- Open Access
- Article
Fingerprint Bio-metric: Confronting Challenges, Embracing Evolu- tion, and Extending Utility - A Review
by Diptadip Maiti 1, , Madhuchhanda Basak 2 and Debashis DasĀ 3
1 Department of CSE, Techno India University, West Bengal, 700091, India
2 Department of CSE, Brainware University, West Bengal, 700125, India
3 Departmentof CSE , Dr. Sudhir Chandra Sur Institute of Technology & Sports Complex, West Bengal, 700074, India
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 3, Issue 9, Page # 26-60, 2024; DOI: 10.55708/js0309003
Keywords: Biometric Authentication, Fingerprint Identification System, Biometric Security, Biometric
Application
Received: 07 August 2024,Ā Revised: 14 September 2024, Accepted: 17 September 2024, Published Online: 22 September 2024
(This article belongs to the Special Issue Special Issue on Multidisciplinary Sciences and Advanced Technology 2024 & Section Biochemical Research Methods (BRM))
APA Style
Maiti, D., Basak, M., & Das, D. (2024). Fingerprint bio-metric: Confronting challenges, embracing evolution, and extending utility-A review. Journal of Engineering Research and Sciences, 3(9), 26-60. https://doi.org/10.55708/js0309003
Chicago/Turabian Style
Maiti, Diptadip, Madhuchhanda Basak, and Debashis Das. “Fingerprint Bio-metric: Confronting Challenges, Embracing Evolution, and Extending Utility-A Review.” Journal of Engineering Research and Sciences 3, no. 9 (2024): 26-60. https://doi.org/10.55708/js0309003.
IEEE Style
D. Maiti, M. Basak, and D. Das, “Fingerprint Bio-metric: Confronting Challenges, Embracing Evolution, and Extending Utility-A Review,” Journal of Engineering Research and Sciences, vol. 3, no. 9, pp. 26-60, 2024, doi: 10.55708/js0309003.
As documented in recent research, this review offers a thorough examination of the intricate subject of fingerprint authentication, including a wide range of issues and applications. Addressing problems like non-linear deformations and enhancing picture quality, which are frequently reduced by sophisticated improvement and alignment techniques are important components of fingerprint image authentication. Countering security concerns such as spoofing is a major focus of Automated Fingerprint Identification Systems and necessitates the use of sophisticated cryptographic techniques and liveness detection. In order to accomplish speedier identification processes, the paper emphasizes the advancements made in fingerprint indexing and retrieval, with a focus on deep learning technologies and minutiae-based methodologies. Furthermore, fingerprint authentication is used for a variety of age groups, including neonates, where it is essential for identification verification and the management of medical records. The paper also highlights the wider uses of fingerprint technology, such as improved crime detection skills, insights into age-related features, and contributions to medical diagnostics. This review provides a thorough overview of the latest developments and potential future directions in fingerprint authentication by combining state-of-the-art methodologies and analysing technical details, implementation challenges, and security issues. This captures the dynamic and important role of this biometric technology.
- R. Ramotowski, Lee and Gaensslenās advances in fingerprint technology, CRC press, 2012.
- Y. Xu, G. Lu, Y. Lu, D. Zhang, āHigh resolution fingerprint recog- nition using pore and edge descriptorsā, Pattern Recognition Letters, vol. 125, pp. 773ā779, 2019, doi:10.1016/j.patrec.2019.08.006.
- P. Tertychnyi, C. Ozcinar, G. Anbarjafari, āLow-quality fingerprint classification using deep neural networkā, IET Biometrics, vol. 7, no. 6, pp. 550ā556, 2018, doi:10.1049/iet-bmt.2018.5074.
- A. A. Paulino, J. Feng, A. K. Jain, āLatent fingerprint matching using descriptor-based hough transformā, IEEE Transactions on Information Forensics and Security, vol. 8, no. 1, pp. 31ā45, 2012, doi:10.1109/ijcb.2011.6117483.
- S. S. Arora, E. Liu, K. Cao, A. K. Jain, āLatent fingerprint matching: performance gain via feedback from exemplar printsā, IEEE Transac- tions on Pattern Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2452ā2465, 2014, doi:10.1109/tpami.2014.2330609.
- M. A. Medina-PĆ©rez, A. M. Moreno, M. Ć. F. Ballester, M. GarcĆa- Borroto, O. Loyola-GonzĆ”lez, L. Altamirano-Robles, āLatent finger- print identification using deformable minutiae clusteringā, Neurocom- puting, vol. 175, pp. 851ā865, 2016, doi:10.1016/j.neucom.2015.05.130.
- A. Sankaran, A. Jain, T. Vashisth, M. Vatsa, R. Singh, āAdaptive latent fingerprint segmentation using feature selection and random decision forest classificationā, Information Fusion, vol. 34, pp. 1ā15, 2017, doi:10.1016/j.inffus.2016.05.002.
- W. Bian, S. Ding, W. Jia, āCollaborative filtering model for enhancing fingerprint imageā, IET Image Processing, vol. 12, no. 1, pp. 149ā157, 2018, doi:10.1049/iet-ipr.2017.0059.
- J. Li, J. Feng, C.-C. J. Kuo, āDeep convolutional neural network for latent fingerprint enhancementā, Signal Processing: Image Communi- cation, vol. 60, pp. 52ā63, 2018, doi:10.1016/j.image.2017.08.010.
- K. Cao, A. K. Jain, āAutomated latent fingerprint recognitionā, IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 4, pp. 788ā800, 2018, doi:10.1109/tpami.2018.2818162.
- R. P. Krish, J. Fierrez, D. Ramos, F. Alonso-Fernandez, J. Bigun, āImproving automated latent fingerprint identification using ex- tended minutia typesā, Information Fusion, vol. 50, pp. 9ā19, 2019, doi:10.1016/j.inffus.2018.10.001.
- K. Cao, D.-L. Nguyen, C. Tymoszek, A. K. Jain, āEnd-to-end latent fingerprint searchā, IEEE Transactions on Information Forensics and Security, vol. 15, pp. 880ā894, 2019, doi:10.1109/tifs.2019.2930487.
- A. J. Sanchez-Fernandez, L. F. Romero, D. Peralta, M. A. Medina- PĆ©rez, Y. Saeys, F. Herrera, S. Tabik, āAsynchronous process- ing for latent fingerprint identification on heterogeneous cpu- gpu systemsā, IEEE Access, vol. 8, pp. 124236ā124253, 2020, doi:10.1109/access.2020.3005476.
- N. D. Kalka, M. Beachler, R. A. Hicklin, āLqmetric: a latent finger- print quality metric for predicting afis performance and assessing the value of latent fingerprintsā, Journal of Forensic Identification, vol. 70, no. 4, pp. 443ā463, 2020.
- X. Huang, P. Qian, M. Liu, āLatent fingerprint image enhance- ment based on progressive generative adversarial networkā, āProceedings of the IEEE/CVF Conference on Computer Vi- sion and Pattern Recognition Workshopsā, pp. 800ā801, 2020, doi:10.1109/cvprw50498.2020.00408.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, āEnd- to-end automated latent fingerprint identification with improved dcnn-fft enhancementā, Frontiers in Robotics and AI, vol. 7, p. 594412, 2020, doi:10.3389/frobt.2020.594412.
- M. Liu, P. Qian, āAutomatic segmentation and enhancement of latent fingerprints using deep nested unetsā, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 1709ā1719, 2020, doi:10.1109/tifs.2020.3039058.
- S. Gu, J. Feng, J. Lu, J. Zhou, āLatent fingerprint registration via matching densely sampled pointsā, IEEE Transactions on In- formation Forensics and Security, vol. 16, pp. 1231ā1244, 2020, doi:10.1109/tifs.2020.3032041.
- D. Agarwal, A. Bansal, āA utility of pores as level 3 features in latent fingerprint identificationā, Multimedia Tools and Applications, vol. 80, no. 15, pp. 23605ā23624, 2021, doi:10.1007/s11042-020-10207-x.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, āLatent fingerprint identification system based on a local combination of minutiae feature pointsā, SN Computer Science, vol. 2, no. 3, p. 206, 2021, doi:10.1007/s42979-021-00615-7.
- S. M. Hilles, A. Liban, O. A. Miaikil, A. M. Altrad, Y. A. B. El- Ebiary, M. M. Hilles, J. Contreras, āLatent fingerprint enhancement and segmentation technique based on hybrid edge adaptive dtv modelā, ā2021 2nd International Conference on Smart Comput- ing and Electronic Enterprise (ICSCEE)ā, pp. 8ā13, IEEE, 2021, doi:10.1109/icscee50312.2021.9498025.
- S. M. Hilles, A. Liban, A. M. Altrad, O. A. Miaikil, Y. A. B. El- Ebiary, J. Contreras, M. M. Hilles, āAdaptive latent fingerprint image segmentation and matching using chan-vese technique based on edtv modelā, ā2021 2nd International Conference on Smart Com- puting and Electronic Enterprise (ICSCEE)ā, pp. 2ā7, IEEE, 2021, doi:10.1109/icscee50312.2021.9497996.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, āAuto- matic latent fingerprint identification system using scale and rota- tion invariant minutiae featuresā, International Journal of Information Technology, vol. 14, no. 2, pp. 1025ā1039, 2022, doi:10.1007/s41870- 020-00508-7.
- H. Ä°. ĆztĆ¼rk, B. Selbes, Y. Artan, āMinnet: Minutia patch embedding network for automated latent fingerprint recognitionā, āProceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog- nitionā, pp. 1627ā1635, 2022, doi:10.1109/cvprw56347.2022.00169.
- S. Gu, J. Feng, J. Lu, J. Zhou, āLatent fingerprint indexing: Ro- bust representation and adaptive candidate listā, IEEE Transactions on Information Forensics and Security, vol. 17, pp. 908ā923, 2022, doi:10.1109/tifs.2022.3154296.
- N. D. S. Cunha, H. M. Gomes, L. V. Batista, āResidual m-net with frequency-domain loss function for latent fingerprint en- hancementā, ā2022 35th SIBGRAPI Conference on Graphics, Pat- terns and Images (SIBGRAPI)ā, vol. 1, pp. 198ā203, IEEE, 2022, doi:10.1109/sibgrapi55357.2022.9991793.
- E. Marasco, M. He, L. Tang, Y. Tao, āDemographic effects in latent fingerprint matching and their relation to image qualityā, āProceed- ings of the 2022 7th International Conference on Machine Learning Technologiesā, pp. 170ā179, 2022, doi:10.1145/3529399.3529427.
- A. B. V. Wyzykowski, A. K. Jain, āSynthetic latent finger- print generatorā, āProceedings of the IEEE/CVF Winter Confer- ence on Applications of Computer Visionā, pp. 971ā980, 2023, doi:10.1109/wacv56688.2023.00103.
- Y. Zhu, X. Yin, J. Hu, āFingergan: a constrained fingerprint generation scheme for latent fingerprint enhancementā, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, doi:10.1109/tpami.2023.3236876.
- S. A. Grosz, A. K. Jain, āLatent fingerprint recognition: Fusion of local and global embeddingsā, IEEE Transactions on Information Forensics and Security, 2023, doi:10.1109/tifs.2023.3314207.
- R. Jindal, S. Singla, āLatent fingerprint recognition using hybrid ant colony optimization and cuckoo search.ā, Int. Arab J. Inf. Technol., vol. 20, no. 1, pp. 19ā28, 2023, doi:10.34028/iajit/20/1/3.
- A. B. V. Wyzykowski, A. K. Jain, āA universal latent fingerprint enhancer using transformersā, arXiv preprint arXiv:2306.00231, 2023, doi:10.48550/arXiv.2306.00231.
- R. K. Dubey, J. Goh, V. L. Thing, āFingerprint liveness detection from single image using low-level features and shape analysisā, IEEE Transactions on Information Forensics and Security, vol. 11, no. 7, pp. 1461ā1475, 2016, doi:10.1109/tifs.2016.2535899.
- Z. Xia, R. Lv, Y. Zhu, P. Ji, H. Sun, Y.-Q. Shi, āFingerprint liveness de- tection using gradient-based texture featuresā, Signal, Image and Video Processing, vol. 11, pp. 381ā388, 2017, doi:10.1007/s11760-016-0936-z.
- T. Chugh, K. Cao, A. K. Jain, āFingerprint spoof buster: Use of minutiae-centered patchesā, IEEE Transactions on Informa- tion Forensics and Security, vol. 13, no. 9, pp. 2190ā2202, 2018, doi:10.1109/tifs.2018.2812193.
- C. Yuan, X. Sun, Q. J. Wu, āDifference co-occurrence matrix using bp neural network for fingerprint liveness detectionā, Soft Computing, vol. 23, no. 13, pp. 5157ā5169, 2019, doi:10.1007/s00500-018-3182-1.
- C. Yuan, X. Chen, P. Yu, R. Meng, W. Cheng, Q. J. Wu, X. Sun, āSemi- supervised stacked autoencoder-based deep hierarchical semantic feature for real-time fingerprint liveness detectionā, Journal of Real- Time Image Processing, vol. 17, pp. 55ā71, 2020, doi:10.1007/s11554- 019-00928-0.
- J. Fei, Z. Xia, P. Yu, F. Xiao, āAdversarial attacks on fingerprint liveness detectionā, EURASIP Journal on Image and Video Processing, vol. 2020, pp. 1ā11, 2020, doi:10.1186/s13640-020-0490-z.
- Y. Zhang, C. Gao, S. Pan, Z. Li, Y. Xu, H. Qiu, āA score- level fusion of fingerprint matching with fingerprint live- ness detectionā, IEEE Access, vol. 8, pp. 183391ā183400, 2020, doi:10.1109/access.2020.3027846.
- W. Jian, Y. Zhou, H. Liu, āDensely connected convolutional network optimized by genetic algorithm for fingerprint live- ness detectionā, IEEE Access, vol. 9, pp. 2229ā2243, 2020, doi:10.1109/access.2020.3047723.
- O. F. Onifade, P. Akinde, F. O. Isinkaye, āCircular gabor wavelet algorithm for fingerprint liveness detectionā, Journal of Advanced Computer Science & Technology, vol. 9, no. 1, pp. 1ā5, 2020, doi:10.14419/jacst.v9i1.29908.
- R. Agarwal, A. S. Jalal, K. Arya, āA multimodal liveness detection using statistical texture features and spatial analysisā, Multime- dia Tools and Applications, vol. 79, no. 19, pp. 13621ā13645, 2020, doi:10.1007/s11042-019-08313-6.
- Y. Zhang, S. Pan, X. Zhan, Z. Li, M. Gao, C. Gao, āFldnet: Light dense cnn for fingerprint liveness detectionā, IEEE Access, vol. 8, pp. 84141ā84152, 2020, doi:10.1109/access.2020.2990909.
- J. Kolberg, M. Grimmer, M. Gomez-Barrero, C. Busch, āAnomaly detection with convolutional autoencoders for fingerprint pre- sentation attack detectionā, IEEE Transactions on Biometrics, Be- havior, and Identity Science, vol. 3, no. 2, pp. 190ā202, 2021, doi:10.1109/tbiom.2021.3050036.
- C. Yuan, S. Jiao, X. Sun, Q. J. Wu, āMfffld: A multimodal-feature- fusion-based fingerprint liveness detectionā, IEEE Transactions on Cognitive and Developmental Systems, vol. 14, no. 2, pp. 648ā661, 2021, doi:10.1109/tcds.2021.3062624.
- S. Agarwal, C. R. Chowdary, V. Sourabh, āEazy learning: An adap- tive variant of ensemble learning for fingerprint liveness detectionā, arXiv preprint arXiv:2103.02207, 2021, doi:10.48550/arXiv.2103.02207.
- S. B. Sandouka, Y. Bazi, N. Alajlan, āTransformers and generative adversarial networks for liveness detection in multitarget fingerprint sensorsā, Sensors, vol. 21, no. 3, p. 699, 2021, doi:10.3390/s21030699.
- A. Verma, V. K. Gupta, S. Goel, A. K. Yadav, D. Yadav, et al., āMod- eling fingerprint presentation attack detection through transient liveness factor-a person specific approach.ā, Traitement du Signal, vol. 38, no. 2, 2021, doi:10.18280/ts.380206.
- C. Yuan, Q. Cui, X. Sun, Q. J. Wu, S. Wu, āFingerprint liveness detection using an improved cnn with the spatial pyramid pooling structureā, āAdvances in Computersā, vol. 120, pp. 157ā193, Elsevier, 2021, doi:10.1016/bs.adcom.2020.10.002.
- Z. Ä°. Ćzkiper, Z. Turgut, T. Atmaca, M. A. Aydın, āFingerprint liveness detection using deep learningā, ā2022 9th International Conference on Future Internet of Things and Cloud (FiCloud)ā, pp. 129ā135, IEEE, 2022, doi:10.1109/ficloud57274.2022.00025.
- R. C. Contreras, L. G. Nonato, M. Boaventura, I. A. G. Boaventura, F. L. Dos Santos, R. B. Zanin, M. S. Viana, āA new multi-filter framework for texture image representation improvement using set of pattern descriptors to fingerprint liveness detectionā, IEEE Access, vol. 10, pp. 117681ā117706, 2022, doi:10.1109/access.2022.3218335.
- A. Almehmadi, āA behavioral-based fingerprint liveness and will- ingness detection systemā, Applied Sciences, vol. 12, no. 22, p. 11460, 2022, doi:10.3390/app122211460.
- S. Agarwal, A. Rattani, C. R. Chowdary, āA-ilearn: An adap- tive incremental learning model for spoof fingerprint detec- tionā, Machine Learning with Applications, vol. 7, p. 100210, 2022, doi:10.1016/j.mlwa.2021.100210.
- D. Agarwal, A. Bansal, āFingerprint liveness detection through fusion of pores perspiration and texture featuresā, Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 7, pp. 4089ā4098, 2022, doi:10.1016/j.jksuci.2020.10.003.
- K. Zhang, S. Huang, E. Liu, H. Zhao, āLfldnet: Lightweight finger- print liveness detection based on resnet and transformerā, Sensors, vol. 23, no. 15, p. 6854, 2023, doi:10.3390/s23156854.
- A. Galli, M. Gravina, S. Marrone, D. Mattiello, C. Sansone, āAd- versarial liveness detector: Leveraging adversarial perturbations in fingerprint liveness detectionā, IET Biometrics, vol. 12, no. 2, pp. 102ā111, 2023, doi:10.1049/bme2.12106.
- M. Nishanth, H. K. MR, K. N. MG, S. Kamal, T. Rao, K. Ashwini, āFingerprint liveness detection using deep learningā, ā2023 Interna- tional Conference on Computational Intelligence for Information, Security and Communication Applications (CIISCA)ā, pp. 383ā388, IEEE, 2023, doi:10.1109/ciisca59740.2023.00079.
- Y. Myshkovskyi, M. Nazarkevych, āRobustness of fingerprint live- ness detection based on convolutional neural networksā, https://ceur- ws.org/Vol-3550/short13.pdf, 2023.
- C. Li, J. Hu, āA security-enhanced alignment-free fuzzy vault-based fingerprint cryptosystem using pair-polar minutiae structuresā, IEEE Transactions on Information Forensics and Security, vol. 11, no. 3, pp. 543ā555, 2015, doi:10.1109/tifs.2015.2505630.
- T. Murakami, T. Ohki, K. Takahashi, āOptimal sequential fusion for multibiometric cryptosystemsā, Information fusion, vol. 32, pp. 93ā108, 2016, doi:10.1016/j.inffus.2016.02.002.
- Z. Jin, A. B. J. Teoh, B.-M. Goi, Y.-H. Tay, āBiometric cryptosystems: a new biometric key binding and its implementation for finger- print minutiae-based representationā, Pattern Recognition, vol. 56, pp. 50ā62, 2016, doi:10.1016/j.patcog.2016.02.024.
- S. Rajendran, M. Doraipandian, āBiometric template security trig- gered by two dimensional logistic sine mapā, Procedia computer science, vol. 143, pp. 794ā803, 2018, doi:10.1016/j.procs.2018.10.387.
- A. A. Al-Saggaf, āSecure method for combining cryptography with iris biometrics.ā, J. Univers. Comput. Sci., vol. 24, no. 4, pp. 341ā356, 2018.
- G. Panchal, D. Samanta, S. Barman, āBiometric-based cryptog- raphy for digital content protection without any key storageā, Multimedia Tools and Applications, vol. 78, pp. 26979ā27000, 2019, doi:10.1007/s11042-017-4528-x.
- A. A. Khan, V. Kumar, M. Ahmad, āAn elliptic curve cryptography based mutual authentication scheme for smart grid communications using biometric approachā, Journal of King Saud University-Computer and Information Sciences, 2019, doi:10.1016/j.jksuci.2019.04.013.
- S. Sapkal, S. Kakarwal, R. Deshmukh, āTemplate security of mul- timodal biometric system with face and fingerprint images using fuzzy vault methodā, CSI Journal of Computing, vol. 3, no. 3, pp. 36ā40, 2020, doi:10.21275/v5i3.nov162389.
- V. Rajasekar, J. Premalatha, K. Sathya, āEnhanced biometric recog- nition for secure authentication using iris preprocessing and hy- perelliptic curve cryptographyā, Wireless communications and mobile computing, vol. 2020, pp. 1ā15, 2020, doi:10.21203/rs.2.23196/v1.
- F. S. Babamir, M. Kırcı, āA multibiometric cryptosystem for user authentication in client-server networksā, Computer Networks, vol. 181, p. 107427, 2020, doi:10.1016/j.comnet.2020.107427.
- R. A. Rajan, P. Kumaran, āMulti-biometric cryptosystem using graph for secure cloud authenticationā, Journal of Intelligent & Fuzzy Systems, vol. 38, no. 5, pp. 6437ā6444, 2020, doi:10.3233/jifs-179724.
- R. Dwivedi, S. Dey, M. A. Sharma, A. Goel, āA fingerprint based crypto-biometric system for secure communicationā, Journal of Am- bient Intelligence and Humanized Computing, vol. 11, pp. 1495ā1509, 2020, doi:10.1007/s12652-019-01437-5.
- P. S. Chanukya, T. Thivakaran, āMultimodal biometric cryptosystem for human authentication using fingerprint and earā, Multimedia Tools and Applications, vol. 79, no. 1, pp. 659ā673, 2020, doi:10.1007/s11042- 019-08123-w.
- J. Peng, B. Yang, B. B. Gupta, A. A. Abd El-Latif, āA biometric cryp- tosystem scheme based on random projection and neural networkā, Soft Computing, vol. 25, pp. 7657ā7670, 2021, doi:10.1007/s00500-021- 05732-2.
- S. Barzut, M. MilosavljeviÄ, S. AdamoviÄ, M. SaraÄeviÄ, N. MaÄek,
M. GnjatoviÄ, āA novel fingerprint biometric cryptosystem based on convolutional neural networksā, Mathematics, vol. 9, no. 7, p. 730, 2021, doi:10.3390/math9070730. - W. El-Shafai, F. A. H. E. Mohamed, H. M. Elkamchouchi,
M. Abd-Elnaby, A. Elshafee, āEfficient and secure cancelable biometric authentication framework based on genetic encryp- tion algorithmā, IEEE Access, vol. 9, pp. 77675ā77692, 2021, doi:10.1109/access.2021.3082940. - H. A. A. El-Hameed, N. Ramadan, W. El-Shafai, A. A. Khalaf, H. E. H. Ahmed, S. E. Elkhamy, F. E. A. El-Samie, āCancelable biometric secu- rity system based on advanced chaotic mapsā, The Visual Computer, pp. 1ā17, 2021, doi:10.1007/s00371-021-02276-2.
- O. Ouda, K. Nandakumar, A. Ross, āCancelable biometrics vault: A secure key-binding biometric cryptosystem based on chaffing and winnowingā, ā2020 25th International Conference on Pattern Recognition (ICPR)ā, pp. 8735ā8742, IEEE, 2021, doi:10.1109/icpr48806.2021.9412957.
- R. Sreemol, M. S. Kumar, A. Sreekumar, āImprovement of security in multi-biometric cryptosystem by modulus fuzzy vault algorithmā, ā2021 International conference on advances in computing and com- munications (ICACC)ā, pp. 1ā7, IEEE, 2021, doi:10.1109/icacc- 202152719.2021.9708136.
- L. A. Elrefaei, A. M. Al-Mohammadi, āMachine vision gait-based biometric cryptosystem using a fuzzy commitment schemeā, Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 2, pp. 204ā217, 2022, doi:10.1016/j.jksuci.2019.10.011.
- X. Chang, W. Li, A. Yan, P. W. M. Tsang, T.-C. Poon, āAsymmetric cryptosystem based on optical scanning cryptography and elliptic curve algorithmā, Scientific Reports, vol. 12, no. 1, p. 7722, 2022, doi:10.21203/rs.3.rs-1148931/v1.
- A. Kuznetsov, D. Zakharov, E. Frontoni, L. Romeo, R. Rosati, āDeep learning based fuzzy extractor for generating strong keys from biometric face imagesā, ā2022 IEEE 9th Interna- tional Conference on Problems of Infocommunications, Sci- ence and Technology (PIC S&T)ā, pp. 421ā426, IEEE, 2022, doi:10.1109/picst57299.2022.10238643.
- N. Hamian, M. Bayat, M. R. Alaghband, Z. Hatefi, S. M. Pournaghi, āBlockchain-based user re-enrollment for biometric authentication systemsā, International Journal of Electronics and Information Engineer- ing, vol. 14, no. 1, pp. 18ā38, 2022, doi:10.6636/IJEIE.202206.
- S. D. Patil, R. Raut, R. H. Jhaveri, T. A. Ahanger, P. V. Dhade, A. B. Kathole, K. N. Vhatkar, et al., āRobust authentication system with privacy preservation of biometricsā, Security and Communication Networks, vol. 2022, 2022, doi:10.1155/2022/7857975.
- L. A. Abou Elazm, W. El-Shafai, S. Ibrahim, M. G. Egila, H. Shawkey, M. K. Elsaid, N. F. Soliman, H. N. AlEisa, F. E. Abd El-Samie, āEfficient hardware design of a secure cancellable biometric cryp- tosystemā, Intell. Autom. Soft Comput., vol. 36, no. 1, pp. 929ā955, 2023, doi:10.32604/iasc.2023.031386.
- H. A. A. Eldawy, W. El-Shafai, E. E.-D. Hemdan, G. M. El-Banby, F. E. A. El-Samie, āA robust cancellable face and palmprint recogni- tion system based on 3d optical chaos-dna cryptosystemā, Optical and Quantum Electronics, vol. 55, no. 11, p. 970, 2023, doi:10.1007/s11082- 023-04840-7.
- P. Kaur, N. Kumar, āEnhanced biometric cryptosystem using ear & iris modality based on binary robust independent elementary featureā, ā2023 6th International Conference on Information Sys- tems and Computer Networks (ISCON)ā, pp. 1ā6, IEEE, 2023, doi:10.1109/iscon57294.2023.10112197.
- A. Sedik, A. A. A. El-Latif, M. A. Wani, F. E. A. El-Samie, N. A.-S. Bauomy, F. G. Hashad, āEfficient multi-biometric secure-storage scheme based on deep learning and crypto-mapping techniquesā, Mathematics, vol. 11, no. 3, p. 703, 2023, doi:10.3390/math11030703.
- S. Nagaraju, R. Nagendra, S. Balasundaram, R. K. Kumar, āBio- metric key generation and multi round aes crypto system for im- proved securityā, Measurement: Sensors, vol. 30, p. 100931, 2023, doi:10.1016/j.measen.2023.100931.
- M. Sandhya, M. V. Prasad, āSecuring fingerprint templates using fused structuresā, IET Biometrics, vol. 6, no. 3, pp. 173ā182, 2017, doi:10.1049/iet-bmt.2016.0008.
- A. Roy, N. Memon, A. Ross, āMasterprint: Exploring the vulner- ability of partial fingerprint-based authentication systemsā, IEEE Transactions on Information Forensics and Security, vol. 12, no. 9, pp. 2013ā2025, 2017, doi:10.1109/tifs.2017.2691658.
- J. Kim, A. B. J. Teoh, āOne-factor cancellable biometrics based on indexing-first-order hashing for fingerprint authenticationā, ā2018 24th International Conference on Pattern Recognition (ICPR)ā, pp. 3108ā3113, IEEE, 2018, doi:10.1109/icpr.2018.8545565.
- X. Wang, H. Li, āOne-factor cancellable palmprint recognition scheme based on oiom and minimum signature hashā, IEEE Access, vol. 7, pp. 131338ā131354, 2019, doi:10.1109/access.2019.2938019.
- G. S. Walia, K. Aggarwal, K. Singh, K. Singh, āDesign and analysis of adaptive graph-based cancelable multi-biometrics approachā, IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 1, pp. 54ā66, 2020, doi:10.1109/tdsc.2020.2997558.
- J. R. Pinto, M. V. Correia, J. S. Cardoso, āSecure triplet loss: Achieving cancelability and non-linkability in end-to-end deep biometricsā, IEEE Transactions on Biometrics, Behavior, and Identity Science, vol. 3, no. 2, pp. 180ā189, 2020, doi:10.1109/tbiom.2020.3046620.
- H. Wang, X. Dong, Z. Jin, A. B. J. Teoh, M. Tistarelli, āSecurity analysis of cancellable biometrics using constrained-optimized similarity-based attackā, arXiv preprint arXiv:2006.13051, 2020, doi:10.1109/wacvw52041.2021.00012.
- A. K. Trivedi, D. M. Thounaojam, S. Pal, āNon-invertible cancellable fingerprint template for fingerprint biometricā, Computers & Security, vol. 90, p. 101690, 2020, doi:10.1016/j.cose.2019.101690.
- U. Sharma, P. Tomar, S. S. Ali, N. Saxena, R. S. Bhadoria, āOptimized authentication system with high security and privacyā, Electronics, vol. 10, no. 4, p. 458, 2021, doi:10.3390/electronics10040458.
- H. Wang, X. Dong, Z. Jin, A. B. J. Teoh, M. Tistarelli, āInterpretable se- curity analysis of cancellable biometrics using constrained-optimized similarity-based attackā, āProceedings of the IEEE/CVF Winter Conference on Applications of Computer Visionā, pp. 70ā77, 2021, doi:10.1109/wacvw52041.2021.00012.
- N. F. Soliman, A. D. Algarni, W. El-Shafai, F. E. A. El-Samie, G. Banby, et al., āAn efficient gcd-based cancelable biometric algorithm for single and multiple biometrics.ā, Computers, Materials & Continua, vol. 69, no. 2, 2021, doi:10.32604/cmc.2021.016980.
- W. Yang, S. Wang, M. Shahzad, W. Zhou, āA cancelable biometric au- thentication system based on feature-adaptive random projectionā, Journal of Information Security and Applications, vol. 58, p. 102704, 2021, doi:10.1016/j.jisa.2020.102704.
- H. Zhang, W. Bian, B. Jie, D. Xu, J. Zhao, āA complete user au- thentication and key agreement scheme using cancelable biomet- rics and puf in multi-server environmentā, IEEE Transactions on Information Forensics and Security, vol. 16, pp. 5413ā5428, 2021, doi:10.1109/tifs.2021.3128826.
- X. Dong, Z. Jin, L. Zhao, Z. Guo, āBiocancrypto: An ldpc coded bio-cryptosystem on fingerprint cancellable templateā, ā2021 IEEE international joint conference on biometrics (IJCB)ā, pp. 1ā8, IEEE, 2021, doi:10.1109/ijcb52358.2021.9484391.
- B. Samira, R. H. Lamia, E. B. A. Najoua, āBiometric template security using watermarking reinforcement based cancellable transforma- tionā, ā2021 International Conference on Cyberworlds (CW)ā, pp. 270ā277, IEEE, 2021, doi:10.1109/cw52790.2021.00052.
- T. M. Dang, T. D. Nguyen, T. Hoang, H. Kim, A. B. J. Teoh, D. Choi, āAvet: a novel transform function to improve cancellable biometrics securityā, IEEE Transactions on Information Forensics and Security, vol. 18, pp. 758ā772, 2022, doi:10.1109/tifs.2022.3230212.
- B. A. El-Rahiem, M. Amin, A. Sedik, F. E. A. E. Samie, A. M. Iliyasu, āAn efficient multi-biometric cancellable biometric scheme based on deep fusion and deep dreamā, Journal of Ambient Intelligence and Hu- manized Computing, pp. 1ā13, 2022, doi:10.1007/s12652-021-03513-1.
- A. M. Ayoup, A. A. Khalaf, W. El-Shafai, F. E. A. El-Samie, F. Alrad- dady, S. M. S. Eldin, āCancellable multi-biometric template genera- tion based on arnold cat map and aliasing.ā, Computers, Materials & Continua, vol. 72, no. 2, 2022, doi:10.32604/cmc.2022.025902.
- J. Kim, Y. G. Jung, A. B. J. Teoh, āMultimodal biometric template pro- tection based on a cancelable softmaxout fusion networkā, Applied Sciences, vol. 12, no. 4, p. 2023, 2022, doi:10.3390/app12042023.
- A. M. Ayoup, A. Khalaf, F. Alraddady, F. Abd El-Samie, W. El- Safai, S. Eldin, āSelective cancellable multi-biometric template generation scheme based on multi-exposure feature fusionā, In- tell. Autom. Soft Comput., vol. 33, no. 1, pp. 549ā565, 2022, doi:10.32604/iasc.2022.024379.
- A. Sedik, A. A. A. El-Latif, M. El-Affendi, H. Mostafa, āA cancelable biometric system based on deep style transfer and symmetry check for double-phase user authenticationā, Symmetry, vol. 15, no. 7, p. 1426, 2023, doi:10.3390/sym15071426.
- S. M. S. Eldin, A. Sedik, S. S. Alshamrani, A. M. Ayoup, āCancellable multi-biometric feature veins template generation based on sha- 3 hashing.ā, Computers, Materials & Continua, vol. 75, no. 1, 2023, doi:10.32604/cmc.2023.030789.
- Y. Jiang, P. Shen, L. Zeng, X. Zhu, D. Jiang, C. Chen, āCancelable biometric schemes for euclidean metric and cosine metricā, Cyberse- curity, vol. 6, no. 1, p. 4, 2023, doi:10.1186/s42400-023-00137-0.
- O. S. Faragallah, E. A. Naeem, W. El-Shafai, N. Ramadan, H. E.-d. H. Ahmed, M. M. A. Elnaby, I. Elashry, S. E. El-Khamy, F. E. A. El-Samie, āEfficient chaotic-baker-map-based cancelable face recognitionā, Jour- nal of Ambient Intelligence and Humanized Computing, pp. 1ā39, 2023, doi:10.1007/s12652-021-03398-0.
- S. Yamamoto, H. Inaba, āCancellable biometric authentication system by image style transferā, ā2023 IEEE 12th Global Confer- ence on Consumer Electronics (GCCE)ā, pp. 794ā797, IEEE, 2023, doi:10.1109/gcce59613.2023.10315291.
- F. Turroni, D. Maltoni, R. Cappelli, D. Maio, āImproving fin- gerprint orientation extractionā, IEEE Transactions on Informa- tion Forensics and Security, vol. 6, no. 3, pp. 1002ā1013, 2011, doi:10.1109/tifs.2011.2150216.
- S. Li, A. C. Kot, āAn improved scheme for full fingerprint reconstruc- tionā, IEEE Transactions on Information Forensics and Security, vol. 7, no. 6, pp. 1906ā1912, 2012, doi:10.1109/tifs.2012.2212012.
- J. Galbally, S. Marcel, J. Fierrez, āImage quality assessment for fake biometric detection: Application to iris, fingerprint, and face recogni- tionā, IEEE transactions on image processing, vol. 23, no. 2, pp. 710ā724, 2013, doi:10.1109/tip.2013.2292332.
- H.-W. Jung, J.-H. Lee, āNoisy and incomplete fingerprint classifi- cation using local ridge distribution modelsā, Pattern recognition, vol. 48, no. 2, pp. 473ā484, 2015, doi:10.1016/j.patcog.2014.07.030.
- S. Mathur, A. Vjay, J. Shah, S. Das, A. Malla, āMethodology for partial fingerprint enrollment and authentication on mobile devicesā, ā2016 International Conference on Biometrics (ICB)ā, pp. 1ā8, IEEE, 2016, doi:10.1109/icb.2016.7550093.
- T. Chugh, S. S. Arora, A. K. Jain, N. G. Paulter, āBenchmarking fingerprint minutiae extractorsā, ā2017 International conference of the biometrics special interest group (BIOSIG)ā, pp. 1ā8, IEEE, 2017, doi:10.23919/biosig.2017.8053498.
- G. S. E. Ekladious, R. Sabourin, E. Granger, āLearning global-local distance metrics for signature-based biometric cryptosystemsā, Cryp- tography, vol. 1, no. 3, p. 22, 2017, doi:10.3390/cryptography1030022.
- R. D. Labati, A. Genovese, E. Munoz, V. Piuri, F. Scotti, āA novel pore extraction method for heterogeneous fingerprint images using convolutional neural networksā, Pattern Recognition Letters, vol. 113, pp. 58ā66, 2018, doi:10.1016/j.patrec.2017.04.001.
- R. Gupta, M. Khari, D. Gupta, R. G. Crespo, āFingerprint image enhancement and reconstruction using the orientation and phase reconstructionā, Information Sciences, vol. 530, pp. 201ā218, 2020, doi:10.1016/j.ins.2020.01.031.
- F. Liu, Y. Zhao, G. Liu, L. Shen, āFingerprint pore matching us- ing deep featuresā, Pattern Recognition, vol. 102, p. 107208, 2020, doi:10.1016/j.patcog.2020.107208.
- W. Yang, S. Wang, K. Yu, J. J. Kang, M. N. Johnstone, āSecure finger- print authentication with homomorphic encryptionā, ā2020 Digital Image Computing: Techniques and Applications (DICTA)ā, pp. 1ā6, IEEE, 2020, doi:10.1109/dicta51227.2020.9363426.
- B. T. Ahmed, O. Y. Abdulhameed, āFingerprint authentica- tion using shark smell optimization algorithmā, UHD Jour- nal of Science and Technology, vol. 4, no. 2, pp. 28ā39, 2020, doi:10.21928/uhdjst.v4n2y2020.pp28-39.
- T. Kim, Y. Oh, H. Kim, āEfficient privacy-preserving fingerprint- based authentication system using fully homomorphic encryptionā, Security and Communication Networks, vol. 2020, pp. 1ā11, 2020, doi:10.1155/2020/4195852.
- M. Golec, S. S. Gill, R. Bahsoon, O. Rana, āBiosec: A biometric authen- tication framework for secure and private communication among edge devices in iot and industry 4.0ā, IEEE Consumer Electronics Mag- azine, vol. 11, no. 2, pp. 51ā56, 2020, doi:10.1109/mce.2020.3038040.
- M. Lebcir, S. Awang, A. Benziane, āReversible watermarking tech- nique for fingerprint authentication based on dctā, IOP Conference Series: Materials Science and Engineering, vol. 769, no. 1, p. 012070, 2020, doi:10.1088/1757-899x/769/1/012070.
- D. Valdes-Ramirez, M. A. Medina-PĆ©rez, R. Monroy, āAn ensemble of fingerprint matching algorithms based on cylinder codes and mtriplets for latent fingerprint identificationā, Pattern Analysis and Ap- plications, vol. 24, pp. 433ā444, 2021, doi:10.1007/s10044-020-00911-7.
- I. Joshi, R. Kothari, A. Utkarsh, V. K. Kurmi, A. Dantcheva, S. D. Roy, P. K. Kalra, āExplainable fingerprint roi segmentation using monte carlo dropoutā, āProceedings of the IEEE/CVF Winter Con- ference on Applications of Computer Visionā, pp. 60ā69, 2021, doi:10.1109/wacvw52041.2021.00011.
- P. Terhƶrst, A. Boller, N. Damer, F. Kirchbuchner, A. Kuijper, āMide- con: Unsupervised and accurate fingerprint and minutia quality assessment based on minutia detection confidenceā, ā2021 IEEE International Joint Conference on Biometrics (IJCB)ā, pp. 1ā8, IEEE, 2021, doi:10.1109/ijcb52358.2021.9484404.
- F. Pandey, P. Dash, D. Samanta, M. Sarma, āAsra: Automatic singular value decomposition-based robust fingerprint image alignmentā, Multimedia Tools and Applications, vol. 80, pp. 15647ā15675, 2021, doi:10.1007/s11042-021-10560-5.
- A. Muhammed, N. C. Mhala, A. R. Pais, āA novel fingerprint template protection and fingerprint authentication scheme using visual se- cret sharing and super-resolutionā, Multimedia Tools and Applications, vol. 80, no. 7, pp. 10255ā10284, 2021, doi:10.1007/s11042-020-10095-1.
- R. C. Contreras, L. G. Nonato, M. Boaventura, I. A. G. Boaventura, B. G. Coelho, M. S. Viana, āA new multi-filter framework with sta- tistical dense sift descriptor for spoofing detection in fingerprint authentication systemsā, āInternational Conference on Artificial Intelligence and Soft Computingā, pp. 442ā455, Springer, 2021, doi:10.1007/978-3-030-87897-9_39.
- M. S. El_Tokhy, āRobust multimodal biometric authentication al- gorithms using fingerprint, iris and voice features fusionā, Journal of Intelligent & Fuzzy Systems, vol. 40, no. 1, pp. 647ā672, 2021, doi:10.3233/jifs-200425.
- A. Bedari, S. Wang, W. Yang, āA secure online fingerprint authenti- cation system for industrial iot devices over 5g networksā, Sensors, vol. 22, no. 19, p. 7609, 2022, doi:10.3390/s22197609.
- A. Siswanto, A. Efendi, E. A. Kadir, āFingerprint authentication in smart home environment based on embedded systemā, ā2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME)ā, pp. 1ā6, IEEE, 2022, doi:10.1109/iceccme55909.2022.9988711.
- N. Pradeep, J. Ravi, āAn revolutionary fingerprint authentication approach using gabor filters for feature extraction and deep learning classification using convolutional neural networksā, āInnovations in Electronics and Communication Engineering: Proceedings of the 9th ICIECE 2021ā, pp. 349ā360, Springer, 2022, doi:10.1007/978-981- 16-8512-5_38.
- A. F. Y. Althabhawee, B. K. O. C. Alwawi, āFingerprint recognition based on collected images using deep learning technologyā, IAES International Journal of Artificial Intelligence, vol. 11, no. 1, p. 81, 2022, doi:10.11591/ijai.v11.i1.pp81-88.
- P. Singh, H. Samuel, F. Jaafar, D. Ameyed, āEnhancing biometric security with combinatorial and permutational multi-fingerprint authentication strategiesā, ā2022 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intel- ligence and Computing, Intl Conf on Cloud and Big Data Com- puting, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech)ā, pp. 1ā7, IEEE, 2022, doi:10.1109/picom/cbdcom/cy55231.2022.9927942.
- Y. Chen, Y. Yu, L. Zhai, ā InfinityGauntlet : Expose smartphone fingerprint authentication to brute-force attackā, ā32nd USENIX Security Symposium (USENIX Security 23)ā, pp. 2027ā2041, 2023.
- A. Popli, S. Tandon, J. J. Engelsma, A. Namboodiri, āA unified model for fingerprint authentication and presentation attack detectionā, āHandbook of Biometric Anti-Spoofing: Presentation Attack De- tection and Vulnerability Assessmentā, pp. 77ā99, Springer, 2023, doi:10.1109/ijcb52358.2021.9484382.
- H. Choi, S. Woo, H. Kim, āBlind-touch: Homomorphic encryption- based distributed neural network inference for privacy-preserving fingerprint authenticationā, arXiv preprint arXiv:2312.11575, 2023, doi:10.1609/aaai.v38i20.30200.
- E. Marasco, M. Albanese, V. V. R. Patibandla, A. Vurity, S. S. Sri- ram, āBiometric multi-factor authentication: On the usability of the fingerpin schemeā, Security and Privacy, vol. 6, no. 1, p. e261, 2023, doi:10.1002/spy2.261.
- R. Deshmukh, P. Yannawar, āAvao enabled deep learning based person authentication using fingerprintā, āFirst International Con- ference on Advances in Computer Vision and Artificial Intelligence Technologies (ACVAIT 2022)ā, pp. 327ā346, Atlantis Press, 2023, doi:10.2991/978-94-6463-196-8_26.
- D. Peralta, I. Triguero, R. Sanchez-Reillo, F. Herrera, J. Benitez, āFast fingerprint identification for large databasesā, Pattern Recognition, vol. 47, no. 2, p. 588ā602, 2014, doi:10.1016/j.patcog.2013.08.002.
- M. Lastra, J. CarabaƱo, P. D. GutiĆ©rrez, J. M. BenĆtez, F. Herrera, āFast fingerprint identification using gpusā, Information Sciences, vol. 301, pp. 195ā214, 2015, doi:10.1016/j.ins.2014.12.052.
- Y. Su, J. Feng, J. Zhou, āFingerprint indexing with pose constraintā, Pattern Recognition, vol. 54, pp. 1ā13, 2016, doi:10.1016/j.patcog.2016.01.006.
- J. Khodadoust, A. M. Khodadoust, āFingerprint indexing based on minutiae pairs and convex core pointā, Pattern Recognition, vol. 67, pp. 110ā126, 2017, doi:10.1016/j.patcog.2017.01.022.
- D. Song, Y. Tang, J. Feng, āAggregating minutia-centred deep con- volutional features for fingerprint indexingā, Pattern Recognition, vol. 88, pp. 397ā408, 2019, doi:10.1016/j.patcog.2018.11.018.
- J. J. Engelsma, K. Cao, A. K. Jain, āLearning a fixed-length fingerprint representationā, IEEE transactions on pattern analy- sis and machine intelligence, vol. 43, no. 6, pp. 1981ā1997, 2019, doi:10.1109/tpami.2019.2961349.
- U. U. Deshpande, V. Malemath, S. M. Patil, S. V. Chaugule, āCnnai: a convolution neural network-based latent fingerprint matching using the combination of nearest neighbor arrange- ment indexingā, Frontiers in Robotics and AI, vol. 7, p. 113, 2020, doi:10.3389/frobt.2020.00113.
- V. Anand, V. Kanhangad, āPore-based indexing for fingerprints acquired using high-resolution sensorsā, Pattern Analysis and Appli- cations, vol. 23, pp. 429ā441, 2020, doi:10.1007/s10044-019-00805-3.
- H. P. Singh, P. Dimri, S. Tiwari, M. Saraswat, āSegmentation tech- niques through machine based learning for latent fingerprint index- ing and identificationā, 2020, doi:10.56042/jsir.v79i3.68640.
- I. PĆ©rez-SĆ”nchez, B. Cervantes, M. A. Medina-PĆ©rez, R. Monroy, O. Loyola-GonzĆ”lez, S. GarcĆa, F. Herrera, āAn indexing algorithm based on clustering of minutia cylinder codes for fast latent fin- gerprint identificationā, IEEE Access, vol. 9, pp. 85488ā85499, 2021, doi:10.1109/access.2021.3088314.
- Y. Xu, Y. Lu, F. Chen, G. Lu, D. Zhang, āHigh resolution fingerprint retrieval based on pore indexing and graph comparisonā, IEEE Transactions on Information Forensics and Security, vol. 17, pp. 226ā236, 2021, doi:10.1109/tifs.2021.3139219.
- J. M. S. Soares, L. Barbosa, P. A. L. Rego, R. P. MagalhĆ£es,
J. A. F. de MacĆŖdo, āUsing inverted index for fingerprint searchā, Journal of Information and Data Management, vol. 12, no. 5, 2021, doi:10.5753/jidm.2021.1918. - G. Arora, S. Kalra, A. Bhatia, K. Tiwari, āPalmhashnet: Palm- print hashing network for indexing large databases to boost identificationā, IEEE Access, vol. 9, pp. 145912ā145928, 2021, doi:10.1109/access.2021.3123291.
- R. Balasundaram, G. F. Sudha, āRetrieval performance analysis of multibiometric database using optimized multidimensional spectral hashing based indexingā, Journal of King Saud University- Computer and Information Sciences, vol. 33, no. 1, pp. 110ā117, 2021, doi:10.1016/j.jksuci.2018.02.003.
- D. Osorio-Roig, T. Schlett, C. Rathgeb, J. Tapia, C. Busch, āExploring quality scores for workload reduction in biometric identificationā, ā2022 International Workshop on Biometrics and Forensics (IWBF)ā, pp. 1ā6, IEEE, 2022, doi:10.1109/iwbf55382.2022.9794533.
- G. Arora, A. Singh, A. Nigam, H. M. Pandey, K. Tiwari, āFkpindexnet: An efficient learning framework for finger-knuckle-print database indexing to boost identificationā, Knowledge-Based Systems, vol. 239, p. 108028, 2022, doi:10.1016/j.knosys.2021.108028.
- P. Drozdowski, F. Stockhardt, C. Rathgeb, C. Busch, āSignal-level fusion for indexing and retrieval of facial biometric dataā, IET Biometrics, vol. 11, no. 2, pp. 141ā156, 2022, doi:10.1049/bme2.12063.
- D. Osorio-Roig, L. J. Gonzalez-Soler, C. Rathgeb, C. Busch, āPrivacy-preserving multi-biometric indexing based on fre- quent binary patternsā, arXiv preprint arXiv:2310.03091, 2023, doi:10.1109/tifs.2024.3386310/mm1.
- S. A. Grosz, A. K. Jain, āAfr-net: Attention-driven fingerprint recog- nition networkā, IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, doi:10.1109/tbiom.2023.3317303.
- M. Kumar, D. Kumar, āAn efficient gravitational search decision forest approach for fingerprint recognitionā, Kuwait Journal of Science, vol. 50, no. 2A, 2023, doi:10.48129/kjs.20635.
- A. K. Jain, S. S. Arora, L. Best-Rowden, K. Cao, P. S. Sudhish, A. Bhat- nagar, Y. Koda, āGiving infants an identity: Fingerprint sensing and recognitionā, āProceedings of the Eighth International Conference on Information and Communication Technologies and Developmentā, pp. 1ā4, 2016, doi:10.1145/2909609.2909612.
- A. K. Jain, S. S. Arora, K. Cao, L. Best-Rowden, A. Bhatnagar, āFingerprint recognition of young childrenā, IEEE Transactions on Information Forensics and Security, vol. 12, no. 7, pp. 1501ā1514, 2016, doi:10.1109/tifs.2016.2639346.
- J. J. Engelsma, D. Deb, K. Cao, A. Bhatnagar, P. S. Sudhish, A. K. Jain, āInfant-id: Fingerprints for global goodā, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 7, pp. 3543ā3559, 2021, doi:10.1109/tpami.2021.3057634.
- I. Widiatmika, I. N. Piarsa, A. Syafiandini, āRecognition of the baby footprint characteristics using wavelet method and k-nearest neigh- bor (k-nn)ā, Lontar Komputer: Jurnal Ilmiah Teknologi Informasi, vol. 12, no. 1, pp. 41ā52, 2021, doi:10.24843/lkjiti.2021.v12.i01.p05.
- H. I. Yoshinori Koda, āFundamental study of neonate fin- gerprint recognition using fingerprint classificationā, 2022, doi:10.1109/biosig55365.2022.9897017.
- N. Nelufule, Y. Moolla, S. Ntshangase, A. de Kock, āBiometric recog- nition of infants using fingerprintsā, Tech. rep., EasyChair, 2023, doi:10.1109/ictas56421.2023.10082749.
- T. O. Odu, T. Ogunfunmi, M. O. Olaniyan, I. A. Samuel, āMulti- instance contingent fusion for the verification of infant fingerprintsā, āWorld Conference on Information Systems for Business Manage- mentā, pp. 197ā207, Springer, 2023, doi:10.1155/2024/7728707.
- M. Bahzad, L. M. Labib, M. Elhosseini, M. Badawy, āM2brtpc: A novel modified multimodal biometric recognition for toddlers and pre-school children approachā, Mansoura Engineering Journal, vol. 48, no. 5, p. 5, 2023, doi:10.58491/2735-4202.3069.
- M. Shabil, H. Fadewar, āFingerprint recognition of newborns and toddlers using pre-trained model under convolution neural net- worksā, Journal of Data Acquisition and Processing, vol. 38, no. 2, p. 234, 2023, doi:10.5281/zenodo.7766329.
- K. Rajaram, N. B. Amma, S. Selvakumar, āConvolutional neural network based children recognition system using contactless finger- printsā, International Journal of Information Technology, vol. 15, no. 5, pp. 2695ā2705, 2023, doi:10.1007/s41870-023-01306-7.
- M. Kazi, K. Kale, R. S. Mehsen, A. Mane, V. Humbe, Y. Rode, S. Dab- hade, N. Bansod, A. Razvi, P. Deshmukh, āFace, fingerprint, and signature based multimodal biometric system using score level and decision level fusion approachesā, IETE Journal of Research, pp. 1ā20, 2023, doi:10.1080/03772063.2023.2217784.
- S. A. El_Rahman, A. S. Alluhaidan, āEnhanced multimodal biometric recognition systems based on deep learning and traditional methods in smart environmentsā, Plos one, vol. 19, no. 2, p. e0291084, 2024, doi:10.1371/journal.pone.0291084.
- H. Byeon, V. Raina, M. Sandhu, M. Shabaz, I. Keshta, M. Soni, K. Ma- trouk, P. P. Singh, T. Lakshmi, āArtificial intelligence-enabled deep learning model for multimodal biometric fusionā, Multimedia Tools and Applications, pp. 1ā24, 2024, doi:10.1007/s11042-024-18509-0.
- J. Priyani, P. Nanglia, P. Singh, V. Shokeen, A. Sharma, āHgssa-bi lstm: A secure multimodal biometric sensing using optimized bi- directional long short-term memory with self-attentionā, ECS Sensors Plus, vol. 3, no. 1, p. 011401, 2024, doi:10.1149/2754-2726/ad1b3a.
- J. Samatha, G. Madhavi, āSecuresense: Enhancing person verification through multimodal biometrics for robust authenticationā, Scalable Computing: Practice and Experience, vol. 25, no. 2, pp. 1040ā1054, 2024, doi:10.12694/scpe.v25i2.2524.
- D. A. Reid, M. S. Nixon, S. V. Stevenage, āSoft biometrics: Human identification using comparative descriptionsā, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1216ā1228, 2014, doi:10.1109/tpami.2013.219.