Computational and Bioinformatics Approaches for Identifying Comorbidities of COVID-19 Using Transcriptomic Data
by Shudeb Babu Sen Omit 1,* , Md Mohiuddin 2 , Salma Akhter 3 , Md. Hasan Imam 1 , A. K. M. Mostofa Kamal Habib 4 , Syed Mohammad Meraz Hossain 5 and Nitun Kumar Podder 6
1 Institute of Information Technology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
2 Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chattogram, 4349, Bangladesh
3 Department of Environmental Science and Disaster Management, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
4 National Skills Development Authority, Dhaka, Bangladesh
5 Department of Information and Communication Technology, Dhaka, Bangladesh
6 Department of Computer Science and Engineering, Pabna University of Science and Technology, Pabna, 6600, Bangladesh
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 3, Issue 4, Page # 32-41, 2024; DOI: 10.55708/js0304004
Keywords: COVID-19, Comorbidity Identification, Transcriptomic Data, Tippett’s Method, Euclidean Distance
Received: 25 January 2024, Revised: 02 April 2024, Accepted: 05 April 2024, Published Online: 30 April 2024
APA Style
Omit, S. B. S., Mohiuddin, M., Akhter, S., Imam, M. H., Habib, A. K. M. M. K., Hossain, S. M. M., & Podder, N. K. (2024). Computational and bioinformatics approaches for identifying comorbidities of COVID-19 using transcriptomic data. Journal of Engineering Research and Sciences, 3(4), 32-41. https://doi.org/10.55708/js0304004
Chicago/Turabian Style
Omit, Shudeb Babu Sen, Md Mohiuddin, Salma Akhter, Md. Hasan Imam, A. K. M. Mostofa Kamal Habib, Syed Mohammad Meraz Hossain, and Nitun Kumar Podder. “Computational and Bioinformatics Approaches for Identifying Comorbidities of COVID-19 Using Transcriptomic Data.” Journal of Engineering Research and Sciences 3, no. 4 (2024): 32-41. doi:10.55708/js0304004.
IEEE Style
S. B. S. Omit, M. Mohiuddin, S. Akhter, M. H. Imam, A. K. M. M. K. Habib, S. M. M. Hossain, and N. K. Podder, “Computational and Bioinformatics Approaches for Identifying Comorbidities of COVID-19 Using Transcriptomic Data,” Journal of Engineering Research and Sciences, vol. 3, no. 4, pp. 32-41, 2024, doi: 10.55708/js0304004.
Comorbidity is the co-existence of one or more diseases that occur concurrently or after the primary disease. Patients may have developed comorbidities for COVID-19 that cause harm to the patient’s organs. Besides, patients with existing comorbidities are at high risk, since mortality rates are strongly influenced by comorbidities or former health conditions. Therefore, we developed a computational and bioinformatics model to identify the comorbidities of COVID-19 utilizing transcriptome datasets of patient’s whole blood cells. In our model, we employed gene expression analysis to identify dysregulated genes and curated diseases from Gold Benchmark databases using the dysregulated genes. Subsequently, Tippett’s Method is used for COVID-19’s P-value calculation, and according to the P-value, Euclidean distances are calculated between COVID-19 and the collected diseases. Then the collected diseases are ordered and clustered based on the Euclidean distance. Finally, comorbidities are selected from the top clusters based on a comprehensive literature search. Applying the model, we found that acute myelocytic leukemia, cancer of urinary tract, body weight changes, abdominal aortic aneurysm, kidney neoplasm, diabetes mellitus, and some other rare diseases have correlation with COVID-19 and many of them reveal as comorbidity. Since comorbidities are in conjunction with the primary disease, thus similar drugs and treatments can be used to recover both COVID-19 and its comorbidities by further research. We also proposed that this model can be further useful for detecting comorbidities of other diseases as well.
- T. Acter, N. Uddin, J. Das, A. Akhter, “Since January 2020 Elsevier has created a Covid-19 resource centre with free information in English and Mandarin on the novel coronavirus Covid- 19 . The Covid-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information,” Science of the Total Environment Journal, vol. N/V, no. January, pp. 2–15, 2020.
- Coronavirus disease (COVID-19) (no date) Who.int. Available at: https://www.who.int/health-topics/coronavirus (Accessed: June 20, 2021).
- W.J. Guan, W.H. Liang, J.X. He, N.S. Zhong, “Cardiovascular comorbidity and its impact on patients with COVID-19,” European Respiratory Journal, vol. 55, no. 6, pp. 1069–1076, 2020, doi:10.1183/13993003.01227-2020.
- M.J. Hasan, A.M. Anam, S.M.R. Huq, R. Rabbani, “Impact of Comorbidities on Clinical Outcome of Patients with COVID-19: Evidence from a Single-center in Bangladesh,” Health Scope, vol. 10, no. 1, pp. 1–9, 2021, doi:10.5812/jhealthscope.109268.
- H. Ejaz, A. Alsrhani, A. Zafar, H. Javed, K. Junaid, A.E. Abdalla, K.O.A. Abosalif, Z. Ahmed, S. Younas, “COVID-19 and comorbidities: Deleterious impact on infected patients,” Journal of Infection and Public Health, vol. 13, no. 12, pp. 1833–1839, 2020, doi:10.1016/j.jiph.2020.07.014.
- Y. Bai, L. Yao, T. Wei, F. Tian, D.Y. Jin, L. Chen, M. Wang, “Presumed asymptomatic carrier transmission of COVID-19” Jama, vol. 323, no. 14, pp.1406-1407, 2020.
- C. Huang, Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu, X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M. Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin, J. Wang, B. Cao, “Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China,” The Lancet, vol. 395, no. 10223, pp. 497–506, 2020, doi:10.1016/S0140-6736(20)30183-5.
- N. Chen, M. Zhou, X. Dong, J. Qu, F. Gong, Y. Han, Y. Qiu, J. Wang, Y. Liu, Y. Wei, J. Xia, T. Yu, X. Zhang, L. Zhang, “Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study,” The Lancet, vol. 395, no. 10223, pp. 507–513, 2020, doi:10.1016/S0140-6736(20)30211-7.
- Q. Gao, Y. Hu, Z. Dai, F. Xiao, J. Wang, J. Wu, “The Epidemiological Characteristics of 2019 Novel Coronavirus Diseases (COVID-19) in Jingmen, China,” SSRN Electronic Journal, vol. 2, no. 8, pp. 113–122, 2020, doi:10.2139/ssrn.3548755.
- M. Fathi, K. Vakili, F. Sayehmiri, A. Mohamadkhani, M. Hajiesmaeili, M. Rezaei-Tavirani, O. Eilami, “The prognostic value of comorbidity for the severity of COVID-19: A systematic review and meta-analysis study,” PloS one, vol. 16, no. 2, p.e0246190, 2021.
- X. Yu, Y. Zhao, Y. Yang, W. He, N. Yang, F. Su, J. Zhu, Z. Zhu, “The magnetic and electronic properties of Ho6Fe23−xCox (x = 0, 1, 2, 3),” Journal of Magnetism and Magnetic Materials, vol. 597, , 2024, doi:10.1016/j.jmmm.2024.172029.
- B. Wang, R. Li, Z. Lu, Y. Huang, “Does comorbidity increase the risk of patients with covid-19: Evidence from meta-analysis,” Aging, vol. 12, no. 7, pp. 6049–6057, 2020, doi:10.18632/AGING.103000.
- P. Qiu, Y. Zhou, F. Wang, H. Wang, M. Zhang, X. Pan, Q. Zhao, J. Liu, “Clinical characteristics, laboratory outcome characteristics, comorbidities, and complications of related COVID-19 deceased: a systematic review and meta-analysis,” Aging Clinical and Experimental Research, vol. 32, no. 9, pp. 1869–1878, 2020, doi:10.1007/s40520-020-01664-3.
- A. Baradaran, M.H. Ebrahimzadeh, A. Baradaran, A.R. Kachooei, “Prevalence of comorbidities in COVID-19 patients: A systematic review and meta-analysis,” Archives of Bone and Joint Surgery, vol. 8, no. SpecialIssue, pp. 247–255, 2020, doi:10.22038/abjs.2020.47754.2346.
- A. Zaenab, V. Jose, C. J. Cynthia, Z. Yousuf, M. Claudia, S. Hamed, “The Effects of Co-morbidities on COVID-19 Patients Admitted to the Hospital,” Fam Med Med Sci Res 10:2, 2021, doi: 10.35248/2327-4972.21.10.261.
- WHO Coronavirus (COVID-19) Dashboard (no date) Who.int. Available at: https://covid19.who.int/ (Accessed: June 22, 2021).
- A. Clark, M. Jit, C. Warren-Gash, B. Guthrie, H.H.X. Wang, S.W. Mercer, C. Sanderson, M. McKee, C. Troeger, K.L. Ong, F. Checchi, P. Perel, S. Joseph, H.P. Gibbs, A. Banerjee, R.M. Eggo, E.S. Nightingale, K. O’Reilly, T. Jombart, W.J. Edmunds, A. Rosello, F.Y. Sun, K.E. Atkins, N.I. Bosse, S. Clifford, T.W. Russell, A.K. Deol, Y. Liu, S.R. Procter, et al., “Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study,” The Lancet Global Health, vol. 8, no. 8, pp. e1003–e1017, 2020, doi:10.1016/S2214-109X(20)30264-3.
- M.F. Beckman, F.B. Mougeot, J.L.C. Mougeot, “Comorbidities and susceptibility to covid-19: A generalized gene set data mining approach,” Journal of Clinical Medicine, vol. 10, no. 8, 2021, doi:10.3390/jcm10081666.
- S. Aktar, A. Talukder, M.M. Ahamad, A.H.M. Kamal, J.R. Khan, M. Protikuzzaman, N. Hossain, A.K.M. Azad, J.M.W. Quinn, M.A. Summers, T. Liaw, V. Eapen, M.A. Moni, “Machine learning approaches to identify patient comorbidities and symptoms that increased risk of mortality in covid-19,” Diagnostics, vol. 11, no. 8, pp. 1–18, 2021, doi:10.3390/diagnostics11081383.
- B. Chakrabarty, D. Das, G. Bulusu, A. Roy, “Network-Based Analysis of Fatal Comorbidities of COVID-19 and Potential Therapeutics,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 18, no. 4, pp. 1271–1280, 2021, doi:10.1109/TCBB.2021.3075299.
- J. Piñero, Á. Bravo, N. Queralt-Rosinach, A. Gutiérrez-Sacristán, J. Deu-Pons, E. Centeno, J. García-García, F. Sanz, L.I. Furlong, “DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants,” Nucleic Acids Research, vol. 45, no. D1, pp. D833–D839, 2017, doi:10.1093/nar/gkw943.
- J.S. Amberger, C.A. Bocchini, F. Schiettecatte, A.F. Scott, A. Hamosh, “OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an Online catalog of human genes and genetic disorders,” Nucleic Acids Research, vol. 43, no. D1, pp. D789–D798, 2015, doi:10.1093/nar/gku1205.
- M.J. Landrum, J.M. Lee, M. Benson, G. Brown, C. Chao, S. Chitipiralla, B. Gu, J. Hart, D. Hoffman, J. Hoover, W. Jang, K. Katz, M. Ovetsky, G. Riley, A. Sethi, R. Tully, R. Villamarin-Salomon, W. Rubinstein, D.R. Maglott, “ClinVar: Public archive of interpretations of clinically relevant variants,” Nucleic Acids Research, vol. 44, no. D1, pp. D862–D868, 2016, doi:10.1093/nar/gkv1222.
- E.M. Ramos, D. Hoffman, H.A. Junkins, D. Maglott, L. Phan, S.T. Sherry, M. Feolo, L.A. Hindorff, “Phenotype-genotype integrator (PheGenI): Synthesizing genome-wide association study (GWAS) data with existing genomic resources,” European Journal of Human Genetics, vol. 22, no. 1, pp. 144–147, 2014, doi:10.1038/ejhg.2013.96.
- M. K. Singh, A. Mobeen, A. Chandra, S. Joshi, S. Rama-chandran, “A meta-analysis of comorbidities in COVID-19: Which diseases increase the susceptibility of SARS-CoV-2 infection?,” Computers in biology and medicine, 130, p.104219, 2021.
- J.L. Atkins, J.A.H. Masoli, J. Delgado, L.C. Pilling, C.L. Kuo, G.A. Kuchel, D. Melzer, “Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort,” Journals of Gerontology – Series A Biological Sciences and Medical Sciences, vol. 75, no. 11, pp. 2224–2230, 2020, doi:10.1093/gerona/glaa183.
- S. Satu, I. Khan, R. Rahman, K.C. Howlader, S. Roy, S.S. Roy, J.M.W. Quinn, M.A. Moni, “Diseasome and comorbidities complexities of SARS-CoV-2 infection with common malignant diseases,” Briefings in Bioinformatics, vol. 22, no. 2, pp. 1415–1429, 2021, doi:10.1093/bib/bbab003.
- M.E. Dolan, D.P. Hill, G. Mukherjee, M.S. McAndrews, E.J. Chesler, J.A. Blake, “Investigation of COVID-19 comorbidities reveals genes and pathways coincident with the SARS-CoV-2 viral disease,” Scientific Reports, vol. 10, no. 1, pp. 1–11, 2020, doi:10.1038/s41598-020-77632-8.
- J. Yang, Y. Zheng, X. Gou, K. Pu, Z. Chen, Q. Guo, R. Ji, H. Wang, Y. Wang, Y. Zhou, “Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis,” International Journal of Infectious Diseases, vol. 94, , pp. 91–95, 2020, doi:10.1016/j.ijid.2020.03.017.
- B. Thakur, P. Dubey, J. Benitez, J.P. Torres, S. Reddy, “OPEN A systematic review and meta ‑ analysis of geographic differences in comorbidities and associated severity and mortality among individuals with COVID ‑ 19,” Scientific Reports, pp. 1–13, 2021, doi:10.1038/s41598-021-88130-w.
- W. Poole, D.L. Gibbs, I. Shmulevich, B. Bernard, T.A. Knijnenburg, “Combining dependent P- values with an empirical adaptation of Brown ’ s method,” no. 2002, pp. 430–436, 2016, doi:10.1093/bioinformatics/btw438.
- Q. Li, J. Ding, “Fisher ’ s method of combining dependent statistics using generalizations of the gamma distribution with applications to genetic pleiotropic associations,” pp. 284–295, 2014, doi:10.1093/biostatistics/kxt045.
- D. V Zaykin, L.A. Zhivotovsky, P.H. Westfall, B.S. Weir, “Truncated Product Method for Combining P-Values,” vol. 185, no. November 2000, pp. 170–185, 2002, doi:10.1002/gepi.0042.
- N.A. Heard, P. Rubin-delanchy, “Choosing Between Methods of Combining p -values arXiv : 1707 . 06897v4 [ stat . ME ] 14 Dec 2017,” pp. 1–13, 2017.
- L.H.C. Tippett, “The methods of statistics,” The Meth-ods of Statistics, pp.222, ref. 66, 1931.
- V. Vovk, S.T. Oct, “Combining p-values via averaging,” 2019.
- D. V Zaykin, “Optimally weighted Z -test is a powerful method for combining probabilities in meta-analysis,” vol. 24, , pp. 1836–1841, 2011, doi:10.1111/j.1420-9101.2011.02297.x.
- M.C. Whitlock, “Combining probability from independent tests : the weighted Z -method is superior to Fisher ’ s approach,” vol. 18, , pp. 1368–1373, 2005, doi:10.1111/j.1420-9101.2005.00917.x.
- F. Solmi, P. Onghena, “Combining p-values in replicated single-case experiments with multivariate outcome,” vol. 24, , pp. 607–633, 2014.
- V.C. Tests, “Combining P Values to Get More Power,” 2005, doi:10.1002/0470011815.b2a15181.
- Z. Chen, W. Yang, Q. Liu, J.Y. Yang, J. Li, M.Q. Yang, “A new statistical approach to combining p-values using gamma distribution and its application to genome-wide association study,” vol. 15, no. Suppl 17, pp. 1–7, 2014.
- T.P. Speed, B.M. Bolstad, R.A. Irizarry, M. Astrand, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” vol. 19, no. 2, pp. 185–193, 2003.
- C.W.M. Law, “Precision weights for gene expression analysis (Doctoral dissertation),” 2013.
- N.K. Podder, S. Babu, S. Omit, P.C. Shill, H.K. Rana, “Genetic Effects of Covid 19 on the Development of Neurodegenerative Diseases,” no. December 2021, pp. 17–19, 2022.
- S. Davis, P.S. Meltzer, “BIOINFORMATICS APPLICATIONS NOTE GEOquery : a bridge between the Gene Expression Omnibus ( GEO ) and BioConductor,” vol. 23, no. 14, pp. 1846–1847, 2007, doi:10.1093/bioinformatics/btm254.
- G.K. Smyth, “Limma : Linear Models for Microarray Data,” no. 2005, pp. 397–420.
- T. Uniform, M. Approximation, I. Matrix, L. Rcpp, “Package ‘ umap ,’” pp. 1–7, 2023.
- F. Shahabinezhad, P. Mosaddeghi, M. Negahdaripour, M. Farahmandnejad, M.J. Taghipour, M. Moghadami, N. Nezafat, S.M. Masoompour, “Therapeutic approaches for COVID-19 based on the dynamics of interferon- mediated immune responses,” no. March, 2020, doi:10.20944/preprints202003.0206.v2.
- H. Rahman, H.K. Rana, S. Peng, X. Hu, C. Chen, J.M.W. Quinn, M.A. Moni, “Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glioblastoma progression Bioinformatics and machine learning methodologies to identify the effects of central nervous system disorders on glio,” no. January, 2021, doi:10.1093/bib/bbaa365.
- Z. Nain, H.K. Rana, P. Liò, S. Mohammed, S. Islam, M.A. Summers, “Pathogenetic profiling of COVID-19 and SARS-like viruses,” vol. 22, no. 2, pp. 1175–1196, 2021, doi:10.1093/bib/bbaa173.
- G. V Glinsky, “Impacts of genomic networks governed by human-specific regulatory sequences and genetic loci harboring fixed human-specific neuro-regulatory single nucleotide mutations on phenotypic traits of modern humans,” Chromosome Research, vol.28, pp. 331–354, 2020, doi: 10.1007/s10577-020-09639-w
- P. Mosaddeghi, F. Shahabinezhad, Z. Dehghani, M. Farahmandnejad, M. J. Taghipour, M. Moghadami, N. Nezafat, S. M. Masoompour, M. Negahdaripour, “Therapeutic Approaches for COVID-19 Based on the Interferon-mediated Immune Responses”, Current Signal Transduction Therapy, vol. 16, no. 1. 2021, doi:10.2174/1574362416666210120104636
- M. V Kuleshov, M.R. Jones, A.D. Rouillard, N.F. Fernandez, Q. Duan, Z. Wang, S. Koplev, S.L. Jenkins, K.M. Jagodnik, A. Lachmann, M.G. Mcdermott, C.D. Monteiro, W. Gundersen, A. Ma, “Enrichr : a comprehensive gene set enrichment analysis web server 2016 update,” vol. 44, no. May, pp. 90–97, 2016, doi:10.1093/nar/gkw377.
- A.M. Khan, Z. Ajmal, M. Raval, E. Tobin,“Con-current diagnosis of acute myeloid leukemia and COVID-19: a man-agement challenge,” Cureus, vol. 12, no. 8, 2020, doi:10.7759/cureus.9629
- H.A. Tehrani, M. Darnahal, S.A. Nadji, S. Haghighi, “COVID-19 re-infection or persistent infection in patient with acute myeloid leukaemia M3 : a mini review,” New Microbes and New Infections, vol. 39, , pp. 100830, 2021, doi:10.1016/j.nmni.2020.100830.
- A.O. Brien, J. Campling, H. Goodman, C.L. Chang, “Respirology Case Reports presentation and management implications,” vol. 8, , pp. 1–5, 2020, doi:10.1002/rcr2.650.
- M. Gavillet, J.C. Klappert, O. Spertini, S. Blum, “Acute leukemia in the time of COVID-19,” Leukemia research, 92, p.106353, 2020.
- J. Sarkis, R. Samaha, “Bladder cancer during the COVID-19 pandemic : the calm before the storm ?,” Future Science, vol. 6, no. 8, pp. 13–15, 2020, doi: 10.2144/fsoa-2020-0101
- The experience of UK patients with bladder cancer during the COVID-19 pandemic : a survey-based snapshot, pp. 179–181, 2021, doi:10.1111/bju.15287.
- L. Di Filippo, R. De Lorenzo, E. Cinel, E. Falbo, M. Ferrante, M. Cilla, S. Martinenghi, G. Vitali, E. Bosi, A. Giustina, P. Rovere-Querini, C. Conte, “Weight trajectories and abdominal adiposity in COVID-19 survivors with overweight/obesity,” International Journal of Obesity, vol. 45, no. 9, pp. 1986–1994, 2021, doi:10.1038/s41366-021-00861-y.
- H.S.J. Chew, V. Lopez, “Global impact of covid-19 on weight and weight-related behaviors in the adult population: A scoping review,” International Journal of Environmental Research and Public Health, vol. 18, no. 4, pp. 1–32, 2021, doi:10.3390/ijerph18041876.
- M. Shih, B. Swearingen, R. Rhee, N. York, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020.
- M.H. Syed, M. Wheatcroft, D. Marcuzzi, H. Hennessey, M. Qadura, “Management of a mycotic aneurysm in a patient with COVID-19: A case report,” Medicina (Lithuania), vol. 57, no. 6, pp. 1–7, 2021, doi:10.3390/medicina57060620.
- I. Tsimafeyeu, G. Alekseeva, M. Berkut, A. Nosov, I. Myslevtsev, A. Andrianov, A. Semenov, P. Borisov, R. Zukov, V. Goutnik, S. Savchuk, M. Volkova, M. Mukhina, “COVID-19 in Patients With Renal Cell Carcinoma in the Russian Federation,” Clinical Genitourinary Cancer, vol. 19, no. 2, pp. e69–e71, 2021, doi:10.1016/j.clgc.2020.07.007.
- M. Mihalopoulos, N. Dogra, N. Mohamed, K. Badani, N. Kyprianou, “COVID-19 and Kidney Disease: Molecular Determinants and Clinical Implications in Renal Cancer,” European Urology Focus, vol. 6, no. 5, pp. 1086–1096, 2020, doi:10.1016/j.euf.2020.06.002.
- N. Zaki, H. Alashwal, S. Ibrahim, “Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and fatality: A systematic review,” Diabetes and Metabolic Syndrome: Clinical Research and Reviews, vol. 14, no. 5, pp. 1133–1142, 2020, doi:10.1016/j.dsx.2020.07.005.
- C. Sardu, G. Gargiulo, G. Esposito, G. Paolisso, R. Marfella, “Impact of diabetes mellitus on clinical outcomes in patients affected by Covid-19,” Cardiovascular Diabetology, vol. 19, no. 1, pp. 4–7, 2020, doi:10.1186/s12933-020-01047-y.
- L. Fang, G. Karakiulakis, M. Roth, “Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?,” The Lancet Respiratory Medicine, vol. 8, no. 4, pp. e21, 2020, doi:10.1016/S2213-2600(20)30116-8.
- S. Lim, J.H. Bae, H.S. Kwon, M.A. Nauck, “COVID-19 and diabetes mellitus: from pathophysiology to clinical management,” Nature Reviews Endocrinology, vol. 17, no. 1, pp. 11–30, 2021, doi:10.1038/s41574-020-00435-4.
- S.B. Sen Omit, S. Akhter, H.K. Rana, A.R.M.M.H. Rana, N.K. Podder, M.I. Rakib, A. Nobi, “Identification of Comorbidities, Genomic Associations, and Molecular Mechanisms for COVID-19 Using Bioinformatics Approaches,” BioMed Research International, vol. 2023, no. December 2019, 2023, doi:10.1155/2023/6996307.
- A.F. Kantor, P. Hartge, R.N. Hoover, A.S. Narayana, J.W. Sullivan, J.F. Fraumeni, “Urinary tract infection and risk of bladder cancer,” American Journal of Epidemiology, vol. 119, no. 4, pp. 510–515, 1984, doi:10.1093/oxfordjournals.aje.a113768.
- T. Brown, R. Slack, L. Rushton, “Occupational cancer in Britain: Urinary tract cancers: Bladder and kidney,” British Journal of Cancer, vol. 107, no. S1, pp. S76–S84, 2012, doi:10.1038/bjc.2012.121.
- C.D.S. Costa, E.M. Steele, M.A. Leite, F. Rauber, R.B. Levy, C.A. Monteiro, “Body weight changes in the NutriNet Brasil cohort during the covid-19 pandemic,” Revista de Saude Publica, vol. 55, , pp. 1–5, 2021, doi:10.11606/S1518-8787.2021055003457.
- D.C. Van Duijvenbode, M.J.M. Hoozemans, M.N.M. Van Poppel, K.I. Proper, “The relationship between overweight and obesity, and sick leave: A systematic review,” International Journal of Obesity, vol. 33, no. 8, pp. 807–816, 2009, doi:10.1038/ijo.2009.121.
- L. Smith, J. Taylor, A. Lewis, “Tailored Medication Regimens for Patients with Comorbidities: A Review,” Journal of Pharmacy Practice, 32(5), 561–569, 2019.
- A. L. Jones, P. S. Duggan, S. O’Brien, “Comorbidities and Mental Health Disorders: The Need for Integrated Care,” Irish Medical Journal, 113(6), 89, 2020.
- A. Marengoni, S. Angleman, R. Melis, F. Mangialasche, A. Karp, A. Garmen, B. Meinow, L. Fratiglioni, “Aging with multimorbidity: A systematic review of the literature,” Ageing Research Reviews, vol. 10, no. 4, pp. 430–439, 2011, doi:10.1016/j.arr.2011.03.003.
- E. A. Brown, E. Mahanna, F. J. Schiffman, “Comorbidity Assessment in Surgical Patients,” Anesthesiology Clinics, 36(1), 1–14, 2018.