Trajectory Correction Method of Motion Description Language of Vertebral Milling Robot based on Force Feedback
by Wei Ding 1 , Zhaoming Liu 2, Hongwei Wang 2, Long Cui 2,*
1 Shenyang Institute of engineering, Department of Communication, College of Automation, Shenyang, 110136, China
2 Shenyang Institute of Automation, Chinese Academy of Sciences, State Key Laboratory of Robotics, Shenyang, 110016, China
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 1, Issue 10, Page # 26-35, 2022; DOI: 10.55708/js0110005
Keywords: Milling robot, Motion description language, Force feedback, Trajectory correction, Vertebral lamina milling
Received: 11 August 2022, Revised: 22 September 2022, Accepted: 26 September 2022, Published Online: 10 October 2022
APA Style
Ding, W., Liu, Z., Wang, H., & Cui, L. (2022b). Trajectory Correction Method of Motion Description Language of Vertebral Milling Robot based on Force Feedback. Journal of Engineering Research and Sciences, 1(10), 26–35. https://doi.org/10.55708/js0110005
Chicago/Turabian Style
Trajectory Correction Method of Motion Description Language of Vertebral Milling Robot based on Force Feedback.” Journal of Engineering Research and Sciences 1, no. 10 (October 1, 2022): 26–35. https://doi.org/10.55708/js0110005.
IEEE Style
W. Ding, Z. Liu, H. Wang, and L. Cui, “Trajectory Correction Method of Motion Description Language of Vertebral Milling Robot based on Force Feedback,” Journal of Engineering Research and Sciences, vol. 1, no. 10, pp. 26–35, Oct. 2022, doi: 10.55708/js0110005.
In the real-time control procession of the vertebral milling robot, there are problems such as heavy workload of the operator, long working time, operational tremble and complicated procession. In order to solve the clinical practical basic problems such as avoiding excessive milling and force perception control of vertebral milling robot, this paper proposes a method of trajectory correction of motion description language of milling robot based on force feedback. The task of trajectory correction of the milling robot oriented to force feedback, on the basis of ensuring the atom relationship of motion description language, defines seven motion atoms for the function of avoiding excessive milling during the actual operation of the milling robot. A milling robot experimental system is built with a force feedback control handle and a milling robot. Experiments are carried out on the trajectory correction method of the milling robot based on the motion description language. The experimental results verify the feasibility and effectiveness of this method. The innovation of this paper is reflected in the following two aspects. The use of force feedback to define and model motion description language atoms is an innovation, and the application of motion description language trajectory correction method to the field of vertebral milling robots is an application innovation.
- L. Wang, Y. Sun, R. Q. Wang, X. Z. Qi, “Kinematics analysis and trajectory planning of lamina decompression surgical robot,” Machinery Design and Manufacture, vol.05, pp. 281-284, May 2020,doi: 10.19356/j.cnki.1001-3997.2020.05.068.
- H. Y. Jin, Y. Hu, P. Zhang, W. Tian, B. Li, “Safety analysis and control of a robotic spinal surgical system,” Mechatronics, vol.24, no.1, pp: 55-65, 2014, doi:10.1016/j.mechatronics.2013.11.008.
- T. Osa, C. F. Abawi, N. Sugita, H. Chikuda, M. Mitsuishi, “Autonomous penetration detection for bone cutting tool using demonstration-based learning,” Proc. IEEE International Conf. Robotics and Automation, pp.290-296,2014, doi:10.1109/ICRA.2014.6906624.
- D. Yu, X. Yuan, J. Zhang, “Milling state identification based on vibration sense of a robotic surgical system,” IEEE Trans. Industrial Electronics, vol.63, pp. 6184-6193, 2016,doi: 10.1109/tie.2016.2574981.
- F. Liu, W. Wang, L. Wang, G. Wang, C. Yun, “Effect of contact wheel’s deformation on cutting depth for robotic belt grinding,” Journal of Mechanical Engineering, vol.53, no.5, pp.86-92, 2017, doi: 10.3901/JME.2017.05.086.
- C. M. Wani, S. R. Deshmukh, R. R. Ghorpade, ” Studies on stress analysis of hip prosthesis implant,” Journal of Engineering Research and Sciences, vol.1, no.8, pp. 01-11,2022, doi:https://dx.doi.org/10.55708/js0108001.
- C. Stüer, F. Ringel, M. Stoffel, A. Reinke, M. Behr, B. Meyer, “Robotic technology in spine surgery: current applications and future developments,” Acta Neurochirurgica Supplement, vol.109, pp. 241-245, 2011, doi: 10.1007/978-3-211-99651-5_38.
- T. Inoue, N. Sugita, M. Mitsuishi, T. Saito, K. Tanimoto, “Optimal Control of Cutting Feed Rate in the Robotic Milling for Total Knee Arthroplasty,” IEEE Proc. Ras and Embs International Conf. Biomedical Robotics and Biomechatronics, pp.215-220, 2010, doi: 10.1109/BIOROB.2010.5626940.
- H. Y. Tran, T. M. Bui, T. L. Pham, V. H. Le, ” An Evaluation of 2D Human Pose Estimation based on ResNet Backbone,” Journal of Engineering Research and Sciences, vol. 1, no.3, pp.59-67, 2022, doi: https://dx.doi.org/10.55708/js0103007.
- Z. Deng, H. Jin, Y. Hu, Y. He, P. Zhang, W. Tian, J. Zhang, “Fuzzy force control and state detection in vertebral lamina milling,” Mechatronics, vol.35, pp. 1-10, 2016, doi: 10.1016/j.mechatronics.2016.02.004.
- L. Fan, P. Gao, B. Zhao, Y. Sun, X. Xin, Y. Hu, S. Liu, J. Zhang, “Safety Control Strategy for Vertebral Lamina Milling Task,” Caai Trans. Intelligence Technology, vol.1, pp.249-258, 2016,doi: 10.1016/j.trit.2016.10.005.
- T. Wang, B. Pan, Y. L. Fu, S. G. Wang, “Gravity compensation for the force reflection manipulator of minimally invasive surgical robot,” Robot, vol.42, pp. 525-533, 2020, doi: 10.13973/j.cnki.robot.190547.
- M. Lu, Y. Zhao, Y. Jiang, “Design of Master-Slave Operation Robot Based on Impedance Control in Minimally Invasive Spinal Surgery,” Robot, vol.39, pp. 371-376, 2017, doi: 10.13973/j.cnki.robot.2017.0371.
- X. Zhao, X. Tan, B. Zhang, “Development of soft lower extremity exoskeleton and its key technologies,” Robot,vol.42,pp. 365-384, 2020, doi: 10.13973/j.cnki.robot.190474.
- Y. Huang, G. J. Xiao, L. Zou,” Current situation and development trend of robot precise belt grinding for aero-engine blade,” Acta Aeronautica et Astronautica Sinica, vol.40, no.3, pp.022508, 2019, doi:10.7527/S1000-6893.2018.22508.
- S.Z. Zou, B. Pan, Y.L. Fu, S.X. Guo, “Improving back drivability in preoperative manual manipulability of minimally invasive surgery robot,” Industrial Robot, vol.45, pp. 127-140, 2018, doi: 10.1108/ir-02-2017-0031.
- G. J. Niu, C. C. Qu, B. Pan, Y.L. Fu, ” Master-Slave control of the celiac minimally invasive surgical robot,”Robot, vol.41. no.4,pp.551-560, 2019, doi: 10.13973/j.cnki.robot.180412.
- L. Meli, C. Pacchierotti, D. Prattichizzo, “Sensory subtraction in robot-assisted surgery: fingertip skin deformation feedback to ensure safety and improve transparency in bimanual haptic interaction,” IEEE Trans. Biomedical Engineering, vol.61, pp.1318-1327, 2014, doi: 10.1109/TBME.2014.2303052.
- W. Qaisar, M. T. Riaz, A. Basit, Y. Naseem, Z. Nazir, ” Disinfecting omnidirectional mobile robot with vision capabilities,” Journal of Engineering Research and Sciences, vol.1, no.3, pp. 153-163, 2022, doi: https://dx.doi.org/ 10.55708/ js0103016.
- R. W. Brockett, “Language driven hybrid systems,” IEEE Conf. Decision and Control ,pp.4210-4214, 1994, doi: 10.1109/CDC. 1994.411612.
- J. N. Hua, Y. J. Cui, Q. Jia, P. Shi, H.Y. Li, “MDL-Based Control Method for Tele-robotic Systems,” Robot, vol.35. no.5, pp.615-622, 2013, doi: 10.3724/SP.J.1218.2013.00615.
- J. N. Hua, Y. J. Cui, H. Y. Li, Y. Wang, N. Xi, ” Network-based Tele-robotic System with Guidance Functionality from Virtual Force,” Robot, vol.32, no.4, pp.522-528, 2010, doi: 10.3724/SP.J.1218.2010.00522.
- S. Guo, Y. H. Liang, Z. Q. Wang, H. Qu, ” Dynamic Modeling and Force-feedback Control of Haptic Device with Parallel Structure Based on Virtual Simulation,”Robot, vol.37, no.02, pp.224-230, 2015, doi: 10.13973/j.cnki.robot.2015.0224.
- X. Luo, M. Li, Z. Du,W. Dong, K. Gao, D. Wu, ” Modeling, planning, and control of robotic grinding on free-form surface using a force-controlled belt grinding tool, ” Proceedings of the Institution of Mechanical Engineers, vol. 236, no.4, pp. 2009-2028, 2022, doi: 10.1177/0954406220931529.
- Z. Q. Zhao, Z. H. Zhu, X. Zhou, S. F. Huang, Y. Li, “High-efficiency time-optimal trajectory planning for robots under complete dynamic constraints,” Information and Control , vol.50, no.6, pp.701-708, 2021, doi:10.13976/j.cnki.xk.2021.0546.
- Z. Liu, T. Zou, W. Sun, Y.S. Lu, “Impedance control of grinding robotbased on real-time optimization genetic algorithm,” Control Theory &Applications, vol.35, no.12, pp.1788-1795, 2018, doi: 10.7641/CTA.2018.80542.
- L. Duan, Y. Huang, L. Zou, “Research on surface integrity of GH4169 Nickel-based superalloys by robotic belt grinding,” China Mechanical Engineering, vol. 30, no.17, pp. 2044-2050, 2019, doi:10.3969/j.issn.1004-132X.2019.17.005.
- J. Z. Lin, C. C. Ye, J. X. Yang, H. Zhao, H. Ding, M. Luo, ” Contour error-based optimization of the end-effector pose of a 6 degree-of-freedom serial robot in milling operation, ” Robotics and Computer-Integrated Manufacturing, vol.73, pp.102257, 2022, doi: https://doi.org/10.1016/ j.rcim.2021. 102257.
- Z. Liu, T. Zou, W. Sun, Y.S. Lu, “Impedance control of grinding robot based on real-time optimization genetic algorithm,” Control theory and applications, vol.35, pp.1788-1795, 2018, doi: 10.7641/CTA.2018.80542.
- Z. Liu, R. Song, T. Zou, “End force tracking control algorithm of grinding robot based on model predictive control,” Journal of Shandong University( Engineering Science), vol.48, pp.42-49, 2018, doi:10. 6040 /j.issn.1672-3961. 0. 2017. 569.
- J. M. Ge, C. H. Deng, W. Li, C. Y. Li, X. Chen, D. P. Peng, “Research progresses of robot grinding and polishing force compliance controls,” China Mechanical Engineering, vol.32, no.18, pp. 2217-2230, 2021, doi:10.3969/j.issn.1004-132X.2021.18.011.
- Y. Mohammadi, K. Ahmadi, ” Chatter in milling with robots with structural nonlinearity,” Mechanical Systems and Signal Processing, vol.167, no. Part A, pp.108523-1-18, 2022, doi: 10.1016/j.ymssp.2021.108523.
- J. Hua, H. Li, Y. Wang, N. Xi, “MDL-based control method for mobile robot with randomly varying time-delay,” IEEE Conf. Robotics and Automation, pp.1772-1777, 2011, doi: 10.1109/ICRA.2011.5979904.
- J. T. Yun, Y. Y. Liu, Q. L. Yang, H. Sang, ” Research on compensation strategy for induced forces of force feedback master manipulators,” China Mechanical Engineering, vol.28, no.10, pp.1156-1162, 2017, doi:10.3969/j.issn.1004-132X.2017.10.004.
- W. Ding, H. Wang, L. Cui, S. Tian, S. Wang, “Behavior planning of flapping-wing flying robot based on cluster analysis and motion description language,” Information and Control, vol.50, no. 01, pp. 102-112, 2021, doi:10.13976/ j.cnki.xk.2021.0211.