Analyzing the Impact of Optical Wireless Communication Technologies on 5G/6G and IoT Solutions: Prospects, Developments, and Challenges
by Ramsha Khalid 1,2 ,* , Muhammad Naqi Raza 1
1Department of Electrical Engineering Technology, University of Sialkot, Sialkot, 51310, Pakistan
2Department of Electrical Engineering, University of Lahore, Lahore, 53720, Pakistan
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 3, Issue 5, Page # 23-36, 2024; DOI: 10.55708/js0305003
Keywords: 5G, 6G, internet of things, heterogeneous traffics, wireless technologies, communication systems, Optical Wireless Communication
Received: 14 March 2024, Revised: 13 May 2024, Accepted: 16 May 2024, Published Online: 29 May 2024
APA Style
Khalid, R., & Raza, M. N. (2024). Analyzing the impact of optical wireless communication technologies on 5G/6G and IoT solutions: Prospects, developments, and challenges. Journal of Engineering Research and Sciences, 3(5), 23-36. https://doi.org/10.55708/js0305003.
Chicago/Turabian Style
Khalid, Ramsha, and Muhammad Naqi Raza. “Analyzing the Impact of Optical Wireless Communication Technologies on 5G/6G and IoT Solutions: Prospects, Developments, and Challenges.” Journal of Engineering Research and Sciences 3, no. 5 (2024): 23-36. https://doi.org/10.55708/js0305003.
IEEE Style
R. Khalid and M. N. Raza, “Analyzing the Impact of Optical Wireless Communication Technologies on 5G/6G and IoT Solutions: Prospects, Developments, and Challenges,” Journal of Engineering Research and Sciences, vol. 3, no. 5, pp. 23-36, 2024. doi: 10.55708/js0305003.
The imminent 5G and 6G communication systems are projected to exhibit substantial advancements in comparison to the current 4G communication system. Several critical and prevalent concerns pertaining to the service quality of 5G and 6G communication systems encompass elevated capacity, extensive connectivity, minimal latency, robust security measures, energy efficiency, superior quality of user experience, and dependable connectivity. Undoubtedly, 6G communication is expected to offer markedly improved performance across these domains compared to 5G communication. The integration of the Internet of Things (IoT) within the framework of the tactile internet is anticipated to be a fundamental component of advanced communication systems, encompassing both 5G and beyond (5GB), such as 5G and 6G. Consequently, 5GB wireless networks will encounter various challenges in accommodating diverse types of heterogeneous traffic and meeting the specified parameters related to service quality. Optical wireless communication (OWC), alongside various other wireless technologies, emerges as a promising candidate to fulfill the requisites of 5G communication systems. This comprehensive review articulates the efficacy of OWC technologies, including Visible Light Communication (VLC), Light Fidelity (LiFi), Optical Camera Communication (OCC), and Free Space Optics (FSO) Communication, as a viable solution for the successful deployment of 5G/6G and IoT systems.
- Z. Ghassemlooy, S. Arnon, M. Uysal, Z. Xu, J. Cheng, “Emerging optical wireless communications-advances and challenges,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 9, 1738–1749, 2015, doi:10.1109/JSAC.2015.2430821.
- M.Z. Chowdhury, M.T. Hossan, A. Islam, Y.M. Jang, “A comparative survey of optical wireless technologies: Architectures and applications,” IEEE Access, vol. 6, 9819–10220, 2018, doi:10.1109/ACCESS.2018.2799852.
- M. Uysal, H. Nouri, “Optical wireless communications—An emerging technology,” in Proceedings of the International Conference on Transparent Optical Networks, 2014, doi:10.1109/ICTON.2014.6876505.
- Z. Xu, R.B.M. Sadler, “Ultraviolet communications: Potential and state-of-the-art,” IEEE Communications Magazine, vol. 46, no. 7, 67–73, 2008, doi:10.1109/MCOM.2008.4569743.
- J.B. Carruthers, Wireless Infrared Communications, Wiley Encyclopedia of Telecommunications, 2003.
- P.H. Pathak, X. Feng, P. Hu, P. Mohapatra, “Visible light communication, networking, and sensing: A survey, potential and challenges,” IEEE Communications Surveys \& Tutorials, vol. 17, no. 4, 2047–2077, 2015, doi:10.1109/COMST.2015.2444095.
- M. Shafi, A.F. Molisch, P.J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, 1201–1221, 2017, doi:10.1109/JSAC.2017.2695280.
- M. Jaber, M.A. Imran, R. Tafazolli, A. Tukmanov, “5G backhaul challenges and emerging research directions: A survey,” IEEE Access, vol. 4, 1143–1166, 2016, doi:10.1109/ACCESS.2016.2546541.
- J.G. Andrews, S. Buzzi, W. Choi, S. V Hanly, A. Lozano, A.C. Soong, J.C. Zhang, “What will 5G be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, 1065–1082, 2014, doi:10.1109/JSAC.2014.2328098.
- W.A. Hassan, H.-S. Jo, T.A. Rahman, “The feasibility of coexistence between 5G and existing services in the IMT-2020 candidate bands in Malaysia,” IEEE Access, vol. 5, 14867–14888, 2017, doi:10.1109/ACCESS.2017.2710159.
- A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A.U. Quddus, M.A. Imran, C.H. Foh, R. Tafazolli, “Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations,” IEEE Access, vol. 4, 3322–3339, 2016, doi:10.1109/ACCESS.2016.2546541.
- K. David, H. Berndt, “6G vision and requirements: Is there any need for beyond 5G?” IEEE Vehicular Technology Magazine, vol. 13, no. 3, 72–80, 2018, doi:10.1109/MVT.2018.2816618.
- F. Tariq, M. Khandaker, K.K. Wong, M. Imran, M. Bennis, M. Debbah, “A speculative study on 6G,” ArXiv Preprint, 2019.
- S.J. Nawaz, S.K. Sharma, S. Wyne, M.N. Patwary, M. Asaduzzaman, “Quantum machine learning for 6G communication networks: State-of-the-art and vision for the future,” IEEE Access, vol. 7, 46317–46350, 2019, doi:10.1109/ACCESS.2019.2900597.
- R.A. Stoica, G.T.F. Abreu, “6G: The wireless communications network for collaborative and AI applications,” ArXiv Preprint ArXiv:1904.03413, 2019.
- W. Saad, M. Bennis, M. Chen, “A vision of 6G wireless systems: Applications, trends, technologies, and open research problems,” ArXiv Preprint ArXiv:1902.10265, 2019.
- T. Nguyen, M.Z. Chowdhury, Y.M. Jang, “A novel link switching scheme using pre-scanning and RSS prediction in visible light communication networks,” EURASIP Journal on Wireless Communications and Networking, vol. 2013, 1–17, 2013, doi:10.1186/1687-1499-2013-1.
- D. Tsonev, S. Videv, H. Haas, “Towards a 100 Gb/s visible light wireless access network,” Optics Express, vol. 23, no. 2, 1627–1637, 2015, doi:10.1364/OE.23.001627.
- M.Z. Chowdhury, M.T. Hossan, M.K. Hasan, Y.M. Jang, “Integrated RF/optical wireless networks for improving QoS in indoor and transportation applications,” Wireless Personal Communications, vol. 107, no. 3, 1401–1430, 2018, doi:10.1007/s11277-018-5482-8.
- H. Haas, L. Yin, Y. Wang, C. Chen, “What is LiFi?” Journal of Lightwave Technology, vol. 34, no. 6, 1533–1544, 2016, doi:10.1109/JLT.2016.2525829.
- S. Dimitrov, H. Haas, Principles of LED Light Communications: Towards Networked Li-Fi, Cambridge University Press, 2015.
- H.H. Lu, C.Y. Li, H.W. Chen, C.M. Ho, M.T. Cheng, Z.Y. Yang, C.K. Lu, “A 56 Gb/s PAM4 VCSEL-based LiFi transmission with two-stage injection-locked technique,” IEEE Photonics Journal, vol. 9, 1–8, 2017, doi:10.1109/JPHOT.2017.2696500.
- M.K. Hasan, M.Z. Chowdhury, M. Shahjalal, Y.M. Jang, “Fuzzy based network assignment and link-switching analysis in hybrid OCC/LiFi system,” Wireless Communications and Mobile Computing, 2018, doi:10.1155/2018/5703580.
- M. Hossan, M.Z. Chowdhury, M. Hasan, M. Shahjalal, T. Nguyen, N.T. Le, Y.M. Jang, “A new vehicle localization scheme based on combined optical camera communication and photogrammetry,” Mobile Information Systems, 2018, doi:10.1155/2018/4609192.
- M. Shahjalal, M. Hossan, M. Hasan, M.Z. Chowdhury, N.T. Le, Y.M. Jang, “An implementation approach and performance analysis of image sensor based multilateral indoor localization and navigation system,” Wireless Communications and Mobile Computing, vol. 2018, 2018, doi:10.1155/2018/5703580.
- Z. Ghassemlooy, P. Luo, S. Zvanovec, Optical camera communications, Springer: 547–568, 2016, doi:10.1007/978-3-319-48872-5_20.
- Y. Goto, I. Takai, T. Yamazato, H. Okada, T. Fujii, S. Kawahito, S. Arai, T. Yendo, K. Kamakura, “A new automotive VLC system using optical communication image sensor,” IEEE Photonics Journal, vol. 8, 1–17, 2016, doi:10.1109/JPHOT.2016.2593718.
- A. Malik, P. Singh, “Free space optics: Current applications and future challenges,” International Journal of Optics, vol. 2015, , 2015, doi:10.1155/2015/146591.
- M.A. Khalighi, M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE Communications Surveys \& Tutorials, vol. 16, 2231–2258, 2014, doi:10.1109/SURV.2014.012214.00189.
- H. Kaushal, G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE Communications Surveys \& Tutorials, vol. 19, 57–97, 2017, doi:10.1109/COMST.2016.2618498.
- S. Mumtaz, J.M. Jornet, J. Aulin, W.H. Gerstacker, X. Dong, B. Ai, “Terahertz communication for vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 66, 5617–5625, 2017, doi:10.1109/TVT.2016.2639738.
- L. Lovén, T. Leppänen, E. Peltonen, J. Partala, E. Harjula, P. Porambage, M. Ylianttila, J. Riekki, “Edge AI: A vision for distributed, edge-native artificial intelligence in future 6G networks,” in Proceedings of the 6G Wireless Summit, Levi, Finland, 2019.
- F. Clazzer, A. Munari, G. Liva, F. Lazaro, C. Stefanovic, P. Popovski, “From 5G to 6G: Has the time for modern random access come?” ArXiv Preprint ArXiv:1903.03063, 2019.
- M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, “Towards 6G networks: Use cases and technologies,” ArXiv Preprint ArXiv:1903.12216, 2019.
- 5G Requirements.
- Light Communications for Wireless Local Area Networking.
- D. Menaka, C.T. Sabitha Gauni, Manimegalai, K. Kalimuthu, “Vision of IoUT: advances and future trends in optical wireless communication,” Journal of Optics, vol. 50, 439–452, 2021.
- P. Hu, P.H. Pathak, A.K. Das, Z. Yang, P. Mohapatra, “PLiFi: Hybrid WiFi-VLC networking using power lines,” in Proceedings of the Workshop on Visible Light Communication Systems, New York, NY, USA, 2016.
- Z. Du, C. Wang, Y. Sun, G. Wu, “Context-aware indoor VLC/RF heterogeneous network selection: Reinforcement learning with knowledge transfer,” IEEE Access, vol. 6, 33275–33284, 2018, doi:10.1109/ACCESS.2018.2847723.
- T. Koonen, “Indoor optical wireless systems: Technology, trends, and applications,” Journal of Lightwave Technology, vol. 36, no. 7, 1459–1467, 2018, doi:10.1109/JLT.2018.2791740.
- C. Danakis, M. Afgani, G. Povey, I. Underwood, H. Haas, “Using a CMOS camera sensor for visible light communication,” in Proceedings of the IEEE Globecom Workshops, Anaheim, CA, USA, 2012.
- H.M. Tsai, H.M. Lin, H.Y. Lee, “Demo: Rollinglight-universal camera communications for single LED,” in Proceedings of the International Conference on Mobile Computing and Networking, Maui, HI, USA, 2014.
- L.Y. Wei, C.W. Chow, G.H. Chen, Y. Liu, C.H. Yeh, C.W. Hsu, “Tricolor visible-light laser diodes based visible light communication operated at 40.665 Gbit/s and 2 m free-space transmission,” Optics Express, vol. 27, no. 18, 25072–25077, 2019, doi:10.1364/OE.27.025072.
- M.Z. Chowdhury, M. Shahjalal, M.K. Hasan, Y.M. Jang, “The Role of Optical Wireless Communication Technologies in 5G/6G and IoT Solutions: Prospects, Directions, and Challenges,” Applied Sciences, vol. 9, 2019.
- C. Chang, “A 100-Gb/s multiple-input multiple-output visible laser light communication system,” Journal of Lightwave Technology, vol. 32, no. 22, 4723–4729, 2014, doi:10.1109/JLT.2014.2361215.
- D. Zhang, Z. Zhou, S. Mumtaz, J. Rodriguez, T. Sato, “One integrated energy efficiency proposal for 5G IoT communications,” IEEE Internet of Things Journal, vol. 3, 1346–1354, 2016, doi:10.1109/JIOT.2016.2593778.
- Z. Yan, O. Zhang, A. V Vasilakos, “A survey on trust management for internet of things,” Journal of Network and Computer Applications, vol. 42, 120–134, 2014, doi: 10.1016/j.jnca.2014.01.012.
- M.R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, L. Ladid, “Internet of things in the 5G era: Enablers, architecture, and business models,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, 510–527, 2016, doi:10.1109/JSAC.2016.2525478.
- X. Ge, J. Yang, H. Gharavi, Y. Sun, “Energy efficiency challenges of 5G small cell networks,” IEEE Communications Magazine, vol. 55, no. 1, 184–191, 2017, doi:10.1109/MCOM.2017.1600493.
- Y. Hao, M. Chen, L. Hu, J. Song, M. Volk, I. Humar, “Wireless fractal ultra-dense cellular networks,” Sensors, vol. 17, no. 4, 841, 2017, doi:10.3390/s17040841.
- M.Z. Chowdhury, Y.M. Jang, Z.J. Haas, “Cost-effective frequency planning for capacity enhancement of femtocellular networks,” Wireless Personal Communications, vol. 60, no. 1, 83–104, 2011, doi:10.1007/s11277-010-9987-2.
- H.A.U. Mustafa, M.A. Imran, M.Z. Shakir, A. Imran, R. Tafazolli, “Separation framework: An enabler for cooperative and D2D communication for future 5G networks,” IEEE Communications Surveys \& Tutorials, vol. 18, 419–445, 2016, doi:10.1109/ACCESS.2018.2847723.
- X. Artiga, A. Perez-Neira, J. Baranda, E. Lagunas, S. Chatzinotas, R. Zetik, P. Gorski, K. Ntougias, D. Perez, G. Ziaragkas, “Shared access satellite-terrestrial reconfigurable backhaul network enabled by smart antennas at mmWave band,” IEEE Network, vol. 32, no. 5, 46–53, 2018, doi:10.1109/MNET.2018.1700241.
- F. Knobloch, “Delay analysis for optical wireless multihop networks,” in Proceedings of the International Conference on Transparent Optical Networks (ICTON), Trento, Italy, 2016.
- S. Zhang, D. Tsonev, S. Videv, S. Ghosh, G.A. Turnbull, I.D.W. Samuel, H. Haas, “Organic solar cells as high-speed data detectors for visible light communication,” Optica, vol. 2, no. 7, 607–610, 2015, doi:10.1364/OPTICA.2.000607.
- What is The Tactile Internet? Available online: https://5g.co.uk/guides/what-is-the-tactile-internet (accessed on 15 August 2019).
- G. Fettweis, “The tactile internet: Applications and challenges,” IEEE Vehicular Technology Magazine, vol. 9, no. 1, 64–70, 2014, doi:10.1109/MVT.2013.2293016.
- A. Aijaz, M. Dohler, A.H. Aghvami, V. Friderikos, M. Frodigh, “Realizing the tactile internet: Haptic communications over next generation 5G cellular networks,” IEEE Wireless Communications, vol. 24, no. 1, 82–89, 2017, doi:10.1109/MWC.2017.1600493.
- M. Simsek, A. Aijaz, M. Dohler, J. Sachs, G. Fettweis, “5G-enabled tactile internet,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, 460–473, 2016, doi:10.1109/JSAC.2016.2525478.
- M.T. Hossan, M.Z. Chowdhury, M. Shahjalal, Y.M. Jang, “Human bond communication with head-mounted displays: Scope, challenges, solutions, and applications,” IEEE Communications Magazine, vol. 57, no. 2, 26–32, 2019, doi:10.1109/MCOM.2019.1800421.
- S.A.A. Shah, E. Ahmed, M. Imran, S. Zeadally, “5G for vehicular communications,” IEEE Communications Magazine, vol. 56, no. 11, 111–117, 2018, doi:10.1109/MCOM.2018.1700241.
- S. Chen, J. Hu, Y. Shi, Y. Peng, J. Fang, R. Zhao, L. Zhao, “Vehicle-to-everything (V2X) services supported by LTE-based systems and 5G,” IEEE Communications Standards Magazine, vol. 1, no. 1, 70–76, 2017, doi:10.1109/MCOMSTD.2017.1700015.
- T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang, “Overview of millimeter wave communications for fifth generation (5G) wireless networks—with a focus on propagation models,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, 6213–6230, 2017, doi:10.1109/TAP.2017.2734243.
- P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H.M. Tsai, X. Tang, L.C. Png, D. Han, “Experimental demonstration of RGB LED-based optical camera communications,” IEEE Photonics Journal, vol. 7, –12, 2015, doi:10.1109/JPHOT.2015.2457321.
- I. Takai, T. Harada, M. Andoh, K. Yasutomi, K. Kagawa, S. Kawahito, “Optical vehicle-to-vehicle communication system using LED transmitter and camera receiver,” IEEE Photonics Journal, vol. 6, 1–14, 2014, doi:10.1109/JPHOT.2014.2361215.
- M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, R. Freund, “Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, 64–71, 2016, doi:10.1109/MCOM.2016.7432165.
- T. Yamazato, N. Kawagita, H. Okada, T. Fujii, T. Yendo, S. Arai, K. Kamakura, “The uplink visible light communication beacon system for universal traffic management,” IEEE Access, vol. 5, 22282–22290, 2017, doi:10.1109/ACCESS.2017.2766759.
- M.B. Rahaim, T.D.C. Little, “Toward practical integration of dual-use VLC within 5G networks,” IEEE Wireless Communications, vol. 22, 97–103, 2015, doi:10.1109/MWC.2015.7124872.
- Z. Na, Y. Wang, M. Xiong, X. Liu, J. Xia, “Modeling and throughput analysis of an ADO-OFDM based relay-assisted VLC system for 5G networks,” IEEE Access, vol. 6, 17586–17594, 2018, doi:10.1109/ACCESS.2018.2808258.
- L. Shi, W. Li, X. Zhang, Y. Zhang, G. Chen, A. Vladimirescu, “Experimental 5G new radio integration with VLC,” in Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS), 1–4, 2018, doi:10.1109/ICECS.2018.8611640.
- G. Pan, H. Lei, Z. Ding, Q. Ni, “3-D Hybrid VLC-RF indoor IoT systems with light energy harvesting,” IEEE Transactions on Green Communications and Networking, vol. 3, 853–865, 2019, doi:10.1109/TGCN.2019.2908839.
- M.K. Hasan, M. Shahjalal, M.Z. Chowdhury, Y.M. Jang, “Real-time healthcare data transmission for remote patient monitoring in patch-based hybrid OCC/BLE networks,” Sensors, vol. 19, 1208, 2019, doi:10.3390/s19051208.
- K.P. Pujapanda, “LiFi Integrated to power-lines for smart illumination cum communication,” in Proceedings of the International Conference on Communication Systems and Network Technologies, 1–4, 2013.