Designing Critical and Secondary Information in Augmented Reality Headsets for Situational Awareness
by Julia Woodward 1,* , Jesse Smith 2, Isaac Wang 3 , Sofia Cuenca 4, Jaime Ruiz2
1 Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, 33620, USA
2 Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, 32611, USA
3 Department of Computer Science, James Madison University, Harrisonburg, Virginia, 22807, USA
4 Department of Computer Systems, Farmingdale State College, Farmingdale, New York, 11735, USA
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 2, Issue 3, Page # 1-15, 2023; DOI: 10.55708/js0203001
Keywords: Augmented Reality, Situational Awareness, Design
Received: 22 November 2022, Revised: 10 February 2023, Accepted: 24 February 2023, Published Online: 23 March 2023
APA Style
Woodward, J., Smith, J., Wang, I., Cuenca, S., & Ruiz, J. (2023). Designing Critical and Secondary Information in Augmented Reality Headsets for Situational Awareness. Journal of Engineering Research and Sciences, 2(3), 1–15. https://doi.org/10.55708/js0203001
Chicago/Turabian Style
Woodward, Julia, Jesse Smith, Isaac Wang, Sofia Cuenca, and Jaime Ruiz. “Designing Critical and Secondary Information in Augmented Reality Headsets for Situational Awareness.” Journal of Engineering Research and Sciences 2, no. 3 (March 1, 2023): 1–15. https://doi.org/10.55708/js0203001.
IEEE Style
J. Woodward, J. Smith, I. Wang, S. Cuenca, and J. Ruiz, “Designing Critical and Secondary Information in Augmented Reality Headsets for Situational Awareness,” Journal of Engineering Research and Sciences, vol. 2, no. 3, pp. 1–15, Mar. 2023, doi: 10.55708/js0203001.
Augmented Reality (AR) headsets are being used in different contexts (e.g., the oil industry, healthcare, military); however, there is a lack of research and design recommendations on how information should be presented in the AR headset displays, especially for aiding users’ situational awareness. We present two studies: one examining if existing findings on the perceptibility of three types of visual stimulus (color, text, shapes) can be applied to AR headsets for critical information, and one analyzing three different presentation styles (Display, Environment, Mixed Environment) for textual secondary information in AR headsets. Our study on secondary information is an extension of prior work. For critical information, we found that existing visual perception findings can be applied to AR headsets; there is a hierarchy of salient visual features. Understanding that we can utilize prior work on visual features helps in designing salient critical information for AR headset displays. For secondary information, we found that having the text in the Display and Environment presentation styles assisted in participants’ perception and comprehension when compared to the Mixed Environment presentation style. Based on our results, we provide design recommendations on how to present critical and secondary information in AR headset displays to aid in users’ situational awareness, which is essential in safety crucial domains such as the military.
- W.F. van Krevelen, R. Poelman, “A Survey of Augmented Reality Technologies, Applications and Limitations,” The International Journal of Virtual Reality, vol. 9, no. 2, pp. 1–20, 2010, doi:10.1155/2011/721827.
- Vardomatski, Augmented And Virtual Reality After Covid-19, https://www.forbes.com/sites/forbestechcouncil/2021/09/14/augmented-and-virtual-reality-after-covid-19/?sh=1b886d882d97, 2021.
- A. Olney, Augmented Reality | All About Holograms, American Library Association: 1–16, 2019.
- Meta, Meta Augmented Reality, https://www.metavision.com/, Apr. 2019.
- Augmented Reality Is A Game Changer For Oil & Gas, https://oilprice.com/Energy/Energy-General/Augmented-Reality-Is-A-Game-Changer-For-Oil-Gas.html, May 2022.
- R. Endsley, “Toward a Theory of Situation Awareness in Dynamic Systems,” Human Factors, vol. 37, no. 1, pp. 32–64, 1995, doi:10.1518/001872095779049543.
- R. Endsley, “Design and Evaluation for Situation Awareness Enhancement,” Proceedings of the Human Factors Society Annual Meeting, vol. 32, no. 2, pp. 97–101, 1988, doi:10.1177/154193128803200221.
- A. Stanton, P.R.G. Chambers, J. Piggott, “Situational Awareness and Safety,” Safety Science, vol. 39, no. 3, pp. 189–204, 2001, doi:10.1016/S0925-7535(01)00010-8.
- W. Reader, P. O’Connor, “The Deepwater Horizon Explosion: Non-technical Skills, Safety Culture, and System Complexity,” Journal of Risk Research, vol. 17, no. 3, pp. 405–424, 2014, doi:10.1080/13669877.2013.815652.
- M. Schulz, V. Krautheim, A. Hackemann, M. Kreuzer, E.F. Kochs, K.J. Wagner, “Situation Awareness Errors in Anesthesia and Critical Care in 200 Cases of a Critical Incident Reporting System,” BMC Anesthesiology, vol. 16, no. 4, pp. 10pp, 2016, doi:10.1186/s12871-016-0172-7.
- E.Gans, D. Roberts, M. Bennett, H. Towles, A. Menozzi, J. Cook, T. Sherrill, “Augmented Reality Technology for Day/Night Situational Awareness for the Dismounted Soldier,” in: Desjardins, D. D., Sarma, K. R., Marasco, P. L., and Havig, P. R., eds., in Display Technologies and Applications for Defense, Security, and Avionics, International Society for Optics and Photonics: Article 9470, 2015, doi:10.1117/12.2177086.
- Z. Zhu, V. Branzoi, M. Wolverton, G. Murray, N. Vitovitch, L. Yarnall, G. Acharya, S. Samarasekera, R. Kumar, “AR-Mentor: Augmented Reality Based Mentoring System,” in IEEE International Symposium on Mixed and Augmented Reality (ISMAR ’14), IEEE: 17–22, 2014, doi:10.1109/ISMAR.2014.6948404.
- M. Wallmyr, T.A. Sitompul, T. Holstein, R. Lindell, “Evaluating Mixed Reality Notifications to Support Excavator Operator Awareness,” in IFIP Conference on Human-Computer Interaction (INTERACT ’ 19), Springer, Cham: 743–762, 2019, doi:10.1007/978-3-030-29381-9_44.
- Z. Liu, S.A. Jenkins, P.M. Sanderson, M.O. Watson, T. Leane, A. Kruys, W.J. Russell, “Monitoring with Head-Mounted Displays: Performance and Safety in a Full-Scale Simulator and Part-Task Trainer,” Anesthesia & Analgesia, vol. 109, no. 4, pp. 1135–1146, 2009, doi:10.1213/ANE.0b013e3181b5a200.
- T. Pascale, P. Sanderson, D. Liu, I. Mohamed, B. Brecknell, R.G. Loeb, “The Impact of Head-Worn Displays on Strategic Alarm Management and Situation Awareness,” Human Factors, vol. 61, no. 4, pp. 537–563, 2019, doi:10.1177/0018720818814969.
- S. Ruano, C. Cuevas, G. Gallego, N. García, “Augmented Reality Tool for the Situational Awareness Improvement of UAV Operators,” Sensors, vol. 17, no. 2, pp. Article 297, 2017, doi:10.3390/s17020297.
- B-J. Park, C. Yoon, J.-W. Lee, K.-H. Kim, “Augmented Reality Based on Driving Situation Awareness in Vehicle,” in International Conference on Advanced Communication Technology (ICACT’15), IEEE: 593–595, 2015, doi:10.1109/ICACT.2015.7224865.
- D.Aschenbrenner, N. Maltry, J. Kimmel, M. Albert, J. Scharnagl, K. Schilling, “ARTab – Using Virtual and Augmented Reality Methods for an Improved Situation Awareness for Telemaintenance,” IFAC-PapersOnLine, vol. 49, no. 30, pp. 204–209, 2016, doi:10.1016/J.IFACOL.2016.11.168.
- K-H. Kim, K.-Y. Wohn, “Effects on Productivity and Safety of Map and Augmented Reality Navigation Paradigms,” IEICE TRANSACTIONS on Information and Systems, vol. E94-D, no. 5, pp. 1051–1061, 2011, doi:10.1587/transinf.E94.D.1051.
- L. Hou, X. Wang, “A Study on the Benefits of Augmented Reality in Retaining Working Memory in Assembly Tasks: A Focus on Differences in Gender,” Automation in Construction, vol. 32, , pp. 38–45, 2013, doi:10.1016/J.AUTCON.2012.12.007.
- M-C. Chen, R. Klatzky, “Displays Attentive to Unattended Regions: Presenting Information in a Peripheral-Vision-Friendly Way,” International Conference on Human-Computer Interaction (HCII’07), vol. 4551, , pp. 23–31, 2007.
- C. G. Healey, K.S. Booth, J.T. Enns, “High-Speed Visual Estimation Using Preattentive Processing,” ACM Transactions on Computer-Human Interaction, vol. 3, no. 2, pp. 107–135, 1996, doi:10.1145/230562.230563.
- Y. Ishiguro, J. Rekimoto, “Peripheral Vision Annotation: Noninterference Information Presentation Method for Mobile Augmented Reality,” in Proceedings of the Augmented Human International Conference (AH’11), ACM Press, New York, New York, USA: 1–5, 2011, doi:10.1145/1959826.1959834.
- E. Kruijff, J.E. Swan, S. Feiner, “Perceptual Issues in Augmented Reality Revisited,” in IEEE International Symposium on Mixed and Augmented Reality (ISMAR ’10), IEEE: 3–12, 2010, doi:10.1109/ISMAR.2010.5643530.
- M.A. Livingston, J.L. Gabbard, J.E. Swan, C.M. Sibley, J.H. Barrow, Basic Perception in Head-Worn Augmented Reality Displays, Springer New York, New York, NY: 35–65, 2013, doi:10.1007/978-1-4614-4205-9_3.
- J.L. Gabbard, J.E. Swan, J. Zedlitz, W.W. Winchester, “More Than Meets the Eye: An Engineering Study to Empirically Examine the Blending of Real and Virtual Color Spaces,” in IEEE Virtual Reality Conference (VR ’10), IEEE: 79–86, 2010, doi:10.1109/VR.2010.5444808.
- M.R. Endsley, “Designing for Situation Awareness in Complex System,” in Proceedings of the Second International Workshop on Symbiosis of Humans, Artifacts and Environment, 14pp, 2001.
- S. Ganapathy, Design Guidelines for Mobile Augmented Reality: User Experience, Springer New York, New York, NY: 165–180, 2013, doi:10.1007/978-1-4614-4205-9_7.
- J. Woodward, J. Smith, I. Wang, S. Cuenca, J. Ruiz, “Examining the Presentation of Information in Augmented Reality Headsets for Situational Awareness,” in ACM International Conference on Advanced Visual Interfaces (AVI ’20), ACM Press: 1–5, 2020, doi:10.1145/3399715.3399846.
- S. Lukosch, H. Lukosch, D. Datcu, M. Cidota, “Providing Information on the Spot: Using Augmented Reality for Situational Awareness in the Security Domain,” Computer Supported Cooperative Work (CSCW ’15), vol. 24, no. 6, pp. 613–664, 2015, doi:10.1007/s10606-015-9235-4.
- S. Zollmann, C. Hoppe, T. Langlotz, G. Reitmayr, “FlyAR: Augmented Reality Supported Micro Aerial Vehicle Navigation,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 4, pp. 560–568, 2014, doi:10.1109/TVCG.2014.24.
- J. Fromm, K. Eyilmez, M. Baßfeld, T.A. Majchrzak, S. Stieglitz, “Social Media Data in an Augmented Reality System for Situation Awareness Support in Emergency Control Rooms,” Information Systems Frontiers, vol. 25, no. 3, pp. 303–326, 2021, doi:10.1007/S10796-020-10101-9.
- Minh Tien Phan, I. Thouvenin, V. Fremont, “Enhancing the Driver Awareness of Pedestrian Using Augmented Reality Cues,” in IEEE International Conference on Intelligent Transportation Systems (ITSC ’16), IEEE: 1298–1304, 2016, doi:10.1109/ITSC.2016.7795724.
- Colley, B. Eder, J.O. Rixen, E. Rukzio, “Efects of Semantic Segmentation Visualization on Trust, Situation Awareness, and Cognitive Load in Highly Automated Vehicles,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’21), Association for Computing Machinery: 11pp, 2021, doi:10.1145/3411764.3445351.
- Rowen, M. Grabowski, J.P. Rancy, A. Crane, “Impacts of Wearable Augmented Reality Displays on Operator Performance, Situation Awareness, and Communication in Safety-Critical Systems,” Applied Ergonomics, vol. 80, , pp. 17–27, 2019, doi:10.1016/J.APERGO.2019.04.013.
- Coleman, D. Thirtyacre, “Remote Pilot Situational Awareness with Augmented Reality Glasses: An Observational Field Study,” International Journal of Aviation, Aeronautics, and Aerospace, vol. 8, no. 1, pp. 10pp, 2021, doi:https://doi.org/10.15394/ijaaa.2021.1547.
- Chen, L. Hou, G. (Kevin) Zhang, S. Moon, “Development of BIM, IoT and AR/VR technologies for Fire Safety and Upskilling,” Automation in Construction, vol. 125, no. 103631, 2021, doi:10.1016/J.AUTCON.2021.103631.
- Bhattarai, A.R. Jensen-Curtis, M. Martinez-Ramon, “An Embedded Deep Learning System for Augmented Reality in Firefighting Applications,” in IEEE International Conference on Machine Learning and Applications (ICMLA ’20), IEEE: 1224–1230, 2020, doi:10.1109/ICMLA51294.2020.00193.
- Huuskonen, T. Oksanen, “Augmented Reality for Supervising Multirobot System in Agricultural Field Operation,” IFAC-PapersOnLine, vol. 52, no. 30, pp. 367–372, 2019, doi:10.1016/J.IFACOL.2019.12.568.
- R. Velamkayala, M. V. Zambrano, H. Li, “Effects of HoloLens in Collaboration: A Case in Navigation Tasks,” Human Factors and Ergonomics Society Annual Meeting, vol. 61, no. 1, pp. 2110–2114, 2017, doi:10.1177/1541931213602009.
- Blattgerste, B. Strenge, P. Renner, T. Pfeiffer, K. Essig, “Comparing Conventional and Augmented Reality Instructions for Manual Assembly Tasks,” in Proceedings of the International Conference on Pervasive Technologies Related to Assistive Environments (PETRA ’17), ACM Press, New York, New York, USA: 75–82, 2017, doi:10.1145/3056540.3056547.
- Wang, M. Parsons, J. Stone-McLean, P. Rogers, S. Boyd, K. Hoover, O. Meruvia-Pastor, M. Gong, A. Smith, “Augmented Reality as a Telemedicine Platform for Remote Procedural Training,” Sensors, vol. 17, no. 10, pp. Article 2294, 2017, doi:10.3390/s17102294.
- Datcu, S. Lukosch, H. Lukosch, “Comparing Presence, Workload and Situational Awareness in a Collaborative Real World and Augmented Reality Scenario,” IEEE ISMAR Workshop on Collaboration in Merging Realities (CiMeR ’13), pp. 6pp, 2013, doi:https://research.tudelft.nl/.
- Rzayev, P.W. Wozniak, T. Dingler, N. Henze, “Reading on Smart Glasses: The Effect of Text Position, Presentation Type and Walking,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’18), ACM Press, New York, New York, USA: 9pp, 2018, doi:10.1145/3173574.3173619.
- Albarelli, A. Celentano, L. Cosmo, R. Marchi, “On the Interplay between Data Overlay and Real-World Context using See-through Displays,” in Proceedings of the Biannual Conference on Italian SIGCHI Chapter (CHItaly’15), ACM Press, New York, New York, USA: 58–65, 2015, doi:10.1145/2808435.2808455.
- Orlosky, K. Kiyokawa, H. Takemura, “Managing Mobile Text in Head Mounted Displays: Studies on Visual Preference and Text Placement,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 18, no. 2, pp. 20–31, 2014, doi:10.1145/2636242.2636246.
- Kim, M.A. Nussbaum, J.L. Gabbard, “Influences of Augmented Reality Head-Worn Display Type and User Interface Design on Performance and Usability in Simulated Warehouse Order Picking,” Applied Ergonomics, vol. 74, , pp. 186–193, 2019, doi:10.1016/J.APERGO.2018.08.026.
- Ariansyah, J.A. Erkoyuncu, I. Eimontaite, T. Johnson, A.M. Oostveen, S. Fletcher, S. Sharples, “A Head Mounted Augmented Reality Design Practice for Maintenance Assembly: Toward Meeting Perceptual and Cognitive Needs of AR Users,” Applied Ergonomics, vol. 98, , pp. 103597, 2022, doi:10.1016/J.APERGO.2021.103597.
- Gattullo, L. Dammacco, F. Ruospo, A. Evangelista, M. Fiorentino, J. Schmitt, A.E. Uva, “Design Preferences on Industrial Augmented Reality: A Survey with Potential Technical Writers,” in IEEE International Symposium on Mixed and Augmented Reality (ISMAR ’20), IEEE: 172–177, 2020, doi:10.1109/ISMAR-ADJUNCT51615.2020.00054.
- Irrazabal, G. Saux, D. Burin, “Procedural Multimedia Presentations: The Effects of Working Memory and Task Complexity on Instruction Time and Assembly Accuracy,” Applied Cognitive Psychology, vol. 30, no. 6, pp. 1052–1060, 2016, doi:10.1002/ACP.3299.
- Sekiguchi, A.A. Nugraha, Y. Du, Y. Bando, M. Fontaine, K. Yoshii, “Direction-Aware Adaptive Online Neural Speech Enhancement with an Augmented Reality Headset in Real Noisy Conversational Environments,” in International Conference on Intelligent Robots and Systems (IROS ’22), 9266–9273, 2022, doi:10.1109/IROS47612.2022.9981659.
- Debernardis, M. Fiorentino, M. Gattullo, G. Monno, A.E. Uva, “Text Readability in Head-Worn Displays: Color and Style Optimization in Video versus Optical See-Through Devices,” IEEE Transactions on Visualization and Computer Graphics, vol. 20, no. 1, pp. 125–139, 2014, doi:10.1109/TVCG.2013.86.
- J. Dudley, J.T. Jacques, P.O. Kristensson, “Crowdsourcing Design Guidance for Contextual Adaptation of Text Content in Augmented Reality,” in SIGCHI Conference on Human Factors in Computing Systems – Proceedings, Association for Computing Machinery: 14pp, 2021, doi:10.1145/3411764.3445493.
- Stearns, L. Findlater, J.E. Froehlich, “Design of an Augmented Reality Magnification Aid for Low Vision Users,” in International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS’ 18), ACM: 28–39, 2018, doi:10.1145/3234695.3236361.
- Brown, Meta 2: Full Specification, https://vr-compare.com/headset/meta2, May 2022.
- Ando, N. Kida, S. Oda, “Central and Peripheral Visual Reaction Time of Soccer Players and Nonathletes,” Perceptual and Motor Skills, vol. 92, no. 3, pp. 786–794, 2001, doi:10.2466/pms.2001.92.3.786.
- Berlucchi, W. Heron, R. Hyman, G. Rizzolatti, C. Umiltà, “Simple Reaction Times of Ipsilateral and Contralateral Hand to Lateralized Visual Stimuli,” Brain, vol. 94, no. 3, pp. 419–430, 1971, doi:10.1093/brain/94.3.419.
- Unity, https://unity3d.com/, 2022.
- Mairena, C. Gutwin, A. Cockburn, “Peripheral Notifications in Large Displays: Effects of Feature Combination and Task Interference,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’19), ACM Press, New York, New York, USA: 12pp, 2019, doi:10.1145/3290605.3300870.
- Bowers, K.M. Heilman, “Pseudoneglect: Effects of Hemispace on a Tactile Line Bisection Task,” Neuropsychologia, vol. 18, no. 4–5, pp. 491–498, 1980, doi:10.1016/0028-3932(80)90151-7.
- A. Thomas, O. Schneider, C. Gutwin, L.J. Elias, “Dorsal Stream Contributions to Perceptual Asymmetries,” Journal of the International Neuropsychological Society : JINS, vol. 18, no. 2, pp. 251–259, 2012, doi:10.1017/S1355617711001585.
- D. Christman, C.L. Niebauer, “The Relation Between Left-Right and Upper-Lower Visual Field Asymmetries: (Or: What Goes Up Goes Right While What’s Left Lays Low),” Advances in Psychology, vol. 123, , pp. 263–296, 1997, doi:10.1016/S0166-4115(97)80076-3.
- K. Smith, I. Szelest, T.E. Friedrich, L.J. Elias, “Native Reading Direction Influences Lateral Biases in The Perception of Shape From Shading,” Laterality, vol. 20, no. 4, pp. 418–433, 2014, doi:10.1080/1357650X.2014.990975.
- ISO 7010:2011 Graphical symbols, https://www.iso.org/standard/54432.html, 2011.
- G. Hart, “Nasa-Task Load Index (NASA-TLX); 20 Years Later,” Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, no. 9, pp. 904–908, 2006, doi:10.1177/154193120605000909.
- Mealy, Planning Your Augmented Reality Project, John Wiley & Sons, Inc. : 159–161, 2018.
- Rello, R. Baeza-Yates, “How to Present More Readable Text for People with Dyslexia,” Universal Access in the Information Society, vol. 16, no. 1, pp. 29–49, 2017, doi:10.1007/s10209-015-0438-8.
- J. McKeefry, N.R.A. Parry, I.J. Murray, “Simple Reaction Times in Color Space: The Influence of Chromaticity, Contrast, and Cone Opponency,” Investigative Opthalmology & Visual Science, vol. 44, no. 5, pp. 2267–2276, 2003, doi:10.1167/iovs.02-0772.
- Kuperman, H. Stadthagen-Gonzalez, M. Brysbaert, “Age-Of-Acquisition Ratings for 30,000 English Words,” Behavior Research Methods, vol. 44, no. 4, pp. 978–990, 2012, doi:10.3758/s13428-012-0210-4.
- H. Logie, K.J. Gilhooly, V. Wynn, “Counting on Working Memory in Arithmetic Problem Solving,” Memory & Cognition, vol. 22, no. 4, pp. 395–410, 1994, doi:10.3758/BF03200866.
- Baddeley, “Working Memory,” Science, vol. 255, no. 5044, pp. 556–559, 1992, doi:10.1126/SCIENCE.1736359.
- Miller, M. Perlmutter, D. Keating, “Cognitive Arithmetic: Comparison of Operations,” Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 10, no. 1, pp. 46–60, 1984, doi:10.1037/0278-7393.10.1.46.
- I.D. Campbell, D.J. Graham, “Mental Multiplication Skill: Structure, Process, and Acquisition.,” Canadian Journal of Psychology, vol. 39, no. 2, pp. 338–366, 1985, doi:10.1037/h0080065.
- Lemaire, M. Fayol, “The Role of Working Memory Resources in Simple Cognitive Arithmetic,” European Journal of Cognitive Psychology, vol. 8, no. 1, pp. 73–103, 1996.
- J. Groen, J.M. Parkman, “A Chronometric Analysis of Simple Addition,” Psychological Review, vol. 79, no. 4, pp. 329–343, 1972, doi:10.1037/h0032950.
- Wacom, Professional Hybrid Creative Tablet User’s Manual About the Cintiq Companion Hybrid, 1–93, https://cdn.wacom.com/f/manual/0x0307/UM-EN.pdf, May 2022.
- N. Keene, “The Log Transformation is Special,” Statistics in Medicine, vol. 14, no. 8, pp. 811–819, 1995, doi:10.1002/sim.4780140810.
- O. Wobbrock, L. Findlater, D. Gergle, J.J. Higgins, “The Aligned Rank Transform for Nonparametric Factorial Analyses Using Only Anova Procedures,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI’11), ACM Press, New York, New York, USA: 143–146, 2011, doi:10.1145/1978942.1978963.
- Healey, J. Enns, “Attention and Visual Memory in Visualization and Computer Graphics,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 7, pp. 1170–1188, 2012, doi:10.1109/TVCG.2011.127.
- S. Fine, B.S. Minnery, “Visual Salience Affects Performance in a Working Memory Task,” Journal of Neuroscience, vol. 29, no. 25, pp. 8016–8021, 2009, doi:10.1523/JNEUROSCI.5503-08.2009.
- Batra, D. Jeph, S. Vyas, “Color Difference on Simple Visual Reaction Time in Young Volunteers,” International Journal of Clinical and Experimental Physiology, vol. 1, no. 4, pp. 311–313, 2014, doi:10.4103/2348-8093.149771.
- -Y. Kim, “Statistical Notes for Clinical Researchers: Chi-squared Test and Fisher’s Exact Test.,” Restorative Dentistry & Endodontics, vol. 42, no. 2, pp. 152–155, 2017, doi:10.5395/rde.2017.42.2.152.
- Rzayev, S. Mayer, C. Krauter, N. Henze, “Notification in VR: The Effect of Notification Placement, Task, and Environment,” in Computer-Human Interaction in Play (CHIPlay’19), ACM Press: 199–211, 2019, doi:10.1145/3311350.3347190.
- Rzayev, S. Korbely, M. Maul, A. Schark, V. Schwind, N. Henze, “Effects of Position and Alignment of Notifications on AR Glasses during Social Interaction,” in Proceedings of the Nordic Conference on Human-Computer Interaction (NordiCHI ’20), ACM Press, New York, NY, USA: 11pp, 2020, doi:10.1145/3419249.
- Gutwin, A. Cockburn, A. Coveney, “Peripheral Popout: The Influence of Visual Angle and Stimulus Intensity on Popout Effects,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’17), ACM Press, New York, New York, USA: 208–219, 2017, doi:10.1145/3025453.3025984.