A Review on the Effect of Varied Sand Types in Concrete at High Temperature
by Samya Hachemi 1,* and Zine Elabidine Rahmouni 2
1 LARGHYDE Laboratory, Civil engineering department, University of Biskra, 07000, Algeria
2 Civil engineering department, University of Msila, 28000, Algeria
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 1, Issue 4, Page # 38-47, 2022; DOI: 10.55708/js0104005
Keywords: Aggregates, Behavior, Concrete, High temperature, Sand
Received: 23 February 2022, Revised: 03 April 2022, Accepted: 04 April 2022, Published Online: 12 April 2022
APA Style
Hachemi, S., & Rahmouni, Z. E. (2022, April). A Review on the Effect of Varied Sand Types in Concrete at High Temperature. Journal of Engineering Research and Sciences, 1(4), 38–47. https://doi.org/10.55708/js0104005
Chicago/Turabian Style
Hachemi, Samya, and Zine Elabidine Rahmouni. “A Review on the Effect of Varied Sand Types in Concrete at High Temperature.” Journal of Engineering Research and Sciences 1, no. 4 (April 2022): 38–47. https://doi.org/10.55708/js0104005.
IEEE Style
S. Hachemi and Z. E. Rahmouni, “A Review on the Effect of Varied Sand Types in Concrete at High Temperature,” Journal of Engineering Research and Sciences, vol. 1, no. 4, pp. 38–47, Apr. 2022, doi: 10.55708/js0104005.
In fact, aggregates in concrete generally occupied a considerable proportion of volume (60%-75%); sand constitutes about 30% to 50% of aggregates volume. It is well known that the nature of aggregates plays an important role on quality and properties of concrete. This suggests that the behavior of concrete exposed to high temperature is strongly linked to the nature and mineralogy of aggregates (coarse and fine aggregates). Furthermore, the description of the effect of high temperature on the components of concrete is intended to improve understanding of how concrete responds when it is exposed to elevated temperature. The fire performance of concrete depends on the thermal, physical and mechanical properties of its components. Sand can be classified into two groups according to its mineralogical nature: Siliceous and Calcareous, these two types of sand undergo different reactions when they are exposed to high temperature. Few studies have been published and showed that the nature of sand affects the concrete behavior at high temperature. This paper summaries the states-of-the-art studies on the mechanical and physical behavior of concrete made with different types of sand after being exposed to elevated temperature. It is revealed that the fire-response of concrete made with calcareous sand is different from that of concrete made with siliceous sand.
- C. De Sa, “Etude hydro-mécanique et thermo-mécanique du béton – Influence des gradients et des incompatibilités de déformation,” (Ph. D Thesis, Ecole Normale Supérieure de CACHAN, 2007).
- M. Bederina, Z. Makhloufi, A. Bounoua, T. Bouziani, M. Quéneudec, “Effect of partial and total replacement of siliceous river sand with limestone crushed sand on the durability of mortars exposed to chemical solutions,” Construction and Building Materials, vol. 47, pp. 146-158, 2013, doiI: 10.1016/j.conbuildmat.2013.05.037.
- T. Celik, K. Marar, “Effects of crushed stone dust on some properties of concrete,” Cement and Concrete Research, vol. 26, pp. 1121-1130, 1996, doi: 10.1016/0008-8846(96)00078-6.
- M. Yajurved Reddy, D. V. Swetha, S. K. Dhani, “Study on properties of concrete with manufactured sand as replacement to natural sand,” International Journal of Civil Engineering and Technology, vol. 6, pp. 29-42, 2015,
- N. Tebbal, Z. Rahmouni, “Influence of local sand on the physic-mechanical comportment and durability of high performance concrete,” Advances in Civil Engineering, vol. 8, pp. 1-10, 2016, doi: 10.1155/2016/3897064.
- T.T.H. Le, H. Boussa, F. Meftah, “Effect of aggregates morphology on the THM behaviour of concrete at high temperatures,” In: Proceedings of Fracture Mechanics of Concrete and Concrete Structures – High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications (FraMCoS-7), pp. 1758-1765, 2010.
- R. Felicetti, P.G. Gambarova, “Expertise and assessment of materials and structures after fire,” Int : fib bulletin 46: fire design of concrete structures-structural behaviour and assessment. International Federation for Structural Concrete (fib) 1rst ed, pp. 63-114, 2008, doi : doi.org/10.35789/fib.BULL.0046.
- I. Hager, T. Tracz, J. Śliwiński, K. Krzemień, “The influence of aggregate type on the physical and mechanical properties of high-performance concrete subjected to high temperature,” Fire and Materials, vol.40, no. 5, pp. 668-682, 2015, doi:10.1002/fam.2318.
- J-C. Mindeguia, P. Pimienta, H. Carré, C. La Borderie, “On the influence of aggregate nature on concrete behavior at high temperature,” European Journal of Environmental and Civil Engineering, vol. 16, pp. 236-253, 2012, doi:10.1080/19648189.2012.667682.
- Z. Xing, R. Hébert, A-L. Beaucour, B. Ledésert, A. Noumowé, “Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature,” Materials and Structures RILEM, vol. 47, pp. 1921-1940, 2014, doi: 10.1617/s11527-013-0161-y
- Z. P. Bazant, M. F. Kaplan, Concrete at High temperatures, Material properties and mathematical models, Concrete Design & Construction Series, 426 p. Longman Group Limited, 1996.
- G.A. Khoury, Y. Anderberg, K. Both, J. Fellinger, N.P. Hoj, C. Majorana, “Fire design of concrete structures-materials, structures and modeling,” State of art report, FIB Bulletin, N° 38, 2007, doi: 10.35789/fib.BULL.0038.
- J. Lee, K. Choi, K. Hong, “The effect of high temperature on color and residual compressive strength of concrete,” In: Proceedings of Fracture Mechanics of Concrete and Concrete Structures – High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications (FraMCoS-7), pp. 1772-1775, 2010.
- AFNOR French standardization P 18-554, Aggregates – Measurement of densities, porosity, absorption coefficient and water content of fine gravel and pebbles, French Association for Standardization (AFNOR), Tour Europe cedex 7 92049, Paris, 1990.
- S. Hachemi, A. Ounis, “The influence of sand nature on the residual physical and mechanical properties of concrete after exposure to elevated temperature,” European Journal of Environmental and Civil Engineering, vol. 23, pp. 1003-1018, 2019, doi: 10.1080/19648189.2017.1327893.
- ISO/TR 15655, Fire resistance – Tests for thermo-physical and mechanical properties of structural materials at elevated temperatures for fire engineering design, Technical report, Geneva, 2003.
- European Standard NF EN 12390-7, Test for hardened concrete Part 7: Density of concrete, ISSN 0335-3931, The French Association of Standardization (AFNOR), 11 avenue Francis de Pressensé 93571 Saint-Denis La Plaine Cedex, 2001.
- European Standard NF EN 12390-3, Test for hardened concrete Part 3: Compressive strength of test specimens, ISSN 0335-3931, The French Association of Standardization (AFNOR), 11 avenue Francis de Pressensé France 93571 Saint-Denis La Plaine Cedex, 2003.
- French Association for Standardization AFNOR P 18-418, Concrete – Sonic auscultation – measurement of the sonicwave transmission time in concrete, Tour Europe cedex 7 92080, Paris defense, 1989.
- B. A. Scherefler, D. Gawin, G. A. Khoury, C. E.Majorana, “Physical, Mathematical & numerical modeling,” Course on Effect of Heat on Concrete. International Centre for Mechanical Sciences (CISM), 2003.
- C. Alonso, C. Andrade, M. Castellote, G. A. Khoury, “Microstructure – Solid Phases,” Course on Effect of Heat on Concrete. International Centre for Mechanical Sciences (CISM), 2003.
- V. Wetzig, “Destruction mechanisms in concrete material in case of fire, and protection systems,” In: 4th Int. Conf. on Safety in Road & Rail Tunnels (SIRRT), pp. 281-290, 2001.
- J. P. Ingham, “Application of petrographic examination techniques to the assessment of fire-damaged concrete and masonry structures,” Materials Characterization, vol. 60, pp. 700-709, 2009, doi: 10.1016/j.matchar.2008.11.003.
- S. Hachemi, “Etude du comportement du béton soumis à haute température : Influence du type de béton et de la nature des constituants,” (Ph. D Thesis, Université de Biskra, 2015).
- S. Hachemi, A. Ounis, “L’influence de la nature du sable sur les propriétés physiques et mécaniques du béton soumis à haute température,” Courrier du Savoir, Université de Biskra, Algérie, vol. 24, pp. 151-162, 2017.
- Z. Xing, A-L. Beaucour, R. Hebert, A. Noumowe, B. Ledesert, “Influence of the nature of aggregates on the behaviour of concrete subjected to elevated temperature,” Cement and Concrete Research, vol. 41, pp. 392-402,2011, doi:10.1016/j.cemconres.2011.01.005.
- R. Niry, A-L. Beaucour, R. Hebert, A. Noumowe, B. Ledesert, R. Bodet, “Thermal stability of different siliceous and calcareous aggregates subjected to high temperature,” MATEC Web of Conferences,vol. 6, pp. 1-9, 2013, doi:10.1051/matecconf/20130607001.
- Z. Xing, R. Hébert, A-L. Beaucour, B. Ledésert, A.Noumowe, “Influence of chemical and mineralogical composition of concrete aggregates on their behaviour at elevated temperature,” Materials and Structures RILEM,vol. 47, pp. 1921-1940, 2013, doi : 10.1617/s11527-013-0161-y.
- M. Khattab, S. Hachemi, M.F. Al Ajlouni, “Evaluating the physical and mechanical properties of concrete prepared with recycled refractory brick aggregates after elevated temperatures’ exposure, ” Construction and Building Materials, 311, 2021, https://doi.org/10.1016/j.conbuildmat.2021.125351
- Tsymbrovska, “Effect of heating–cooling cycles on transient creep strain of high performance,” high strength and ordinary concrete under service and accidental conditions materials and structures,vol. 48, pp. 1561-1579, 1998, doi : 10.1617/s11527-014-0254-2.
- N. Tebbal, Z. RAHMOUNI, M. Maza, “Combined effect of silica fume and additive on the behavior of high performance concretes subjected to high temperatures,” mining science, vol. 24, pp. 129-145, 2017, doi : 10.5277/msc172408.
- I. Hager, “Behaviour of cement concrete at high temperature,” Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 61, pp. 145-154, 2013, doi:10.2478/bpasts-2013-0013.
- S. Rao, K. Rahul, A. Pradesh, “Studies on bacterial concrete exposed to elevated temperatures and thermal cycles,” Studies, vol. 3, pp. 126-135, 2013.
- M. Belouadah, Z. Rahmouni, N. Tebbal, “Effects of glass powder on the characteristics of concrete subjected to high temperatures,” Advances in Concrete Construction, vol. 6, pp. 311:322, 2018, doi: 10.12989/acc.2018.6.3.311
- G. Verbeck, L.E. Copeland, “Some physical and chemical aspects of high pressure steam curing,” In: Menzel Symposium on High Pressure Steam Curing (ACI SP-32), pp. 1–131, 1972, doi:10.14359/6597.
- Z. Rahmouni, N. Tebbal, H. Haroun Abdellah, “Influence de la nature des granulats sur le comportement rhéologique du béton à hautes températures, ” MATEC Web of Conferences, vol. 01, pp. 04-11, 2014, doi: 10.1051/matecconf/20141101010.
- M. Khattab, S. Hachemi, H. Benzetta, “Assessment of quality of recycled brick concrete using Ultrasonic pulse velocity, ” ASPS Conference Proceedings, First International Conference on Energy, Thermofluids and Materials Engineering, ICETME 2021.
- Z. Xing, “Influence de la nature minéralogique des granulats sur leur comportement et celui du béton à haute température,” (Ph. D Thesis, Université de Cergy-Pontoise, 2011).
- G. I. Hager, “Comportement à haute température des bétons à haute performance – Evolution des principales propriétés mécaniques,” (Ph. D Thesis, Ecole Nationale des Ponts et Chaussées et l’Ecole Polytechnique de Cracovie, 2004).
- J-C. Mindeguia, “Contribution expérimentale a la compréhension des risques d’instabilité thermique des bétons,” (Ph. D Thesis, Université de Pau et des Pays de l’Adour, 2009).
- P. Pliya, “Contribution des fibres polypropylène et métalliques à l’amélioration du comportement du béton soumis à une température élevée,” (Ph. D Thesis, Université de Cergy-Pontoise, 2010).