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ABSTRACT: Accurate gemstone classification is critical to the gemstone and jewelry industry, and the
good performance of convolutional neural networks in image processing has received wide attention
in recent years. In order to better extract image content information and improve image classification
accuracy, a CNNs gemstone image classification algorithm based on deep multi-feature fusion is
proposed. The algorithm effectively deeply integrates a variety of features of the image, namely the
main color features extracted by the k-means++ clustering algorithm and the spatial position features
extracted by the denoising convolutional neural network. Experimental results show that the proposed
method provides competitive results in gemstone image classification, and the classification accuracy is
nearly 9% higher than that of CNN. By deeply integrating multiple features of the image, the algorithm
can provide more comprehensive and significant useful information for subsequent image processing.
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1. Introduction

Gemology research [1], mainly including gemstone classifi-
cation and identification of two areas, gemstone classifica-
tion is the core of Gemology research is also the premise of
gemstone identification, in the traditional classification of
gemstone is mainly to the naked eye and gemstone micro-
scope as the main tool, but with the progress of modern sci-
ence and technology, synthetic gemstone technology is also
constantly evolving, so that some of the optimized treatment
of gemstone features and natural gemstone the difference
is decreasing. Although complex instruments with strong
spectral, fluorescence, or chemical analysis capabilities are
increasingly being introduced into Gemology laboratories
[2], identification is still difficult and time-consuming, and
not all laboratories can specialize in precision instruments;
Therefore, automatic technical recognition based only on
images is attractive.

Computers and algorithms have come a long way in
recent years, and image processing and computer vision
tasks are common in many areas such as medical imaging,
manufacturing, and security [3]. Image classification as one
of the key technologies has also made great progress, mainly
traditional methods and image classification methods based
on deep learning. Traditional classification methods such
as random forests, decision trees, and support vector ma-
chines all have a good classification effect on natural images.
With the advent of big data and the rapid development
of artificial intelligence, classification methods based on
deep learning have become a hot topic in image classifica-
tion research, and are applied to remote sensing images

[4], medical images [5], and spectral images [6] and other
fields. Although computer vision systems have widespread
applications in many fields, there is only one study on the
automatic recognition of gemstone images [7]. To date, to
the author’s knowledge, there have been reports. Unseen
ruby, sapphire, and jadeite images are classified using arti-
ficial neural networks based on tonal channels in the HSV
color space with 75-100% accuracy per class. It’s important
to note that rubies, sapphires, and emeralds are very unique
in color and therefore relatively easy to distinguish, much
easier than similarly colored gemstone such as topaz and
aquamarine. Other computer vision studies in the context
of Gemology focus on gemstone evaluation [8, 9, 10] and
identification [11, 12]. The [13] is the first study to compare
a computer vision-based approach with the image-based
classification performance of trained Gemology on up to
68 types of gemstones. However, the method adopted is
cumbersome and the classification accuracy needs to be
improved.

In this paper, we propose a CNNs image classification
algorithm based on deep multi-feature fusion for automatic
image-based classification of gemstones. The work is first
described in section 2 . Section 3 introduces the structure
of the model we propose. The image dataset, experimental
environment, and experimental results and discussion are
detailed in section 4. Finally, further conclusions and ideas
are presented in section 5.

2. Related Work

Accurate gemstone classification is critical to the gemstone
and jewelry industry, as identification is an important first
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step in evaluating any gemstone [14]. Currently, the identity
of gemstone is determined by combining visual observation
and spectral chemical analysis [15]. By carefully viewing
the gemstone with the naked eye and a magnifying glass,
Gemology can detect visual characteristics such as color,
transparency, luster, fracture, cleavage, inclusions, poly-
chromaticity, phenomena, and birefringence to facilitate
the separation of the gemstone [16]. With the advent of
new synthetic gemstone and treatment techniques, complex
instruments with powerful spectral, fluorescence, or chemi-
cal analysis capabilities are increasingly being introduced
into Gemology laboratories [15]. Such instruments include
infrared spectrometers [16], Raman and luminescent spec-
trometers [1, 17, 18], ultraviolet-visible spectrometers [19],
cathodoluminescence [20], etc.

In the geological sciences, computer vision algorithms
have been developed for the study of mineral particles and
rocks [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. In [21], the
author segmented microscopic flakes using edge detection
and achieved up to 93.53% test accuracy when classifying 10
different minerals using artificial neural networks trained
on extracted color and texture features. The accuracy of
the report may be exaggerated because the same Biotite
examples are used for training and testing. In [22], the
author developed an artificial neural network that used the
red-green-blue (RGB) values of the pixels in the thin slices as
input to separate five minerals with 89.53% accuracy. In [23],
the author segmented flakes using incremental clustering
and mineral classification using cascading methods. Artifi-
cial neural networks were first used to distinguish 23 miner-
als and glass based on pixel color, and only minerals that
appeared similar in planar polarized and cross-polarized
light were passed to a second artificial neural network for
simultaneous color and texture analysis. This results in
an overall accuracy of 93.81%. In [24], the author demon-
strated that simple machine learning algorithms—K-Nearest
Neighbor and Decision Tree—were able to classify miner-
als in microscopic sheets with high average accuracy of
94.11-97.71% using two datasets for four and seventeen min-
eral types based on color and texture. In [25], microscopic
images containing eight mineral types and backgrounds
were segmented by simple linear iterative clustering and
classified based on RGB, hue-saturation-value (HSV) color
features , and CIELAB spaces using three machine learning
algorithms, K-Nearest Neighbour, Random Forest, and De-
cision Tree. The random forest algorithm yields the highest
accuracy of 82%. In [26], the author using inception-v3 fea-
tures extracted from microscopic images, the classification
of four minerals was studied using six different algorithms:
logistic regression, support vector machine, random forest,
K-nearest neighbor, multilayer perceptron, and naïve Bayes.
The support vector machine is identified as the single al-
gorithm that produces the highest accuracy (90.6%). The
Stacking Support Vector Machine, Logistic Regression, and
Multilayer Perceptron models further improved accuracy
by 0.3%.

3. Model

In order to better read the image content information, the
overall framework of the CNN network model of deep

multi-feature fusion is shown in Figure 1.
The input image is first convoluted to obtain the denois-

ing depth convolution feature, referred to as 𝑓𝑐 . The position
shape relationship information of the denoising space after
the multilayer convolutional neural network. The convo-
lutional layer contains multiple convolutional nuclei, each
of which is capable of extracting shape-dependent features,
and each neuron in the convolutional layer is connected to
multiple neurons adjacent to the location of the previous
layer, also known as the ’receptive field’ [31], thus relying on
the network to learn the contextual invariant features [32]:
Shape and spatial position feature information, which is
particularly useful for image classification. The main color
features 𝑓𝑙 of the input image are then extracted, using the
k-means++ clustering algorithm. Then, cascading 𝑓𝑐 and 𝑓𝑙 ,
construct deep-in-depth features 𝑓𝑚 .

Figure 1: General framework of CNNs network model for deep multi-
feature fusion

There are a total of four convolutional layers in the model
frame. The first convolutional layer is called the data feature
fusion layer, which fully fuses the denoising depth convolu-
tion and the main color feature. This is followed by a pooling
layer whose role is to reduce network parameters and speed
up fusion. The second convolutional layer is called the deep
feature fusion layer, which undergoes further feature fusion,
followed by a pooling layer. The third convolutional layer is
called the feature abstraction representation layer, and the
size of the convolutional kernel in this layer is changed from
5×5 in the first two convolutional layers to 3×3, which helps
to eliminate noise in the feature and improve the abstract
representation of the feature, followed by a pooling layer.
The fourth convolutional layer, called the feature advanced
presentation layer, helps eliminate redundant features and
improve representative features, followed by a pooling layer.
Three-layer fully connected layer for feature classification
and parameter optimization during backpropagation. At
the end of the network, the Softmax layer is used for clas-
sification. Softmax is a supervised learning method for
multi-classification problems [33, 34] that provides impor-
tant confidence levels for classification, where 0 indicates
the lowest confidence and 1 indicates the highest.
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3.1. The k-means++ clustering algorithm extracts the dominant
color features

The k-means++ clustering algorithm is a ’hard clustering’
algorithm, in which each sample in a dataset is scored 100%
into a category. In contrast, ’soft clustering’ can be under-
stood as a certain probability that each sample is sorted into
a certain category.

The original k-means algorithm initially randomly selects
k points in the dataset as cluster centers, while k-means++
selects 𝑘 cluster centers according to the following idea:
assuming that n initial cluster centers have been selected.

The k-means++ clustering algorithm [35] is described as
follows:

1. Randomly select a sample from the dataset as the
initial cluster center 𝑐𝑖 .

2. First calculate the shortest distance between each sam-
ple and the current existing cluster center (that is, the
distance from the nearest cluster center), expressed in
terms of representation 𝐷 ( 𝑥 ); The probability that
each sample will be chosen as the next cluster center
is then calculated (𝐷( 𝑥 ))2∑

𝑥∈𝑋
(𝐷( 𝑥 ))2

. Finally, the next cluster

center is selected according to the roulette method.

3. Repeat Step 2 until a common cluster center 𝑘 is se-
lected.

4. For each sample 𝑥(𝑖) in the dataset, calculate its dis-
tance to a cluster center 𝑘 and divide it into classes
corresponding to the cluster center with the smallest
distance.

5. For each category 𝑐(𝑖), recalculate its cluster center
𝑐𝑖 =

1
| 𝑐𝑖 |

∑
𝑥∈𝑐𝑖

𝑋 (i.e. the centroid of all samples belong-

ing to that class).

6. Repeat Steps 4 and Step 5 until the position of the
cluster center no longer changes.

3.2. Deep multi-feature fusion

Convolutional layers, nonlinearly activated transformations,
and pooled layers are the three basic components of CNNs.
By superimposing multiple convolutional layers with non-
linear operations and multiple pooling layers, a deep CNNs
can be formed, which extract input features in layers, with
invariance and robustness [36]. With specific architectures,
such as local connections and shared weights, CNNs tend to
have good generalization capabilities. Convolutional layers
with nonlinear operations [32] are as follows (1):

xl
j = f (

M∑
i=1

xl−1
i ∗kl

ij + bl
j ) (1)

Where the matrix 𝑥 𝑙−1
𝑖

is the ith feature map of the 𝑙 − 1
layer, 𝑥 𝑙

𝑗
is the 𝑗th feature map of the current layer 𝑙, and

𝑀 is the number of input feature maps. 𝑘 𝑖 𝑗
𝑙

and 𝑏 𝑙
𝑗
are ran-

domly initialized and set to zero, then fine-tuned precisely

by backpropagation. 𝑓 ( · ) is a nonlinear activation function,
and ∗ is a convolution operation.

The denoising depth convolution features 𝑓𝑐 of the net-
work structure output and the main color features extracted
by the k-means++ clustering algorithm 𝑓𝑙 are constructed
according to the cascading and features of (2) to construct
the deep integration features 𝑓𝑚 .

fm = 𝛼fc + 𝛽fl (2)

Due to the high characteristic dimensions and limited
training samples, overfitting is a serious problem that can
occur. To solve this problem, the Dropout [37] method
was used, which is a method of randomly deleting neurons
during learning in Figure 2. During training, every time
the data is passed, the neurons in the hidden layer are ran-
domly selected, and then deleted, and the deleted neurons
no longer transmit signals; During the test, although all
neuronal signals are transmitted, the output of each neuron
is multiplied by the deletion ratio at the time of training
before the output. Therefore, the deleted neurons are not
involved in forward transmission and are no longer used
in the backward propagation process. At different training
stages, deep networks form different neural networks by
randomly discarding neurons. The Dropout method pre-
vents complex co-adaptations, and neurons can learn more
correct features.

Figure 2: MCNN+ configuration

4. Experiment

4.1. Datasets

To verify the model orientation in this paper, a dataset of
gemstone images obtained from [38] was selected for analy-
sis. The dataset contains more than 3,200 images of different
gemstone. The images are divided into 87 categories, which
have been divided into training data and test data. Some of
these examples are shown in Figure 3. Images are obtained
under very different lighting and background color condi-
tions. A total of 2800 images were used for training and 400
images were reserved for testing. For each class, there are
24-44 training images and 4-5 test images available.

The Epoch of the CNNs network model with deep multi-
feature fusion is set to 50, the number of iterations is 8, and
the batch size is 1000 images. The convolutional kernel size
of the first convolutional layer is 5 *5, and the filter is 32;
The convolutional kernel size of the second convolutional
layer is 5*5, and the filter is 64; The convolutional kernel size
of the third and fourth convolutional layers is 3*3, and the
filter is 128. The convolution step is set to 1 and the fill is set
to 0. The pooling layer step size is set to 2, and the pooling
window size is 2*2. Finally, the Softmax layer has 10 neural
units, indicating that the images are divided into 10 classes.
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Figure 3: Partial image of the gemstone image dataset

The optimal solution is obtained by minimizing the loss
function. This study uses the cross-entropy error function
[14] as the loss function, which is expressed as (3):

Q = − 1
N

N∑
n=1

( (y)n (log)2 ((o)n) +
∼

(y)n (log)2
( ∼
𝑜𝑛

)
) (3)

Where the ∼
𝑦𝑛 = 1 − 𝑦𝑛 ,

∼
𝑜𝑛 = 1 − 𝑜𝑛 , Nnumber of samples

is trained for batch processing, 𝑦 is the true label value for
each sample, and 𝑜 is the actual output value of the network.

To optimize the loss function, an optimization method
is required, and the Adam optimizer is used for the exper-
iment [15]. Combine the advantages of two optimization
algorithms, AdaGrad and RMSProp. Considering the first-
order moment estimation (the mean of the gradient) and the
second-order moment estimation (the undercentric variance
of the gradient) of the gradient, the update step is calculated.

4.2. Experimental results and analysis

4.2.1. Evaluation function

To evaluate the performance of the algorithm, this paper
uses a training validation test scheme in which 80% of the
data is used as the training set and 20% as the test set. The
test accuracy rate is used to evaluate the performance of the
model and is expressed as (4):

Accuracy =
R
T

(4)

where: 𝑅 is the sample with the correct classification
and 𝑇 is the total sample.

4.2.2. Experimental results

In this study, a convolutional neural network that deeply
integrates the main color features with position and shape-
related features, referred to as MCNN+. The model training
results of MCNN+ are shown in the following Figure 4
and Figure 5. As can be seen from the Figure 4, the model
gradually reaches a steady state after iterative training. One
of the best classifications has an accuracy rate of 82%.

Figure 4: Model training results

Figure 5: Confusion matrix for model classification

4.2.3. Model Comparison

We also compares the MCNN+ model with several machine
learning models and deep learning models, as shown in the
following Table 1.

Table 1: Comparison of different model results

Methods Accuracy
CNN 0.721

Random Forest 0.694
Logistic Regression 0.687

SVM 0.669
Naive Bayes 0.627

InGG16 0.732
ResNet50 0.746
MCNN+ 0.810

As can be seen from the table, the model in this paper
can achieve the best classification results when classifying
the gemstone image data set. And it can be improved by
nearly 9% compared to the CNN model.
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5. Conclusion

In this study, we proposed a CNN gemstone image classifica-
tion algorithm with deep multi-feature fusion, which effec-
tively integrates the main color characteristics of gemstone
images with the spatial position and shape characteristics
extracted by convolutional neural networks. This approach
addresses the limitation of traditional CNN models, which
primarily focus on spatial position information and are less
sensitive to color information. Experimental results demon-
strate that MCNN+ not only significantly improves image
classification performance but also exhibits greater stability
and robustness. Additionally, our experiments show that
different weight values in the MCNN+ network models
have varying effects on experimental performance.

In future research, we aim to implement adaptive weight
mechanisms to further enhance the model’s performance.
Additionally, we plan to explore the integration of other
feature extraction techniques, such as texture and edge
detection, to enrich the feature set used for classification.
We will also investigate the application of this model to
other types of images and domains to test its versatility and
generalizability. Finally, leveraging advanced techniques
like transfer learning and self-supervised learning could
further optimize the model and reduce the reliance on large
labeled datasets.
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