An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal

Journal Menu

Journal Browser

Special Issues

Special Issue on Multidisciplinary Sciences and Advanced Technology
Guest Editors: Prof. Paul Andrew
Deadline: 30 Novermber 2025

Special Issue on Computing, Engineering and Sciences
Guest Editors: Prof. Paul Andrew
Deadline: 30 April 2025

An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal

by Gonzalo Tapia 1 , Rodrigo Salas 1,2,3,4,* , Matías Salinas 1,2,3 , Carolina Saavedra 1,2 , Alejandro Veloz 1,2, Alexis Arriola 1,2, Steren Chabert 1,2,4 , Antonio Glaría 1

1 Escuela de Ingeniería C. Biomédica, Universidad de Valparaíso, Valparaíso, Chile.
2 Centro de Investigación y Desarrollo en Ingeniería en Salud, CINGS-UV, Universidad de Valparaíso, Valparaíso, Chile.
3 Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso, Chile.
4 Millennium Institute for Intelligent Healthcare Engineering, Santiago, Chile.

* Author to whom correspondence should be addressed.

Journal of Engineering Research and Sciences, Volume 1, Issue 4, Page # 161-174, 2022; DOI: 10.55708/js0104018

Keywords: Extreme Learning Machines, Adaptive Estimation, Biomedical Measurement, Photoplethysmography, Noninvasive treatment, Medical Devices

Received: 07 March 2022, Revised: 05 April 2022, Accepted: 06 April 2022, Published Online: 23 April 2022

APA Style

Tapia, G., Salas, R., Salinas, M., Saavedra, C., Veloz, A., Arriola, A., Chabert, S., & Glaría, A. (2022, April). An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal. Journal of Engineering Research and Sciences, 1(4), 161–174. https://doi.org/10.55708/js0104018

Chicago/Turabian Style

Tapia, Gonzalo, Rodrigo Salas, Matías Salinas, Carolina Saavedra, Alejandro Veloz, Alexis Arriola, Steren Chabert, and Antonio Glaría. “An Extreme Learning Machine for Blood Pressure Waveform Estimation Using the Photoplethysmography Signal.” Journal of Engineering Research and Sciences 1, no. 4 (April 2022): 161–74. https://doi.org/10.55708/js0104018.

IEEE Style

G. Tapia et al., “An Extreme Learning Machine for Blood Pressure Waveform Estimation using the Photoplethysmography Signal,” Journal of Engineering Research and Sciences, vol. 1, no. 4, pp. 161–174, Apr. 2022, doi: 10.55708/js0104018.

367 Downloads

Share Link