Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production
Department of Chemical Engineering, Faculty of Engineering, Modibbo Adama University (MAU), P.M.B 2076, Yola, Adamawa State, Nigeria
* Author to whom correspondence should be addressed.
Journal of Engineering Research and Sciences, Volume 1, Issue 3, Page # 170-187, 2022; DOI: 10.55708/js0103018
Keywords: Biogas, Anaerobic digestion, Feedstock type, Bioreactor, Chicken manure
Received: 07 February 2022, Revised: 18 March 2022, Accepted: 23 March 2022, Published Online: 28 March 2022
AMA Style
Abubakar AM. Biodigester and feedstock type: Characteristic, selection, and global biogas production. Journal of Engineering Research and Sciences. 2022;1(3):170-187. doi:10.55708/js0103018
Chicago/Turabian Style
Abubakar, Abdulhalim Musa. “Biodigester and Feedstock Type: Characteristic, Selection, and Global Biogas Production.” Journal of Engineering Research and Sciences 1, no. 3 (2022): 170–87. https://doi.org/10.55708/js0103018.
IEEE Style
A. M. Abubakar, “Biodigester and feedstock type: Characteristic, selection, and global biogas production,” Journal of Engineering Research and Sciences, vol. 1, no. 3, pp. 170–187, 2022.
This work aims at providing factual details necessary for the utilization of diverse feedstock for anaerobic digestion (AD) to produce biogas using either conventional or non-conventional types of digesters. This is necessary as different substrates had peculiar merits or potentials of biogas production due to their unique characteristics. Selection of right feedstock is usually based on sustainability, quantity, output requirement, availability and metallic nutrient content apart from digester type which is affected by the weather condition of the location among other factors. Global biogas production is increasing annually, especially in areas of biogas utilization for electricity generation, heating and fuel for transportation.
- O. Khayal, “Main types and applications of biogas plants,” Nile Valley University, pp. 1–11, 2019, doi:10.13140/RG.2.2.32559.69287.
- K. Hagos et al., “Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 1485–1496, 2017, doi:http://dx.doi.org/10.1016/j.rser.2016.11.184.
- I. A. Raja, S. Wazir, “Biogas production: The fundamental processes,” Universal Journal of Engineering Science, vol. 5, no. 2, pp. 29–37, 2017, doi:10.13189/ujes.2017.050202.
- M. R. Atelge et al., “Biogas production from organic waste: Recent progress and perspectives,” Waste and Biomass Valorization, vol. 11, pp. 1–22, 2018, doi:10.1007/s12649-018-00546-0.
- J. Kainthola, A. S. Kalamdhad, V. V Goud, “A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques,” Process Biochemistry, vol. 84, pp. 81–90, 2019, doi:10.1016/j.procbio.2019.05.023.
- A. M. Uche et al., “Design and construction of fixed dome digester for biogas production using cow dung and water hyacinth,” African Journal of Environmental Science and Technology, vol. 14, no. 1, pp. 15–25, 2020, doi:10.5897/AJEST2019.2739.
- I. Koniuszewska et al., “Intensification of biogas production using various technologies: A review,” International Journal of Energy Research, vol. 44, no. 8, pp. 6240–6258, 2020, doi:10.1002/er.5338.
- N. Sawyerr et al., “An overview of biogas production: Fundamentals, applications and future research,” International Journal of Energy Economics and Policy, vol. 9, no. 2, pp. 105–116, 2019, doi:10.32479/ijeep.7375.
- R. L. Granado et al., “Technology overview of biogas production in anaerobic digestion plants: A European evaluation of research and development,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 44–53, 2017, doi:10.1016/j.rser.2017.05.079.
- B. Bharathiraja et al., “Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 570–582, 2018, doi:10.1016/j.rser.2018.03.093.
- T. Chowdhury et al., “Latest advancements on livestock waste management and biogas production: Bangladesh’s perspective,” Journal of Cleaner Production, vol. 272, no. 122818, pp. 1–20, 2020, doi:https://doi.org/10.1016/j.jclepro.2020.122818.
- S. A. Neshat et al., “Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production,” Renewable and Sustainable Energy Reviews, vol. 79, pp. 308–322, 2017, doi:10.1016/j.rser.2017.05.137.
- M. Parsaee et al., “A review of biogas production from sugarcane vinasse,” Biomass and Bioenergy, vol. 122, pp. 117–125, 2019, doi:10.1016/j.biombioe.2019.01.034.
- A. Wu et al., “A spreadsheet calculator for estimating biogas production and economic measures for UK-based farm-fed anaerobic digesters,” Bioresource Technology, vol. 220, pp. 479–489, 2016, doi:10.1016/j.biortech.2016.08.103.
- N. Sahu et al., “Evaluation of biogas production potential of kitchen waste in the presence of spices,” Waste Management, vol. 70, pp. 236–246, 2017, doi:10.1016/j.wasman.2017.08.045.
- M. Westerholm, A. Schnürer, Microbial responses to different operating practices for biogas production systems (Uppsala, Sweden: InTech Open, 2019).
- Z. Lenkiewicz, M. Webster, “How to convert organic waste into biogas: A step-by-step guide.” wasteaid.org.uk/toolkit . (accessed: 14-Aug-2021).
- M. Khalil et al., “Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia,” Renewable and Sustainable Energy Reviews, vol. 105, pp. 323–331, 2019, doi:10.1016/j.rser.2019.02.011.
- Y. Lahlou, Design of a biogas pilot unit for Al Akhawayn University (School of Science and Engineering, 2017).
- M. M. Ali et al., “Mapping of biogas production potential from livestock manures and slaughterhouse waste: A case study for African countries,” Journal of Cleaner Production, vol. 256, no. 120499, pp. 1–18, 2020, doi:https://doi.org/10.1016/j.jclepro.2020.120499.
- Martina Pilloni and Tareq Abu Hamed, “Small-size biogas technology applications for rural areas in the context of developing countries,” in Anaerobic digestion in built environments, ed Anna Sikora (IntechOPen, 2021), 24, doi:http://dx.doi.org/10.5772/intechopen.96857.
- M. A. Fahriansyah, Sriharti, “Design of conventional mixer for biogas digester,” IOP Conference Series: Earth and Environmental Science, pp. 1–8, 2019, doi:10.1088/1755-1315/277/1/012017.
- IRENA, “Measuring small-scale biogas capacity and production.” Abu Dhabi, United Arab Emirates, 2016.
- E. W. Gabisa, S. H. Gheewala, “Potential, environmental, and socio-economic assessment of biogas production in Ethiopia: The case of Amhara regional state,” Biomass and Bioenergy, vol. 122, pp. 446–456, 2019, doi:10.1016/j.biombioe.2019.02.003.
- A. F. Akintade, “Biogas a viable source of energy: Case study, Nigeria,” (Centria University of Applied Sciences, 2021).
- O. Raymond, U. Okezie, “The significance of biogas plants in Nigeria’s energy strategy,” Journal of Physical Sciences and Innovation, vol. 3, pp. 11–17, 2011.
- R. J. Patinvoh et al., “Innovative pretreatment strategies for biogas production,” Bioresource Technology, vol. 224, pp. 13–24, 2016, doi:10.1016/j.biortech.2016.11.083.
- S. M. A. Abuabdou et al., “A review of anaerobic membrane bioreactors (AnMBR) for the treatment of highly contaminated land fill leachate and biogas production: Effectiveness, limitations and future perspectives,” Journal of Cleaner Production, vol. 255, no. 120215, pp. 1–12, 2020, doi:10.1016/j.jclepro.2020.120215.
- M. C. Caruso et al., “Recent updates on the use of agro-food waste for biogas production,” Applied Sciences, vol. 9, no. 6, pp. 1–29, 2019, doi:10.3390/app9061217.
- M. Westerholm, T. Liu, A. Schnürer, “Comparative study of industrial-scale high-solid biogas production from food waste: Process operation and microbiology,” Bioresource Technology, vol. 304, pp. 122–981, 2020, doi:10.1016/j.biortech.2020.122981.
- S. Mirmohamadsadeghi et al., “Biogas production from food wastes: A review on recent developments and future perspectives,” Bioresource Technology Reports, vol. 7, no. 100202, pp. 1–37, 2019, doi:10.1016/j.biteb.2019.100202.
- M. A. Aziz et al., “Recent advances on palm oil mill effluent ( POME ) pretreatment and anaerobic reactor for sustainable biogas production,” Renewable and Sustainable Energy Reviews, vol. 119, no. 109603, pp. 1–31, 2019, doi:https://doi.org/10.1016/j.rser.2019.109603.
- E. I. Dhimain, S. C. Izah, “Potential of biogas production from palm oil mills effluent in Nigeria,” Sky Journal of Soil Science and Environmental Management (SJSSEM), vol. 3, no. 5, pp. 50–58, 2014.
- M. Bakraoui et al., “Biogas production from recycled paper mill wastewater by UASB digester: Optimal and mesophilic conditions,” Biotechnology Reports, vol. 25, pp. 1–8, 2020, doi:10.1016/j.btre.2019.e00402.
- V. J. Brown, “Biogas: A bright idea for Africa,” Environmental Health Perspectives, vol. 114, no. 5, pp. 300–303, 2006.
- A. M. Mshandete, W. Parawira, “Biogas technology research in selected sub-Saharan African countries-A review,” African Journal of Biotechnology, vol. 8, no. 2, pp. 116–125, 2009.
- R. F. T. Tagne et al., “Technologies, challenges and perspectives of biogas production within an agricultural context: The case of China and Africa,” Environment, Development and Sustainability, vol. 23, pp. 14799–14826, 2021, doi:https://doi.org/10.1007/s10668-021-01272-9.
- A. I. Aigbodion et al., “Viability of biogas production from manure/biomass in Nigeria using fixed dome digester,” Universal Journal of Agricultural Research (UJAR), vol. 6, no. 1, pp. 1–8, 2018, doi:10.13189/ujar.2018/060101.
- E. M. M. Esteves et al., “Life cycle assessment of manure biogas production: A review,” Journal of Cleaner Production, vol. 219, pp. 411–423, 2019, doi:10.1016/j.jclepro.2019.02.091.
- Ł. Małgorzata, J. Frankowski, “The biogas production potential from silkworm waste,” Waste Management, vol. 79, pp. 564–570, 2018, doi:10.1016/j.wasman.2018.08.019.
- K. Chaump et al., “Leaching and anaerobic digestion of poultry litter for biogas production and nutrient transformation,” Elsevier, vol. 84, pp. 413–422, 2018, doi:10.1016/j.wasman.2018.11.024.
- H. Wang et al., “Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production,” Energy, vol. 165, pp. 411–418, 2018, doi:10.1016/j.energy.2018.09.196.
- C. Mulinda, Q. Hu, K. Pan, “Dissemination and problems of African biogas technology,” Energy and Power Engineering, vol. 5, pp. 506–512, 2013, doi:http://dx.doi.org/10.4236/epe.2013.58055.
- M. N. Usman, M. A. Suleiman, M. I. Binni, Anaerobic digestion of agricultural wastes: A potential remedy for energy shortfalls in Nigeria, vol. 4, no. 1, (Scholarena, 2021).
- M. B. Biodun, O. S. I. Fayomi, J. O. Okeniyi, “The possibility of biogas production in Nigeria from organic waste material: A review,” International Conference on Engineering for Sustainable World (ICESW 2020): Material Science and Engineering, vol. 1107, no. 012166, pp. 1–9, 2020, doi:10.1088/1757-899X/1107/1/012166.
- T. M. Simeon, “Techno-economic analysis of a model biogas plant for agricultural applications: A case study of the Concordia Farms Limited, Nonwa, Tai, Rivers State,” (University of Nigeria, Nsukka, 2009).
- S. M. M. N. Dehkordi et al., “Investigation of biogas production potential from mechanical separated municipal solid waste as an approach for developing countries (case study: Isfahan-Iran),” Renewable and Sustainable Energy Reviews, vol. 119, no. 109586, pp. 1–12, 2020, doi:10.1016/j.rser.2019.109586.
- J. Liebetrau et al., Potential and utilization of manure to generate biogas in seven countries (IEA Bioenergy Task 37, 2021).
- T. M. Thompson, B. R. Young, S. Baroutian, “Advances in the pretreatment of brown macroalgae for biogas production,” Fuel Processing Technology, vol. 195, no. 106151, pp. 1–12, 2019, doi:10.1016/j.fuproc.2019.106151.
- S. Achinas, G. J. W. Euverink, “Elevated biogas production from the anaerobic co-digestion of farmhouse waste: Insight into the process performance and kinetics,” Waste Management & Research, vol. 37, no. 12, pp. 1240–1249, 2019, doi:10.1177/0734242X19873383.
- C. P. C. Bong et al., “The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion– A review,” Journal of Cleaner Production, vol. 172, pp. 1545–1558, 2017, doi:10.1016/j.jclepro.2017.10.199.
- S. Tanigawa, “Fact Sheet | Biogas: Converting Waste to Energy Tags / Keywords.” www-eesi-org-papers-view-fact-sheet-biogasconverting-waste-to-energy . (accessed: 14-Aug-2021).
- N. I. H. Abdul Aziz, M. M. Hanafiah, M. Y. M. Ali, “Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income,” Renewable Energy, vol. 132, pp. 363–369, 2018, doi:10.1016/j.renene.2018.07.149.
- Q. Yu et al., “A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China,” Renewable and Sustainable Energy Reviews, vol. 107, pp. 51–58, 2019, doi:10.1016/j.rser.2019.02.020.
- V. Wyman et al., “Lignocellulosic waste valorisation strategy through enzyme and biogas production,” Bioresource Technology, vol. 247, pp. 402–411, 2018, doi:10.1016/j.biortech.2017.09.055.
- F. Kemausuor, M. S. Adaramola, J. Morken, “A review of commercial biogas systems and lessons for Africa,” Energies, vol. 11, no. 2984, pp. 1–21, 2018, doi:10.3390/en11112984.
- S. K. Srivastava, “Advancement in biogas production from the solid waste by optimizing the anaerobic digestion,” Waste Disposal & Sustainable Energy, vol. 2, no. 2, pp. 85–103, 2020, doi:10.1007/s42768-020-00036-x.
- E. P. Akhator, D. I. Igbinomwanhia, A. I. Obanor, “Potentials for commercial production of biogas from domestic food waste generated in Benin Metropolis, Nigeria,” Journal of Applied Sciences and Environmental Management (JASEM), vol. 20, no. 2, pp. 369–373, 2016, doi:http://dx.doi.org/10.4314/jasem.v20i2.19.
- Z. Kong et al., “Large pilot-scale submerged anaerobic membrane bioreactor for the treatment of municipal wastewater and biogas production at 25◦C,” Bioresource Technology, vol. 319, pp. 1–12, 2021, doi:10.1016/j.biortech.2020.124123.
- C. Rodriguez et al., “Mechanical pretreatment of waste paper for biogas production,” Waste Management, vol. 68, pp. 157–164, 2017, doi:10.1016/j.wasman.2017.06.040.
- F. O. Olanrewaju et al., “Bioenergy potential in Nigeria,” Chemical Engineering Transactions, vol. 74, pp. 61–66, 2019.
- G. Mancini et al., “Increased biogas production from wheat straw by chemical pretreatments,” Renewable Energy, vol. 119, pp. 608–614, 2018, doi:10.1016/j.renene.2017.12.045.
- A. M. A. Mohammed, F. M. A. Kabbashi, H. K. A. Hamad, “Production of biogas from biomedical waste (blood),” (Sudan University of Science and Technology, 2017).
- D. Elalami et al., “Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends,” Renewable and Sustainable Energy Reviews, vol. 114, no. 109287, pp. 1–23, 2019, doi:10.1016/j.rser.2019.109287.
- O. Tomori, “Feasibility study of a large scale biogas plant in Lagos, Nigeria,” (Murdoch University of Western Australia, 2012).
- A. Nsair et al., “Operational parameters of biogas plants: A review and evaluation study,” Energies, vol. 13, no. 15, pp. 1–27, 2020, doi:10.3390/en13153761.
- S. Sarker et al., “A review of the role of critical parameters in the design and operation of biogas production plants,” Applied Sciences, vol. 9, no. 9, pp. 1–38, 2019, doi:10.3390/app9091915.
- S. K. Pramanik et al., “The anaerobic digestion process of biogas production from food waste: Prospects and constraints,” Bioresource Technology Reports, vol. 8, pp. 1–38, 2019, doi:10.1016/j.biteb.2019.100310.
- S. Sarto, R. Hildayati, I. Syaichurrozi, “Effect of chemical pretreatment using sulfuric acid on biogas production from water hyacinth and kinetics,” Renewable Energy, vol. 132, pp. 335–350, 2019, doi:10.1016/j.renene.2018.07.121.
- V. A. Mazur et al., “Agroecological prospects of using corn hybrids for biogas production,” Agronomy Research, vol. 18, no. 1, pp. 177–182, 2020, doi:https://doi.org/10.15159/ar.20.016.
- H. Gebretsadik, S. Mulaw, G. Gebregziabher, “Qualitative and quantitative feasibility of biogas production from kitchen waste,” American Journal of Energy Engineering, vol. 6, no. 1, pp. 1–5, 2018, doi:10.11648/j.ajee.20180601.11.
- H. T. T. Nong et al., “Development of sustainable approaches for converting the agro-weeds Ludwigia hyssopifolia to biogas production,” Biomass Conversion and Biorefinery, pp. 1–9, 2020, doi:https://doi.org/10.1007/s13399-020-01083-4.
- S. Wacławek et al., “Disintegration of wastewater activated sludge (WAS) for improved biogas production,” Energies, vol. 12, no. 21, pp. 1–15, 2019, doi:10.3390/en12010021.
- W. Cao et al., “Hydrogen production from supercritical water gasification of chicken manure,” International Journal of Hydrogen Energy, pp. 1–10, 2016, doi:10.1016/j.ijhydene.2016.09.031.
- A. Abraham et al., “Pretreatment strategies for enhanced biogas production from lignocellulosic biomass,” Bioresource Technology, vol. 301, no. 122725, pp. 1–13, 2020, doi:10.1016/j.biortech.2019.122725.
- S. Ali et al., “Evaluating the co-digestion effects on chicken manure and rotten potatoes in batch experiments,” International Journal of Biosciences (IJB), vol. 10, no. 6, pp. 150–159, 2017, doi:10.12692/ijb/10.6.150-159.
- B. Venturin et al., “Effect of pretreatments on corn stalk chemical properties for biogas production purposes,” Bioresource Technology, vol. 266, pp. 1–36, 2018, doi:10.1016/j.biortech.2018.06.069.
- S. Mirmohamadsadeghi et al., “Pretreatment of lignocelluloses for enhanced biogas production: A review on influencing mechanisms and the importance of microbial diversity,” Renewable and Sustainable Energy Reviews, vol. 135, no. 110173, pp. 1–19, 2021, doi:10.1016/j.rser.2020.110173.
- M. Tabatabaei et al., “A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies,” Renewable Energy, vol. 146, pp. 1204–1220, 2019, doi:https://doi.org/10.1016/j.renene.2019.07.037.
- A. A. Rajput, C. Visvanathan, “Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw,” Journal of Environmental Management, vol. 221, pp. 45–52, 2018, doi:10.1016/j.jenvman.2018.05.011.
- S. P. Lohani et al., “Anaerobic co-digestion of food waste, goat and chicken manure for sustainable biogas production,” International Journal of Energy Applications and Technologies, vol. 7, no. 4, pp. 120–125, 2020, doi:10.31593/ijeat.748982.
- K. Dalk, A. Ugurlu, “Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system,” Journal of Bioscience and Bioengineering, vol. xx, no. xx, pp. 1–8, 2015, doi:10.1016/j.jbiosc.2015.01.021.
- N. Duan et al., “Performance evaluation of mesophilic anaerobic digestion of chicken manure with algal digestate,” Energies, vol. 11, no. 1829, pp. 1–11, 2018, doi:10.3390/en11071829.
- M. A. K. B. D. T. T. Onay, “Enhanced biogas production from chicken manure via enzymatic pretreatment,” Journal of Material Cycles and Waste Management, no. 0123456789, 2020, doi:10.1007/s10163-020-01039-w.
- T. Keskin et al., “The determination of the trace element effects on basal medium by using the statistical optimization approach for biogas production from chicken manure,” Waste and Biomass Valorization, vol. 0, no. 0, pp. 1–10, 2018, doi:10.1007/s12649-018-0273-2.
- W. Fuchs et al., “Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 186–199, 2020, doi:10.1016/j.rser.2018.08.038.
- N. A. Noori, Z. Z. Ismail, “Process optimization of biogas recovery from giant reed (Arundo donax) alternatively pretreated with acid and oxidant agent: Experimental and kinetic study,” Biomass Conversion and Biorefinery, pp. 1–15, 2019, doi:https://doi.org/10.1007/s13399-019-00481-7.
- Y. Li et al., “Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions,” Bioresource Technology, vol. 149, pp. 406–412, 2013, doi:http://dx.doi.org/10.1016/j.biortech.2013.09.091.
- M. Hassan et al., “Methane enhancement through co-digestion of chicken manure and oxidative cleaved wheat straw: Stability performance and kinetic modeling perspectives,” Energy, vol. 141, pp. 2314–2320, 2017, doi:https://doi.org/10.1016/j.energy.2017.11.110.
- Y. K. Li, X. M. Hu, L. Feng, “Characteristics of biogas production via high-temperature dry fermentation of chicken manure,” Applied Ecology and Environmental Research, vol. 18, no. 4, pp. 4883–4895, 2020, doi:http://dx.doi.org/10.15666/aeer/1804_48834895.
- D. Cheong, J. Kim, C. Lee, “Improving biomethanation of chicken manure by co-digestion with ethanol plant effluent,” International Journal of Environmental Research and Public Health, vol. 16, no. 5023, pp. 1–10, 2019, doi:10.3390/ijerph16245023.
- L. Zhang, K. Loh, J. Zhang, “Enhanced biogas production from anaerobic digestion of solid organic wastes: Current status and prospects,” Bioresource Technology Reports, vol. 5, pp. 280–296, 2019, doi:10.1016/j.biteb.2018.07.005.
- B. Shamurad et al., “Stable biogas production from single-stage anaerobic digestion of food waste,” Applied Energy, vol. 263, no. 114609, pp. 1–37, 2019, doi:http://dx.doi.org/10.17632/6wnfvkz6gb.1.
- M. Tabatabaei et al., “A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies,” Renewable Energy, vol. 146, pp. 1392–1407, 2019, doi:https://doi.org/10.1016/j.renene.2019.07.047.
- A. Abdelhay, L. Al-Hasanat, A. Albsoul, “Anaerobic co-digestion of cattle manure and raw algae: Kinetic study and optimization of methane potential by RSM,” Pol. Journal of Environmental Studies, vol. 30, no. 2, pp. 1029–1037, 2021, doi:10.15244/pjoes/125523.
- S. Zhao et al., “Anaerobic co-digestion of chicken manure and cardboard waste: Focusing on methane production, microbial community analysis and energy evaluation,” Bioresource Technology, vol. 321, no. 12449, pp. 1–11, 2021, doi:https://doi.org/10.1016/j.biortech.2020.124429.
- N. A. D. Cahyono et al., “Anaerobic co-digestion of chicken manure with energy crop residues for biogas production,” IOP Conference Series: Earth and Environmental Science, pp. 765, 2021, doi:10.1088/1755-1315/765/1/012044.
- E. Mehryar et al., “Anaerobic co-digestion of oil refinery wastewater and chicken manure to produce biogas, and kinetic parameters determination in batch reactors,” Agronomy Research, vol. 15, no. 5, pp. 1983–1996, 2017, doi:https://doi.org/10.15159/AR.17.072.
- C. Li et al., “Assessment of regional biomass as co-substrate in the anaerobic digestion of chicken manure: Impact of co-digestion with chicken processing waste, seagrass and Miscanthus,” Biochemical Engineering Journal, pp. 1–38, 2016, doi:http://dx.doi.org/doi:10.1016/j.bej.2016.11.008.
- J. Shena et al., “Biogas production from anaerobic co-digestion of durian shell with chicken, dairy, and pig manures,” Energy Conversion and Management, pp. 1–10, 2018, doi:https://doi.org/10.1016/j.enconman.2018.06.099.
- A. Bayrakdar et al., “Biogas production from chicken manure: Co-digestion with spent poppy straw,” International Biodeterioration & Biodegradation, pp. 1–6, 2016, doi:http://dx.doi.org/10.1016/j.ibiod.2016.10.058.
- A. M. Abubakar, M. U. Yunus, “Reporting biogas data from various feedstock,” International Journal of Formal Sciences: Current and Future Research Trends (IJFSCFRT), vol. 11, no. 1, pp. 23–36, 2021, doi:10.5281/zenodo.6366775.
- C. C. Ngumah et al., “Biogas potential of organic waste in Nigeria,” Journal of Urban and Environmental Engineering (JUEE), vol. 7, no. 1, pp. 110–116, 2013, doi:10.4090/juee.2013.v7n1.110116.
- S. Theuerl, J. Klang, A. Prochnow, “Process disturbances in agricultural biogas production — Causes , mechanisms and effects on the biogas microbiome: A review,” Energies, vol. 12, no. 3, pp. 1–20, 2019, doi:10.3390/en12030365.
- W. Fuchs et al., “Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China,” Renewable and Sustainable Energy Reviews, vol. 97, pp. 186–199, 2018, doi:10.1016/j.rser.2018.08.038.
- P. Baltrėnas, V. Kolodynskij, D. Urbanas, “Biogas production from chicken manure at different organic loadings using a special zeolite additive (ZeoVit sorbent),” Journal of Renewable Sustainable Energy, vol. 11, no. 063101, pp. 1–11, 2019, doi:10.1063/1.5119840.
- B. Stürmer et al., “Agricultural biogas production: A regional comparison of technical parameters,” Renewable Energy, vol. 164, pp. 171–182, 2021, doi:10.1016/j.renene.2020.09.074.
- J. Maroušek et al., “Advances in the agrochemical utilization of fermentation residues reduce the cost of purpose-grown phytomass for biogas production,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, pp. 1–11, 2020, doi:10.1080/15567036.2020.1738597.
- B. K. McCabe, T. Schmidt, Integrated Biogas Systems: Local Applications of Anaerobic Digestion Towards Integrated Sustainable Solutions (Queensland, Australia: IEA Bioenergy, 2018).
- HomeBioGas, “What is Biogas? A Beginner’s Guide.” www.homebiogas.com/what-is-biogas-a-beginners-guide- . (accessed: 13-Aug-2021).
- G. Cayci, C. Temiz, S. S. Ok, “The effects of fresh and composted chicken manures on some soil characteristics,” Communications in Soil Science and Plant Analysis, vol. 00, no. 00, pp. 1–11, 2017, doi:10.1080/00103624.2017.1373794.
- K. A. Korys et al., “The review of biomass potential for agricultural biogas production in Poland,” Sustainability, vol. 11, no. 6515, pp. 1–13, 2019, doi:10.3390/su11226515.
- I. F. S. dos Santos et al., “Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement,” Resources, Conservation & Recycling, vol. 131, pp. 54–63, 2018, doi:10.1016/j.resconrec.2017.12.012.
- Y. Y. Choong, K. W. Chou, I. Norli, “Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2993–3006, 2018, doi:10.1016/j.rser.2017.10.036.
- N. Izzah et al., “A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia,” Biomass and Bioenergy, vol. 122, pp. 361–374, 2019, doi:10.1016/j.biombioe.2019.01.047.
- N. I. H. A. Aziz, M. M. Hanafiah, “Life cycle analysis of biogas production from anaerobic digestion of palm oil mill ef fl uent,” Renewable Energy, vol. 145, pp. 847–857, 2020, doi:10.1016/j.renene.2019.06.084.
- J. Piekutin et al., “The efficiency of the biogas plant operation depending on the substrate used,” Energies, vol. 14, no. 3157, pp. 1–12, 2021, doi:https://doi.org/10.3390/ en14113157.
- I. Yerima et al., “The influence of proximate composition of cow dung on the rate and volume of biogas generation in Maiduguri, North Eastern Nigeria,” International Journal of Environment, Agriculture and Biotechnology (IJEAB), vol. 4, no. 1, pp. 146–153, 2019, doi:http://dx.doi.org/10.22161/ijeab/4.1.24.
- A. Bulnes, “Anaerobic digestion and biogas plants in Africa: Integrated organic matter management for a sustainable agroindustrial sector.” 2017.
- U. Brémond et al., “Biological pretreatments of biomass for improving biogas production: An overview from lab scale to full-scale,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 583–604, 2018, doi:10.1016/j.rser.2018.03.103.
- A. M. Wanjohi, E. K. Irungu, “An overview of consumption of biogas in the context of Somalia,” International Journal of Environmental and Health Sciences (JEHS), vol. 2, pp. 1–4, 2021.
- J. O. Egbere et al., “Generation of biogas from segregates of municipal solid wastes in Jos, Nigeria,” Global Journal of Pure and Applied Sciences, vol. 17, no. 1, pp. 41–45, 2011.
- K. A. Adeniran et al., “Relative effectiveness of biogas production using poultry wastes and cow dung,” Agricultural Engineering International: CIGR, vol. 16, no. 1, pp. 126–132, 2014.
- A. J. Eferi, A. P. Aderemi, “Potential, barriers and prospects of biogas production in North-Central Nigeria,” 3rd International Engineering Conference (IEC 2019), pp. 1–6, 2019.
- I. A. Rufai, “A review of the evolution and development of anaerobic digestion technology,” Journal of Engineering and Technology (JET), vol. 5, no. 1, pp. 100–111, 2010.
- A. Z. Abdul, A. M. Abubakar, “Potential swing to natural gas-powered electricity generation,” International Journal of Natural Sciences: Current and Future Research Trends (IJNSCFRT), vol. 10, no. 1, pp. 27–36, 2021.
- L. Ioannou-ttofa et al., “Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer,” Journal of Cleaner Production, vol. 286, no. 125468, pp. 1–14, 2021, doi:10.1016/j.jclepro.2020.125468.
- M. Tanczuk et al., “Assessment of the energy potential of chicken manure in Poland,” Energies, vol. 12, no. 1244, pp. 1–18, 2019, doi:10.3390/en12071244.
- A. M. Wanjohi, E. K. Irungu, H. C. Gicheru, “Biogas program in Kenya: History, Challenges and Milestones,” International Journal of Environmental and Health Sciences (JEHS), vol. 2, pp. 1–3, 2022.
- P. K. Nimame, I. P. Nimame, R. A. Ekemube, “Importance of biogas utilization as alternative source in an energy deficit economy,” International Journal of Academic Information Systems Research (IJAISR), vol. 4, no. 12, pp. 17–21, 2020.
- R. Venkateshkumar, S. Shanmugam, A. R. Veerappan, “Anaerobic co-digestion of cow dung and cotton seed hull with different blend ratio: Experimental and kinetic study,” Biomass Conversion and Biorefinery, pp. 1–111, 2020, doi:https://doi.org/10.1007/s13399-020-01006-3.
- A. M. Abubakar, B. Iliyasu, Z. M. Sarkinbaka, “Detailed overview on POLYMATH software for chemical engineering analysis,” Journal of Engineering Research and Sciences (JENRS), vol. 1, no. 3, pp. 133–147, 2022, doi:https://doi.org/TBA.
- T. R. T. Yusof et al., “Evaluation of hydrogen and methane production from co-digestion of chicken manure and food waste,” Polish Journal of Environmental Studies, vol. 28, no. 4, pp. 1–11, 2019, doi:10.15244/pjoes/86222.
No. of Downloads per Month
Wrong shortcode initialized