byeon, V. Raina, M. Sandhu, M. Shabaz, I. Keshta, M. Soni, K. Ma- trouk, P. P. Singh, T. Lakshmi, “Artificial intelligence-enabled deep learning model for multimodal biometric fusion”, Multimedia Tools and Applications, pp. 1–24, 2024, doi:10.1007/s11042-024-18509-0.
- J. Priyani, P. Nanglia, P. Singh, V. Shokeen, A. Sharma, “Hgssa-bi lstm: A secure multimodal biometric sensing using optimized bi- directional long short-term memory with self-attention”, ECS Sensors Plus, vol. 3, no. 1, p. 011401, 2024, doi:10.1149/2754-2726/ad1b3a.
- J. Samatha, G. Madhavi, “Securesense: Enhancing person verification through multimodal biometrics for robust authentication”, Scalable Computing: Practice and Experience, vol. 25, no. 2, pp. 1040–1054, 2024, doi:10.12694/scpe.v25i2.2524.
- D. A. Reid, M. S. Nixon, S. V. Stevenage, “Soft biometrics: Human identification using comparative descriptions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1216–1228, 2014, doi:10.1109/tpami.2013.219.