Quantum Machine Learning on Remote Sensing Data Classification
by Yi Liu1 , Wendy Wang 1,* , Haibo Wang 3 , Bahram Alidaee4
1 University of Massachusetts Dartmouth, Department of Computer and Information Science, Dartmouth, MA 02747, USA
2 University of North Alabama, Computer Sciences and Information Systems, Florence, AL 35632, USA
3 Texas A&M International University, Division of International Business and Technology Studies, Laredo, TX 78041, USA
4 University of Mississippi, Department of Marketing, Oxford, MS 38677, USA
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 2, Issue 12, Page # 23-33, 2023; DOI: 10.55708/js0212004
Keywords: Machine Learning, Remote Sensing Data Classification, Support Vector Machine, Classical Machine Learning
Received: 25 November 2023, Revised: 23 December 2023, Accepted: 24 December 2023, Published Online: 30 December 2023
APA Style
Liu, Y., Wang, W., Wang, H., & Alidaee, B. (2023). Quantum Machine Learning on Remote Sensing Data Classification. Journal of Engineering Research and Sciences, 2(12), 23–33. https://doi.org/10.55708/js0212004
Chicago/Turabian Style
Liu, Yi, Wendy Wang, Haibo Wang, and Bahram Alidaee. “Quantum Machine Learning on Remote Sensing Data Classification.” Journal of Engineering Research and Sciences 2, no. 12 (December 1, 2023): 23–33. https://doi.org/10.55708/js0212004.
IEEE Style
Y. Liu, W. Wang, H. Wang, and B. Alidaee, “Quantum Machine Learning on Remote Sensing Data Classification,” Journal of Engineering Research and Sciences, vol. 2, no. 12, pp. 23–33, Dec. 2023, doi: 10.55708/js0212004.
Information extracted from remote sensing data can be applied to monitor the business and natural environments of a geographic area. Although a wide range of classical machine learning techniques have been utilized to obtain such information, their performance differs greatly in classification accuracy. In this study, we aim to examine whether quantum-enhanced machine learning can improve the performance of classical machine learning algorithms in binary classifications of satellite remote sensing data. Using 16 pre-labeled datasets, we apply Support Vector Machine-quantum annealing solver (SVM-QA) – a type of quantum machine learning algorithm, with optimized (Gamma) value on the task of image classification and compare its results with the top performers of classical machine learning algorithms. The results show that in 10 out of 16 datasets, the hyper parameterized SVM-QA classifier outperforms the best classical machine learning algorithms in terms of classification accuracy. The findings suggest the potentiality of quantum computing in remote sensing. This study contributes to the literature of remote sensing image data classification and applications of quantum machine learning for problem solving.
- S. Cuypers, A. Nascetti, and M. Vergauwen, “Land use and land cover mapping with vhr and multi-temporal sentinel-2 imagery, ” Remote Sensing, vol. 15, 2501, 2023, doi:10.3390/rs15102501.
- M. Breunig, P.E. Bradley, M.W. Jahn, P.V. Kuper, N. Mazroob, N. R¨osch, M. Al-Doori, E. Stefanakis, and M. Jadidi, “Geospatial data management research: Progress and future directions,” ISPRS International Journal of Geo-Information, vol. 9, no. 95, 2020, doi:10.3390/ijgi9020095.
- M. Aslam, M.T. Ali, S. Nawaz, S. Shahzadi, and M.A. Fazal, “Classification of Rethinking Hyperspectral Images using 2D and 3D CNN with Channel and Spatial Attention: A Review”, Journal of Engineering Research and Sciences, vol. 2, no. 4, pp. 1-9, 2023, doi: 10.55708/js0204003.
- Y.D. Pyanylo, V. Sobko, H. Pyanylo, and O. Pyanylo, “ Orthogonal Polynomials in the Problems of Digital Information Processing”, Journal of Engineering Research and Sciences, vol. 2, no. 5, 2023, doi: 10.55708/js0205001
- Y. Shi, D. Campbell, X. Yu, and H. Li, “Geometry-guided street-view panorama synthesis from satellite imagery,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, pp. 10009-10022, 2022, doi:10.1109/TPAMI.2022.3140750.
- P. Weber and D. Chapman, “Location intelligence: An innovative approach to business location decision-making,” Transactions in GIS, vol. 15, 2011.
- U. Bayr, “Quantifying historical landscape change with repeat photography: An accuracy assessment of geospatial data obtained through monoplotting,” International Journal of Geographical Information Science, vol. 35, pp. 2026–2046, 2021, doi:10.1080/13658816.2021.1871910.
- M. Riedel., G. Cavallaro, and J. A. Benediktsson, “Practice and experience in using parallel and scalable machine learning in remote sensing from hpc over cloud to quantum computing,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, 2021, pp. 1571–1574, doi:10.1109/IGARSS47720.2021.9554656.
- A. Sebastianelli, D. A. Zaidenberg, D. Spiller, B.L, Saux, and S.L.Ullo, “On circuitbased hybrid quantum neural networks for remote sensing imagery classification,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 15, pp. 565–580, 2021, doi:10.1109/JSTARS.2021.3134785.
- D.A. Zaidenberg, A. Sebastianelli, D. Spiller, and S.L. Ullo, “Advantages and bottlenecks of quantum machine learning for remote sensing,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, pp. 5680–5683, 2021, doi:10.1109/IGARSS47720.2021.9553133.
- G. Cheng, X. Xie, J. Han, L. Guo, and G. Xia, “Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 3735–3756, 2020.
- S. Crommelinck, M. Koeva, M.Y. Yang, and G. Vosselman, “Application of Deep Learning for Delineation of Visible Cadastral Boundaries from Remote Sensing Imagery,” Remote Sensing, vol. 11, 2505, 2019, doi: 10.3390/rs11212505.
- S. Fujita and M. Hatayama, “Estimation method for roof-damaged buildings from aero-photo images during earthquakes using deep learning,” Information Systems Frontiers, vol. 25, pp. 351–363, 2021, doi:10.1007/s10796-021-10124-w.
- A.E. Maxwell, T.A. Warner, and F. Fang, “Implementation of machine-learning classification in remote sensing: An applied review,” International Journal of Remote Sensing, vol. 39, pp. 2784–2817, 2018, doi:10.1080/01431161.2018.1433343.
- R. L. Lawrence and C.J. Moran, “The americaview classification methods accuracy comparison project: A rigorous approach for model selection,” Remote Sensing of Environment, vol. 170, pp. 115–120, 2015, doi:https://api.semanticscholar.org/CorpusID:43784543.
- J. Mu˜noz-Mar´ı, E. Izquierdo-Verdiguier, M. Campos-Taberner, A. P´erez-Suay, L. G´omez-Chova, G. Mateo-Garc´ıa, A.B. Ruescas, V. Laparra, J.A. Padron, J. Amor´os-L´opez, and G. Camps-Valls, “Hyperlabelme: A web platform for benchmarking remote-sensing image classifiers,” IEEE Geoscience and Remote Sensing Magazine, vol. 5, pp. 79–85, 2017, doi:10.1109/MGRS.2017.2762476.
- D. Willsch, M. Willsch, H. De Raedt, and K. Michielsen, “Support vector machines on the d-wave quantum annealer,” Computer Physics Communications, vol. 248, 107006, 2020, doi:10.1016/j.cpc.2019.107006
- V. N. Vapnik, The nature of statistical learning theory. In Statistics for Engineering and Information Science, 2000.
- C. Venkatesan, P. Karthigaikumar, A. Paul, S. Satheeskumaran, and R. Kumar, “Ecg signal preprocessing and svm classifier-based abnormality detection in remote healthcare applications,” IEEE Access, vol. 6, pp. 9767–9773, 2018, doi:10.1109/ACCESS.2018.2794346.
- H. Cheng, Y. Liu, Y, D. Huang, and B. Liu, “Optimized forecast components-svm based fault diagnosis with applications for wastewater treatment,” IEEE Access, vol. 7, pp. 128534–128543, 2019, doi:10.1109/ACCESS.2019.2939289.
- K.S. Sahoo, B.K. Tripathy, K. Naik, S. Ramasubbareddy, B. Balusamy, M. Khari, and D. Burgos, “An evolutionary svm model for ddos attack detection in software defined networks,” IEEE Access, vol. 8, pp. 132502–132513, 2020, doi:10.1109/ACCESS.2020.3009733.
- C.K.I. Williams and M.W. Seeger, “Using the nystr¨om method to speed up kernel machines,” In NIPS, 2000.
- A. Delilbasic, G. Cavallaro, M. Willsch, F. Melgani, M. Riedel, and K. Michielsen, “Quantum support vector machine algorithms for remote sensing data classification,” in 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, pp. 2608–2611, 2021, doi:10.1109/IGARSS47720.2021.9554802.
- M.P. Henderson, J. Gallina, and M. Brett, “Methods for accelerating geospatial data processing using quantum computers,” Quantum Machine Intelligence, vol. 3, pp. 1–9, 2020, doi:10.1007/s42484-020-00034-6.
- P. Date, D. Arthur, and L. Pusey-Nazzaro, “Qubo formulations for trainingmachine learning models,” Scientific Reports, vol. 11, 2021, doi:10.1038/s41598-021-89461-4.
- Kuhn, H., A, W.T.: Nonlinear programming. In: 2nd Berkeley Symposium, pp.481–492, 1951.
- A. Lucas, “Ising formulations of many np problems,” Frontiers in physics, vol. 2, no. 5, 2014, doi:10.3389/fphy.2014.00005.
- S. Otgonbaatar and M. Datcu, “Natural embedding of the stokes parameters of polarimetric synthetic aperture radar images in a gate-based quantum computer,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–8, 2022, doi:10.1109/TGRS.2021.3110056.
- V.N. Smelyanskiy, E.G. Rieffel, S. Knysh, C.P. Williams, M.W. Johnson, M.C. Thom, W.G. Macready, and K.L. Pudenz, “A near-term quantum computing approach for hard computational problems in space exploration,” arXiv: Quantum Physics, 2012, doi:10.48550/arXiv.1204.2821.
- I., Guyon, J. Weston, S.D. Barnhill, and V.N. Vapnik, “Gene selection for cancer classification using support vector machines,” Machine Learning, vol. 46, pp. 389–422, 2004. doi:10.1023/A:1012487302797.
- S.W. Bailey, D. Otte, P.C. DiLorenzo, and J.F. O’Brien, “Fast and deep deformation approximations,” ACM Transactions on Graphics (TOG), vol. 37, pp. 1–12, 2018, doi:10.1145/3197517.3201300.
- N.S. Altman, “An introduction to kernel and nearest-neighbor nonparametric regression,” The American Statistician, vol. 46, pp. 175–185, 1992, doi:10.2307/2685209.
- L. Breiman, J..H. Friedman, R. A. Olshen, and C.J. Stone, “Regression Trees,” in Classificationand regression trees, New York, USA, Routledge, 1984, chapter8, doi:10.1201/9781315139470.
- Y. Freund and R.E. Schapire, “A decision-theoretic generalization of on-line learning and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997, doi:10.1006/jcss.1997.1504
- A. Lazarevic and V. Kumar, “Feature bagging for outlier detection,” In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, 2005, doi:10.1145/1081870.1081891.
- J.D. Rnnie, L. Shih, J. Teevan, and D.R. Karger, “Tackling the poor assumptions of naive bayes text classifiers,” In Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 616–623 2003.
- A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. & Adam, “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” 2017, ArXiv, abs/1704.04861.
- Z. Li, Y. Zhao, N. Botta, C. Ionescu, and X. Hu, “Copod: Copula-based outlier detection,” In Proceedings of IEEE International Conference on Data Mining (ICDM), pp. 1118–1123, 2020.
- M. Pal, “Random forest classifier for remote sensing classification,” International Journal of Remote Sensing, vol. 26, pp. 217–222, 2005 doi:10.1080/01431160412331269698.
- C. Seiffert, T.M. Khoshgoftaar, J.V. Hulse, and A. Napolitano, “Rusboost: A hybrid approach to alleviating class imbalance,” IEEE transactions on systems, man, and cybernetics-part A: systems and humans, 40, pp. 185–197, 1997. doi:10.1109/TSMCA.2009.2029559.
- G. Huang, Q. Y. Zhu, and C.K. Siew, “Extreme learning machine: Theory and applications,” Neurocomputing, vol. 70, pp. 489–501, 2006, doi:10.1016/j.neucom.2005.12.126.
- T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016, doi:10.1145/2939672.2939785
- A.J. Izenman, “Linear Discriminant Analysis,” In: Modern Multivariate Statistical Techniques, Springer Texts in Statistics, Springer, 2013, New York, NY, doi:10.1007/978-0-387-78189-1_8.
- G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, pp. 3149–3157, 2017.
- W. Chen, Y. Chen, Y. Mao, and B.L. Guo, “Density-based logistic regression,” in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013, doi:10.1145/2487575.2487583
- S. Lee and J.Y. Choeh, “Predicting the helpfulness of online reviews using multilayer perceptron neural networks,” Expert Systems with Applications, vol. 41, pp. 3041–3046, 2014, doi:10.1016/j.eswa.2013.10.034.
- C.J. Burges, “A Tutorial on Support Vector Machines for Pattern Recognition,” Data Mining and Knowledge Discovery, vol. 2, pp. 121-167. 1998.
- P. H. Chen, C.J. Lin, and B. Sch¨olkopf, “A tutorial on v-support vector machines”, Applied Stochastic Models in Business and Industry, vol. 21, pp. 111–136, 1997, doi:10.1002/asmb.537.
- J.A. Hanley and B.J. McNeil, “The meaning and use of the area under a receiver operating characteristic (roc) curve,” Radiology, vol.143, no. 1, pp. 29–36, 1982, doi:10.1023/A:1012487302797.
- Y. Xu, Y. Shen, Y. Zhu and J. Yu, “Ar2net: An attentive neural approach for business location selection with satellite data and urban data,” ACM Transactions on Knowledge Discovery from Data, vol. 14, no. 2, 20, pp. 1-28, 2020, doi:10.1145/3372406.
- A. Likhyani and S.J., P, D. Bedathur, “Location-specific influence quantification in location-based social networks,” ACM Transactions on Intelligent Systems and Technology (TIST), vol. 10, pp. 1–28, 2019. doi:10.1145/3300199.
- J.M. Gutierrez, M. Jensen, M. Henius, and T.M. Riaz, “Smart waste collection system based on location intelligence,” vol. 61, pp. 120–127, 2015, doi:10.1016/j.procs.2015.09.170.
- N. Jean, M., Burke, S.M. Xie, W.M. Davis, D. Lobell, and S. Ermon, “Combining satellite imagery and machine learning to predict poverty,” Science, vol. 353, pp. 790–794, 2016, doi:10.1126/science.aaf7894.