
Special Issue on Multidisciplinary Sciences and Advanced Technology

Received: 12 July, 2024, Revised: 20 July, 2024, Accepted: 21 July, 2024, Online: 01 August, 2024

DOI: https://dx.doi.org/10.55708/js0308001

Dynamic and Partial Grading of SQL Queries
Benard Wanjiru∗, Patrick van Bommel, Djoerd Hiemstra
Radboud University, Nĳmegen, Postbus 9010 6500 GL Nĳmegen, The Netherlands
∗Corresponding author: Benard Wanjiru, email: benard.wanjiru@ru.nl

ABSTRACT: Automated grading systems can help save a lot of time when evaluating students’
assignments. In this paper we present our ongoing work for a model for generating correctness levels.
We utilize this model to demonstrate how we can grade students SQL queries employing partial grading
in order to allocate points to parts of the queries well written and to enable provision of feedback for
the missing parts. Furthermore, we show how we can grade the queries taking into account the skill
level of students at different stages of SQL learning process. We divide the stages into introductory,
intermediary, and advanced stages and in each apply different type of grading that takes account the
students’ knowledge at that stage. We implemented this model in our class and graded 5 quizzes
containing more than 25 different questions for 309 students. We discuss 3 examples for each stage and
offer comprehensive examples of the model in action.

KEYWORDS: Correctness Levels, Software Correctness, Automated Grading, Assessment, Partial
Marks, SQL Query Grading

1. Introduction

Partial grading in SQL software exercises is awarding a
selected portion or a fraction of a whole grade. It involves
giving points to parts whereby the student has done well or
deducting points to parts missed. An advantage of partial
grading is that we are able to acknowledge students’ efforts
by awarding points to the correct parts of a query. This helps
in protecting their motivation to learn [1]. Furthermore, we
are able to pinpoint the parts of a query the student has
missed. This helps in providing constructive feedback to
help the student improve on their work. Partial grading
systems which are able to carry out this form of grading have
been extensively researched [2, 3, 4, 5]. Nevertheless, these
systems do not address different skill levels of students at
various stages of the learning process. We propose a model
in which students’ skill levels are taken into consideration.
We refer to this as dynamic grading.

There are three types of knowledge acquired by students
in programming courses, syntactic, conceptual, and strate-
gic [6]. In our project, we broadly classify these groups of
knowledge into 2 types, syntactic and semantic [7, 8] as it
makes it manageable to translate our grading model into a
running program. Students learn well when taught syntax
and semantic knowledge in parallel while syntax knowl-
edge develops as a result on repetition [8]. Even though
this is the case, novice students might struggle more with
syntax during the introductory lessons than at the end [9].
Various methods have been proposed of how to teach SQL
in various steps. Some research proposes teaching SQL
in an increasing order of difficulty [10]. This order begins
from teaching ’SELECT’ syntax to recursive SQL at the end.
Other research proposes teaching SQL in a series of steps

involving building a query one clause at a time [11]. The
first clause would be SELECT followed by FROM clause
then WHERE clause and so on. A mental model in which
learners learn SQL starting with remembering SQL concepts
followed by comprehending the concepts with creating the
queries at the end have been proposed as well [12]. In the
various learning styles proposed, students are novice during
the start of the class struggling with syntax and at the end
have accumulated enough knowledge to write completely
semantically correct queries. We considered to utilize these
findings to grading as well. To this effect, our goals in this
paper are to demonstrate how we can:

• Assign a discrete level that shows how correct a query
is, in relation to an instructor’s specifications.

• Factor in students’ knowledge level when calculating
grades.

Also, to demonstrate whether:

• It is possible for an automated grading tool to match
the grades given by manual graders.

• If students consider an automated grading tool to be
fair.

In this context, a fair grade is a grade that matches the one
that would be given by an instructor. Furthermore, this
grading capability should be applied consistently to other
answers as well.

To factor in students’ knowledge level, we divided a full
programming course’s time into three stages. introductory
stage, intermediate stage, and the advanced stage. We used
syntax, semantics, and results as features for evaluation.
For each stage, these three features which we refer to as

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 1

https://dx.doi.org/10.55708/js0308001
mailto:benard.wanjiru@ru.nl
http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

properties were evaluated in parallel while varying their
individual weight to the whole grade. At the introductory
stage, syntax had more weight. Similarly, at the intermediate
stage, semantics had more weight than the other properties
and at the advanced stage, results had more weight.

To carry out partial grading, we used software correct-
ness levels and to enable dynamic grading, we used varying
weights for properties like syntax which addressed differ-
ent skills levels as we will see in this paper. We graded
more than 25 different SQL questions for 309 students using
different configurations of dynamic grading and we shall
discuss 3 of these questions.

1.1. Advantages of skill based grading

Grading students’ work while considering whether they are
novice or more advanced can have several advantages. This
is in comparison with grading the work of students who are
struggling with the new programming language and those
who are already familiar with or mastered it the same way.

1. Personalization and differentiation. Grading students
work while considering whether they are novice or
advanced would be considered as a personalized and
differentiated way. In this manner, novice students
are not penalized for not meeting a higher standard
as expected of the more advanced students.

2. Student motivation and engagement. By basing the
grading on the student knowledge level, their mo-
tivation to continue learning and engaging would
be protected. This is because, the students are able
to view learning the new programming language as
something within their capability.

3. Targeted feedback. Due to the differences between
novice students and advanced ones, specific feedback
can be constructed that caters to the differing needs of
both. Novice students may be more interested in the
language syntactic elements while advanced students
being more interested in semantic elements.

2. Related work

Partial grading systems have enabled awarding partial
points instead of strict 0 or 1 [2, 3, 4, 5]. Some systems
are even capable of generating datasets for testing [13]. The
limitation of these systems is that they employ inflexible
strategies to grade the queries. Our model is able to dynam-
ically grade queries based on the gradual learning process
of students. Furthermore, it has the flexibility of adding
or removing properties during grading depending on the
goals of the instructor.

Correctness levels have been used before to grade SQL
queries. Some research has used 8 different correctness
levels to partially grade queries [14]. Specifically, Dekeyser
et al. [14] use syntax, schema, results, and peer review to
grade the queries whereby each code feature is evaluated as
either correct or not. Of these 8 levels, 5 are automatically
awarded by the system while the rest require manual input.
Our model automatically awards 9 different levels using

syntax, semantics, and results, evaluating each feature using
three categories instead of two. Our model also allows more
levels by having the flexibility of adding more properties
and their outcomes.

Dynamic grading has been used in other areas apart
from SQL. For example, in gradual programming whereby
the students learn a programming language in well-defined
steps instead of learning everything at once [15].

Binary grading offers only two possible outcomes: cor-
rect and incorrect, which does not consider partial correct-
ness or incorrectness [16]. As a result, students may not
receive points for partially correct submissions. Providing
detailed feedback on the areas where students’ understand-
ing is lacking becomes impossible as well. This limitation
of binary grading gives rise to the need for partial grad-
ing. Our model offers more possible outcomes to enable
differentiation of errors.

There are differences between novice and expert pro-
grammers. As a result, various research has been proposed
which highlights these differences. It has been proposed
that expert programmers memorize source code better than
novice programmers [17]. In the proposal, the researchers
also argued that novices tend to memorize syntactic ele-
ments while expert programmers focus on the algorithm.
Expert programmers can solve a problem by abstracting
the algorithm while novices cannot [18]. As the expertise
increases, novice programmers gradually shift from focus-
ing on syntactic elements to the semantic ones [19]. This
may indicate that novice programmers are more focused on
the language syntax while experts focus on the semantics.
Differences among novices and experts have been argued
in other fields as well. For example, in physics, it has been
proposed that experts might use abstraction to solve a prob-
lem while novices use the problem’s literal features [20].
Naturally, computer science students as programmers might
show this phenomenon. Even though they may not become
full experts in the programming language during the course
of the class, they are able to achieve competency [21]. Due
to the differences between novice and advanced students,
it has been proposed to make the introductory material
simple and systematically expand as students’ expertise
increases [22]. For example, beginning with writing syntax,
comprehending templates, writing code with templates and
tracing [23]. Therefore, we considered and utilized these
findings to implement our grading model in such a way that
it can acknowledge and accommodate these differences.

Grading students work based on unit testing has also
been used in other programming languages like Java [24, 25].
Unit testing [26] involves testing the smallest unit in a pro-
gram or code that can be isolated. In most cases, the testing
parameters are already known by the developers and the
testers before runtime. Our syntax analysis is a form of unit
testing whereby a student’s query’s syntax is verified based
on the target SQL standard and other similar syntactically
correct queries. However, neither the testing parameters
for our semantic nor results analysis are known up until
runtime whereby the system loads the model query and the
student query. Also, it is challenging to exactly anticipate
the correct semantics since queries written in different ways
can have the same meaning. Furthermore, the binary nature

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 2

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

of unit testing makes it difficult to carry out partial grading.
This means that, our unit tests have additional requirements
compared to ordinary unit tests.

3. Software correctness levels

Software correctness in software exercises is the degree to
which code written by students satisfy the specifications
given by the instructor [27]. Software correctness levels
describe this degree [28]. Software correctness in SQL is
tested using various techniques. The most used is executing
the query and checking the results [29, 30].

There are various properties that can be evaluated to
check for code correctness. Some of these properties are:
syntax, semantics, results, efficiency, style and performance.
During this evaluation, we classify a property into various
categories that describe the correctness of the property. In
this research, we call such categories outcomes. Examples of
outcomes are fully correct, meaning the property completely
satisfies the specifications and fully incorrect for otherwise.

Using these properties and their outcomes, we can create
a matrix of all the outcomes arranged in such a way that the
first row describes the lowest adherence of the properties to
the specifications. The last row would describe the complete
adherence of these properties to the given specifications. We
show such matrices as tables: Table 1, Table 2 and Table 3.

The number of properties and outcomes to use de-
pends on the grading goals and the programming language.
Database managements systems feature query optimiza-
tions therefore in SQL we would not evaluate properties
like efficiency [31]. In C++, style, complexity and efficiency
have been used to evaluate students’ code [32, 33, 34]. In
this implementation we focus on three properties: syntax,
semantics, and results. for these properties, we evaluate
them into three outcomes: correct, minor incorrect(small
mistakes like misspells of 2 characters and less) and incorrect.
The meaning behind each outcome will be discussed in the
method section.

3.1. Property weight

Teaching SQL in a computer science class is done in various
stages [10]. One of the most important stages is teaching
proper SQL syntax. In this stage, students are introduced
to SQL, how it is written, the tools used and how to run
commands. Another notable stage is using already learned
SQL commands to carry out simple tasks. In this stage
students learn how to take simple specifications and turn
them into SQL commands that accomplish the given task.
Various stages of learning have various goals. Naturally,
this should translate to grading goals. Our goal is to modify
how grading is done based on the learning stage.

Grading modification is enabled in our model by assign-
ing different weights for the properties. For example, At the
introductory stage, grading would weigh more on syntax.
During the intermediate stage, grading would weigh more
on semantics, as the instructor turns their attention to carry-
ing out given tasks. Similarly, at an advanced stage, grading
would weigh more on results.

3.1.1. Introductory stage grading

At the introductory stage, the instructor would focus on
correct syntax. For a student to successfully pass this stage,
they would need to be able to write well-formed SQL clauses
with correct keywords. For any quizzes at this stage, the
instructor would classify the student queries based on how
well written the syntax was. At one extreme of this classi-
fication, there would be completely incorrect syntax and
at the other end fully correct syntax. The instructor would
then put a threshold for passing, whereby, students below
this threshold would have to practice more on syntax. A
9-magnitude model weighing more on syntax is shown in
Table 1. In this model, the instructor might put the threshold
for passing at correctness level 6. Students who can pass this
threshold would be able to write queries that can be parsed
and well executed by the database management system.
Even though in this stage we focus on correct SQL syntax,
the other properties, semantics and results still matter.

Table 1: Syntax has the most weight, next semantics and then results. inc.
refers to incorrect.

Level Syntax Semantics Results Grade
1 incorrect incorrect incorrect 0
2 minor inc. incorrect incorrect 0.125
3 minor inc. incorrect minor inc. 0.25
4 minor inc. minor inc. correct 0.375
5 minor inc. correct correct 0.5
6 correct incorrect incorrect 0.625
7 correct incorrect minor inc. 0.75
8 correct minor inc. correct 0.875
9 correct correct correct 1

3.1.2. Intermediate stage grading

At an intermediate stage, the instructor would turn the
students’ attention to solving some tasks. At this point the
students already know how to write correct SQL grammar.
The instructor would teach how to turn given specifications
into correct SQL queries that accomplish the task. For any
given quiz at this stage, the instructor would want to check
if the students are able to carry out some tasks using SQL.
This would involve checking if the students’ queries have
the correct semantics. A 9-magnitude model focusing more
on semantics is given in Table 2. In this model, the instructor
might put a passing threshold at correctness level 6. This
means that students with queries below this threshold might
be struggling with how to turn some specifications into a
semantically correct query.

3.1.3. Advanced stage grading

In the last stage, the students should already have mastered
how to write correct SQL grammar. Furthermore, they
should be able to turn given specifications into semantically
correct SQL statements. At this point, the instructor might
focus on making sure the students are able to write queries
that return the expected results. This means, grading would
weigh more on results. A 9-magnitude model weighing

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 3

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

more on results is shown in Table 3. Similarly, as the other
stages, the instructor might put the threshold for passing at
correctness level 6. Correct semantics imply correct results.
Nevertheless, instead of focusing on semantics only, we
check results because they give extra information about
those queries without fully correct semantics. For example,
if the reference correct query output is a subset of a student
query, it means the student query may not have carried out
correct filtering of results in the WHERE clause.

Table 2: Semantics has the most weight, next syntax and then results. inc.
refers to incorrect.

Level Semantics Syntax Results Grade
1 incorrect incorrect incorrect 0
2 incorrect minor inc. incorrect 0.125
3 incorrect minor inc. minor inc. 0.25
4 incorrect correct incorrect 0.375
5 incorrect correct minor inc. 0.5
6 minor inc. minor inc. correct 0.625
7 minor inc. correct correct 0.75
8 correct minor inc. correct 0.875
9 correct correct correct 1

Table 3: Results has the most weight, next semantics and then syntax. inc.
refers to incorrect.

Level Results Semantics Syntax Grade
1 incorrect incorrect incorrect 0
2 incorrect incorrect minor inc. 0.125
3 incorrect incorrect correct 0.25
4 minor inc. incorrect minor inc. 0.375
5 minor inc. incorrect correct 0.5
6 correct minor inc. minor inc. 0.625
7 correct minor inc. correct 0.75
8 correct correct minor inc. 0.875
9 correct correct correct 1

The instructor is free to use any threshold for passing
that aligns with their goals. Notice how in all the different
weights models, the students are still allowed to make minor
mistakes without severe points reduction in their grades.
This gives appreciation to their efforts in carrying out the
tasks.

3.2. Grading

The final grade awarded to a query is calculated using the
correctness level assigned as shown below:

g = l − min(l)
max(l) − min(l)

(1)

where g is the grade in the range 0 to 1, l is the correctness
level, min(l) is the minimum correctness level and max(l)
is the maximum correctness level of a specific model in
use. The grade is linearly distributed along the possible
correctness levels. This is an improvement to the earlier
model which factored in the missing or impossible levels
when calculating the grade [28].

3.3. Flexibility in adding or removing properties

Our software correctness model is made up of combinations
of the chosen properties and their possible outcomes. The
9-magnitude model shown in Table 1, Table 2 and Table 3
comprises of properties results, semantics and syntax each
with 3 possible outcomes: correct, minor incorrect and in-
correct. This gives rise to 27 possible combinations of which
9 are usable in our implementation. Unusable combinations
are for example, when both syntax and semantics are fully
incorrect while the results, fully correct. The instructor
is free to choose whichever properties or outcomes align
with their teaching goals. For example, they can choose to
carry out binary grading using only the results. In this case,
property results would have 2 possible outcomes: correct
and incorrect. This would translate in the correctness model
having 2 levels: level 1 for an incorrect query and level 2 for
a correct query. Using the same property, they might opt for
a 3 magnitude correctness levels model. In this case, results
would have 3 outcomes: fully correct, minor incorrect for
results not filtered, i.e. correct results would be contained
inside the query results and fully incorrect. Similarly, the
instructor can choose syntax and semantics, or results and
syntax with various outcomes.

As we see here, the number of properties or outcomes
used to construct a correctness model for grading is not
fixed. The instructor can add or remove properties and their
outcomes as well. Adding properties or outcomes increases
the size of the correctness model. This increases the number
of correctness levels as well, which translates to higher grad-
ing sensitivity. On the other hand, using fewer properties
or outcomes reduces the size of the correctness model. This
reduces the number of correctness levels, which translates
to lower grading sensitivity. In this paper, we demonstrate
the power of a correctness model using 3 properties and 3
outcomes. Using 4 properties or outcomes and more or less
is also possible in this model.

4. Grading process

Algorithm 1 shows the main algorithm for grading students
queries using the correctness model discussed above. This
was implemented in C++ under Linux with DuckDB [35] as
the database management system.

4.1. Initialization

We begin by initializing parameters that will be used to
instantiate the correctness model. This involves initializ-
ing the number of syntax, semantics and results outcomes
that will be used on grading. We also initialize the ’prop-
erty weight’ variable. We assert that these variables are
initialized to integers greater than 0 and a maximum of
3. This maximum is not fixed but can change by adding
more properties or outcomes. A correctness model matrix is
constructed using this initialization as shown in algorithm
2. This is a 2-dimensional array containing all the various
combinations of the properties and their outcomes. We then
remove unusable rows from the matrix.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 4

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

Algorithm 1: Main Algorithm
Result: Grades
stx← number of syntax outcomes;
sem← number of semantics outcomes;
res← number of results outcomes;
pw← property weight;
// Ensure 1 ≤ stx ≤ 3, 1 ≤ sem ≤ 3, 1 ≤ res ≤ 3,

1 ≤ pw ≤ 3
text_ed ← 3; // text edit distance
tree_ed ← 2; // tree edit distance
incorrect← 0;
minor incorrect← 1;
correct← 2;
// See Algorithm 2
correctness_m← create_matrix(stx, sem, res, pw);
// Put reference queries into data
structure

re f ← reference queries;
// Load student queries
student ← student queries;
for n ∈ {re f } do

n.AS T ← reference query abstract syntax tree;
// Run the query in DuckDB
n.Output ← query result;

end
for n ∈ {student} do

if n ≡ {} then
// Empty
n.PARS EABLE ← false;
n.S YN ← incorrect;

else
Parse the query;
if parseable then

n.PARS EABLE ← true;
n.AS T ←
student query abstract syntax tree;

n.Output ← query result;
end
else

n.PARS EABLE ← false;
n.S YN ← incorrect;

end
end

end
foreach n ∈ {student} do
// See Algorithm 3
syntax_analysis(n, text_ed, syn);
// See Algorithm 4, ref(1) denotes the
first query

results_analysis(n, ref(1), res);
// See Algorithm 6
semantics_analysis(n, re f , student, tree_ed, sem);

end
foreach n ∈ {student} do
// See Algorithm 5
get_correctness_level(n, correctness_m, stx, sem, res);

get_grade(n);
end

Algorithm 2: Creating the correctness matrix
Result: Correctness matrix
Function create_matrix(stx, sem, res, pw):

matrix← vector of integers;
if stx ≡ 1 and sem ≡ 1 and res ≡ 1 then
// Binary grading
Append 0,0,0 to matrix;
Append 1,1,1 to matrix;
return matrix;

end
if pw ≡ 1 then
// Syntax most important
for i = 0 to stx − 1 do

for j = 0 to sem − 1 do
for k = 0 to res − 1 do

Append k,j,i to matrix;
end

end
end

end
else if pw ≡ 2 then
// Semantics most important
for j = 0 to stx − 1 do

for i = 0 to sem − 1 do
for k = 0 to res − 1 do

Append k,j,i to matrix;
end

end
end

end
else if pw ≡ 3 then
// Results most important
for k = 0 to stx − 1 do

for j = 0 to sem − 1 do
for i = 0 to res − 1 do

Append k,j,i to matrix;
end

end
end

end
// Remove the levels not possible from
the matrix

return matrix;

4.2. Pre-processing

Next, we carry out pre-processing of reference and student
queries. For reference queries, we create abstract syntax
trees for each and execute them, saving the output in a
2-dimensional array. We used the library, pg_query [36] to
create abstract syntax trees. Student queries undergo the
same procedure but first, we check if they are parseable. If
a query is not parseable, we mark its syntax outcome as
incorrect. Then, we carry out syntax, results and semantics
analysis finalizing by calculating the correctness level for
each query and the subsequent grade. These steps will be
discussed next.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 5

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

4.3. Syntax analysis

Syntax analysis is done first. Algorithm 3 shows how syntax
analysis is accomplished. In this stage, all parseable queries
are marked as having correct syntax. Next, we check how
far the unparseable queries are from being parseable. To
accomplish this, we carry out a comparison between un-
parseable queries with those that are parseable using text
edit distance metric [37]. The parseable queries include
both parseable reference and student queries. For those
student queries with mistakes of 2 characters and below, we
mark as having minor incorrect syntax and edit them. This
enables further processing of the queries. For unparseable
queries without close reference or correct student queries,
we then check the SQL keywords in the query. We employ
the same edit distance metric to check how much malformed
the keywords are. We identify the SQL keywords using
information from the parse tree.

Algorithm 3: Syntax analysis
Result: Syntax outcomes
Function syntax_analysis(query, text_ed, syn):

if query.PARS EABLE ≡ true then
query.S YN ← correct;

end
else

mis← misspelled SQL keywords characters;
if mis < text_ed then

if syn ≡ 3 then
query.S YN ← minor incorrect;
Edit query; // Correct the query

end
else

query.S YN ← incorrect;
end

end
else

query.S YN ← incorrect;
end

end

4.4. Result analysis

Result analysis is done next. Algorithm 4 shows how re-
sults analysis is accomplished. In this stage, we compare
the results of each student query with the results of the
reference queries. If both outputs match, the student query
is deemed as having correct results. For those queries with
different output, we then check if the reference query output
is a subset of the student query output. If so, we mark the
student query as having minor incorrect results. The rest of
cases are marked as having fully incorrect results.

4.5. Semantics analysis

The final analysis involves semantics. Algorithm 6 shows
how semantics analysis is accomplished. In this stage we
check if the student queries have the intended meaning.
First, we mark as having correct semantics, those queries

that had correct results in the previous step. Next, we mark
unparseable queries as having fully incorrect semantics.
This is because in this implementation we cannot verify the
severity of the mistakes.

For the rest, we carry out parse tree edit distance com-
parisons using Shasha Zhang’s algorithm [38]. This is ac-
complished by comparing parse trees of the student queries
under processing and the reference queries together with
the student queries with correct output. We further check
the text edit distance for those queries found to have a tree
edit distance of 1. If this text edit distance is 2 characters
or less, the query is marked as containing minor incorrect
semantics. The rest of the cases are marked as having fully
incorrect semantics.

Algorithm 4: Result analysis
Result: Results outcomes
Function result_analysis(query, re f , res):

if query.OUT PUT ≡ re f .OUT PUT then
query.RES ← correct;

end
else if re f .OUT PUT ⊂ query.OUT PUT then

if res ≡ 3 then
query.RES ← minor incorrect;

end
else

query.RES ← incorrect;
end

end
else

query.RES ← incorrect;
end

Algorithm 5: Calculating correctness level
Result: Correctness level of a query
Function
get_correctness_level(query,matrix, stx, sem, res):

level← 1;
if stx ≡ 1 and sem ≡ 1 and res ≡ 1 then
// Binary grading
level← query.RES ULT 1;
return level;

end
foreach m ∈ {matrix} do

if m0 ≡ query.RES and m1 ≡ query.S EM and
m2 ≡ query.S YN then

break;
end
level← level 1;

end
return level;

At this point, the student queries have been tagged with
various outcomes for the properties. The outcomes of each
query are compared with the outcomes in the correctness
matrix. The correctness level of a query is the level with
matching outcomes. The grades are calculated in the range
0 to 1, using Equation 1.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 6

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

Algorithm 6: Semantics analysis
Result: Semantic outcomes
Function
semantic_analysis(query, re f , student, tree_ed, sem):

if query.RES ≡ correct then
query.S EM ← correct;

end
else

if query.PARS EABLE ≡ false then
query.S EM ← incorrect;

end
else

smallest ← 0;
ted ← 0;
foreach m ∈ {re f } do

dist ←
query.AS T and m.AS T distance ;

l_ted ←
query.QUERY and m.QUERY distance ;

if dist ≤ smallest and l_ted ≤ ted then
smallest ← dist;
ted ← l_ted;

end
end
foreach s ∈ {student} do

if s.RES ≡ correct then
dist ←
query.AS T and s.AS T distance ;

l_ted ←
query.QUERY and s.QUERY distance;

if dist < smallest and l_ted ≤ ted
then

smallest ← dist;
ted ← l_ted;

end
end

end
if smallest < tree_ed and ted < text_ed
then

if sem ≡ 3 then
query.S EM ← minor incorrect;

end
else

query.S EM ← incorrect;
end
query.RES ← correct;

end
else

query.S EM ← incorrect;
end

end
end

5. Implementation and findings

We experimented with the correctness model discussed
above for an automated grading system of SQL exercises in

a first year’s course at a first year’s BSc course, Information
Modelling and Databases at Radboud University. During
this study, the course had 309 students. For the year 2023,
we used the model to grade 5 quizzes containing more than
25 different questions using the three different matrices.
These are shown in a cumulative graph, Figure 1. From
the graph, we see that the grading model can differentiate
student answers among 9 different groups. We will discuss
3 results from this large sample.

Figure 1: A bar graph showing the grades awarded to all 7012 answers
across 25 different questions.

5.1. Introductory stage grading

The first question was graded as an introductory quiz. Syn-
tax was prioritized more than the other properties. The
grades awarded for this question are shown in Figure 2. The
x-axis shows the grades given in the range 0 to 1. The y axis
show the total number of queries given a certain grade.

Figure 2: Grades calculated for the 1st question using introductory grading.

We saw that most students were able to write correct
SQL statements (122 students). This group of students could
already write syntactically correct SQL that accomplished
the given task. The second largest group could form cor-
rect syntax SQL queries but could not yet translate these
into semantically correct queries (88 students). Taking 0.6
as the passing threshold (parseable queries), 35 students
represented by 0, 0.125 and 0.25 grades failed the first ques-
tion. The other 235 students passed. Grading the same
question while prioritizing semantics would have produced

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 7

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

the results shown in Figure 3. In this grading, the number
of students who passed would have reduced to 126. Lastly,
grading the question while prioritizing results would have
produced the results shown in Figure 4. In this case, the
number of students who passed would have stayed the same
as in previous case. However, the grades of those who failed
would have reduced even further especially the large group
of 88 answers. The reference correct query for this question
is shown below.

Figure 3: Grades calculated for the 1st question using intermediate grading.

Figure 4: Grades calculated for the 1st question using advanced grading.

SELECT T.theme_id, T.name FROM Theme T, Teacher N
WHERE N.name=’Djoerd Hiemstra’ AND

T.teacher_id=N.teacher_id;

The student answers for this question fell into the following
groups:

(1) 122 answers were fully correct.

--various query construction with the same meaning
SELECT theme_id, Theme.name FROM Teacher JOIN Theme

USING (teacher_id) WHERE Teacher.name = ’Djoerd
Hiemstra’;

SELECT Theme.theme_id, Theme.name FROM Teacher JOIN
Theme ON Teacher.teacher_id = Theme.teacher_id
WHERE Teacher.name = ’Djoerd Hiemstra’;

(2) 4 answers had minor incorrect semantics (tree edit
distance of 1 and text edit distance of less than 3 from
a reference query), and correct syntax and results.

-- mispelled the name ’Djoerd Hiemstra ’
SELECT Theme.theme_id, Theme.name FROM Teacher,

Theme WHERE Teacher.name = ’Djoerd Hiemsta’ AND
Teacher.teacher_id = Theme.teacher_id;

(3) 21 answers had minor incorrect results (output of
the reference correct query is a subset of the query’s
output), incorrect semantics and correct syntax.

--results were not well filtered
SELECT theme_id, Theme.name FROM Teacher, Theme

WHERE Teacher.name = ’Djoerd Hiemstra’;

(4) 88 answers managed only correct syntax.

--wrong columns selected and wrong filtering
SELECT * FROM Teacher, Theme WHERE Teacher.name =

’Djoerd Hiemstra’;

(5) 1 answer had minor incorrect syntax (text edit distance
of less than 3 from a reference query) and results, and
incorrect semantics.

--mispelled ’SELECT’ and wrong filtering
SELECHT theme_id , Theme.name FROM Teacher, Theme

WHERE Teacher.name = ’Djoerd Hiemstra’;

(6) 4 answers had minor incorrect syntax, and fully incor-
rect results and semantics.

-- extra wrong character ’;’, wrong columsn selected
and wrong filtering

SELECT * FROM Teacher A, Theme T; WHERE T.name =
’Djoerd Hiemstra’;

(7) 30 answers had fully incorrect properties.

SELECT name AND theme_id FROM Theme WHERE name =
Djoerd Hiemstra

From the three graphs (Figure 2, Figure 3, and Figure 4),
we see that the grouping stays the same. What changes is
the grades awarded to the various groups seen. We also
see that the grading progressed from lenient to stringent
as we progress from grading using syntax, to semantics
and finally results. For this reason, we focus on syntax to
carry out introductory stage grading whereby we do not
penalize novice students for not meeting higher standard as
expected of the more advanced students. We strive to make
an impression to the novice students that the new language
presented is within their learning capability.

5.2. Intermediate stage grading

As the course progressed the next questions were graded as
intermediate quizzes. In this subsection, we give an example
of a question which was graded in this intermediate stage
whereby, semantics were prioritized more than the other
properties. The grades awarded for this question are shown
in Figure 5. In the grades evaluated, we saw that almost
the whole class (230/262) was able to write semantically
fully correct queries. 18 students (0, 0.125 and 0.375 grades)
got less than a half point therefore failed this exercise. The
reference correct query for this question is shown below.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 8

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

Figure 5: A bar graph showing the first question of the intermediate quiz.
This was graded with more weight being on semantics.

SELECT DISTINCT album_title FROM Album WHERE
type=’compilation’;

The student answers for this question fell into the following
groups:

(1) 230 answers were fully correct.

--different phrasing but still correct
SELECT Album.album_title FROM Album WHERE

Album.type=’compilation’;

(2) 2 answers answers had minor incorrect syntax, and
correct semantics and results.

--extra ’;’ which made syntax minor incorrect
SELECT album_title; FROM Album; WHERE type =

’compilation’;

(3) 10 answers had minor incorrect semantics, and correct
results and syntax.

-- missing enclosing ’ for the word compilation
SELECT album_title FROM Album WHERE type =

compilation

(4) 2 answers had minor incorrect results, fully incorrect
semantics and correct syntax.

--selected more data than required. Correct results
were a subset.

select album_title , type from album where type =
’compilation’

(5) 4 answers had fully incorrect results and semantics,
and fully correct syntax.

-- the query could be parsed even though the where
clause was incorrect.

Select album_title from Album where album_name

(6) 4 answers had fully incorrect results and semantics,
and minor incorrect syntax.

--had an extra ’*’ and the wrong column name
’tracck_title ’.

SELECT * track_title FROM Album WHERE
type=’compilation’;

(7) 10 answers had fully incorrect properties.

sigma type=’compilation’(Album) pi album_title

5.3. Advanced stage grading

As the course progressed to the final lessons, the questions
given were graded as advanced quizzes. In this subsection,
we give an example of a question which was graded in this
advanced stage whereby, results were prioritized more than
the other properties. The grades awarded for this question
are shown in Figure 6. In these results, we saw that many
students (110/164) managed to write fully correct queries.
The second largest group (29/164) students wrote a fully
incorrect query even though this group was small compared
to those who wrote fully correct queries. The rest of the
small groups were distributed among various scores. The
reference correct query for this question is shown below.
SELECT name, hire_date FROM Employee WHERE salary

BETWEEN 2500.00 AND 3500.00;

Figure 6: A bar graph showing one of the last questions of the advanced
quiz. This was graded with more weight being on results.

The student answers for this question fell into the following
groups:

(1) 110 answers were fully correct.

--different phrasing but still correct
SELECT name, hire_date FROM Employee WHERE salary

>=2500 AND salary <= 3500;

(2) 6 answers had fully correct results and syntax but
minor incorrect semantics.

-- had an extra ’s’ at the end of the string
’Employee ’

SELECT name, hire_date FROM Employees WHERE salary
BETWEEN 2500 AND 3500;

(3) 1 answer had fully correct results but minor incorrect
syntax and semantics.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 9

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

-- incomplete where clause, missing second string,
’salary’ after AND

SELECT name , hire_date FROM Employee WHERE salary
>= 2500 AND <= 3500;

This single query was incorrectly graded due to an error in
the implementation which we rectified afterwards.

(4) 1 answer had fully correct syntax but minor incorrect
results and fully incorrect semantics.

-- added another table at the FROM clause
SELECT name, hire_date FROM Unit, Employee WHERE

salary > 2500 AND salary < 3500;

(5) 14 answers had fully correct syntax but fully incorrect
results and semantics.

-- missing ’hire_date ’ column in SELECT clause
SELECT name FROM Employee WHERE salary >2500 AND

salary <3500

(6) 3 answers had minor incorrect syntax and fully incor-
rect results and semantics.

--missing ’hire_data ’ in SELECT clause and ’salary’
in WHERE clause

SELECT name FROM Employee WHERE salary IS BETWEEN
2500 AND 3500

(7) 29 answers had fully incorrect semantics, results and
syntax.

SELECT name, hire_date FROM Employee , Unit WHERE
2500 < salary < 3500

5.4. Comparison with manual grading

To validate the capabilities of our implementation, we car-
ried a comparison between the grades awarded for the
end exam by the instructor, and those calculated by our
automated grading system. The instructor evaluated the
students not as novices but as learners already familiarized
with SQL concepts and knowledge. Our grading system
evaluated the queries as advanced quizzes to match the
instructor’s grading strategy using the model shown in
Table 3. The correct answers to the questions are shown
below.
1. SELECT A.name, COUNT(DISTINCT T.track_id) AS

number FROM Artist A, Performs P, Track T WHERE
A.artist_id = P.artist_id AND P.track_id =
T.track_id GROUP BY A.name HAVING COUNT(*) >= 3
ORDER BY number DESC;

2. SELECT title, SUM(duration) FROM Album A, Track T
WHERE A.album_id = T.album_id GROUP BY title;

3. SELECT song FROM Track T WHERE NOT EXISTS(SELECT
* FROM Performs P WHERE P.track_id = T.track_id
AND role=’vocals’) AND EXISTS(SELECT * FROM
Performs P WHERE P.track_id = T.track_id);

4. SELECT song FROM Album A, Track T WHERE
A.album_id=T.album_id AND A.title=’Nevermind’;

5. SELECT album_id FROM Release WHERE
country=’Belgium’;

6. SELECT DISTINCT artist_id FROM Performs WHERE
role = ’guitarist’;

7. SELECT name FROM Artist WHERE death_date IS NULL;
8. WITH RECURSIVE Subordinates(employee_nr) AS

(SELECT ’U000001’ UNION SELECT
Employee.employee_nr FROM Employee, Subordinates
WHERE Employee.manager_nr =
Subordinates.employee_nr) SELECT * FROM
Subordinates;

In the comparison, we checked the difference to the grades
given for each question using the equation shown below:

difference = our_grade − instructor_grade (2)

The frequency of differences seen are summarized in Table 4.
In the table, score diff. is the difference between the grade
given by the automated grading system and by the instruc-
tor. Q1 to Q8 are the 8 questions. Each cell in the questions’
columns contain the total number of queries with a given
grade difference in that question. The total column show
the total number of queries for a given difference in all the
questions. These are further illustrated using violin plots
in Figure 7. In the figure, Q1 to Q8 are the eight questions.
Each question has its own violin plot. The score difference
is the difference between the grade given by the automated
grading system and by the instructor.

Table 4: The frequencies of differences. Q1 to Q8 are the 8 questions. Diff.
is the difference value.

Score
Diff. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total
-1.0 1 0 1 1 0 0 0 1 4
-0.875 0 0 0 0 1 0 0 0 1
-0.75 9 21 0 1 0 1 0 0 23
-0.6 1 0 0 0 0 0 0 0 1
-0.55 0 2 2 41 43 31 0 2 121
-0.5 3 0 0 0 0 0 0 0 3
-0.35 0 0 0 0 0 1 0 0 1
-0.25 47 0 0 0 1 0 0 0 48
-0.05 0 0 7 0 0 0 0 0 7
0.0 63 123 98 180 171 146 202 110 1093
0.125 14 1 0 1 0 0 3 8 27
0.2 0 0 0 1 0 0 0 0 1
0.25 108 103 96 22 30 50 26 115 550
0.375 0 0 1 0 0 0 0 0 1
0.5 1 0 48 3 2 23 1 3 81
0.625 0 0 0 1 0 0 0 0 1
0.75 0 2 0 2 6 2 22 0 34
1.0 0 0 0 1 0 0 0 0 1

We calculated the mean absolute difference (MAD) and
the root mean square error (RMSE) between the two types
of grading which was 0.16 and 0.07 respectively using Equa-
tion 3 and Equation 4.

MAD=1
n
Σ

n
i1|xi − yi| (3)

RMS E=
√

1
n
Σn

i1(xi − yi)2 (4)

Whereby n is the total number of differences, x is a grade
given by our system and y is a grade given by the instructor.
This difference between the two systems comes from the
following main observations which are summarized below:

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 10

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

Figure 7: Grades differences between the instructor and our system. Q1 to Q8 are the 8 questions.

1. 1093 queries received the same score in both cases.
These were fully correct queries and fully incorrect
queries.

2. 550 queries received a 0.25 score higher in our auto-
mated grading system. These were incorrect queries
that were at least parseable. Our grading acknowl-
edged that even though these students did not learn
correct SQL semantics, they were able to form correct
SQL syntax.

3. 121 queries received a 0.55 score higher from the
instructor. These were correct queries containing
unexpected special characters, for example:

-- has an extra non-SQL characters Â‘
SELECT T.song FROM Track T, Album A WHERE

T.album_id = A.album_id AND A.title = Â
‘NevermindÂ‘ ;

--used non-SQL character ‘ instead of ’
SELECT album_id FROM Release WHERE country

= ‘Belgium‘;

--used non-SQL character ‘ instead of ’
SELECT DISTINCT artist_id FROM Performs

WHERE role = ‘guitarist‘;

The instructor deducted a 0.2 from the score while our
system struggled to correctly evaluate such queries.

4. 81 queries received a 0.5 score higher in our system.
These were queries which were semantically incorrect
with correct results as a subset of the queries’ results.

5. 48 queries received a 0.25 score higher from the in-
structor. Most of these differences were from the first
question. The instructor gave a 0.5 to those answers
that demonstrated that the student clearly understood
the semantics of the question but could not fully trans-
late it to the complete query. For example:

SELECT name, COUNT(*) as count FROM Artist,
Performs , Track WHERE Artist.artist_id
= Performs.artist_id AND
Performs.track_id = Track.track_id
GROUP BY name HAVING count >= 3 ORDER
BY count DESC;

Our system failed to evaluate this and gave a 0.25.

6. 34 answers received a 0.75 score higher in our sys-
tem. These were queries whose semantics were minor
incorrect. For example, 17 queries contained:

SELECT name FROM Artist WHERE death_date =
NULL;

This query used a comparing operator for NULL in-
stead of using IS NULL. The instructor observed that
they were strict in this case.

7. 23 queries received a 0.75 higher score from the in-
structor. These were queries which were graded as
fully correct by the instructor . Our system evaluated
them as incorrect. For example:

SELECT A.title, SUM(T.duration) FROM Album
A JOIN Track T ON A.album_id =
T.album_id GROUP BY A.album_id;

The query did not group by ’title’ therefore it was
considered as incorrect by our system.

As we seen in Figure 7, most differences between instructor’s
grading are within 0.25 score (horizontal bulges). We have
highlighted the major differences seen above. In some cases,
the instructor was strict as seen from the 34 queries in item 6
and item 4. In other cases, the instructor was lenient in grad-
ing as seen in queries in item 5 and item 7. In comparison,
our grading was consistent across different queries. This
consistency aided our system to allocate fair grades with
some exceptions. These are cases whereby the system failed
to capture special unexpected non-SQL characters as seen
in item 3.

At the end of the experiment, we administered a ques-
tionnaire to the students. We let them know that the ques-
tionnaire was useful in that, we would use their answers

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 11

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

to improve the grading system. The students based their
answers on the grades received since we carried out the
grading using the system and sent them their results. This
included some feedback text. For example, SYNTAX: Cor-
rect! Well done. RESULTS: The output of the query is not correct.
SEMANTICS: The query does not have correct semantics. This
quiz was graded as an advanced quiz. We placed more weight
on results, then semantics and finally syntax. A group of 46
students present at the time participated in the question-
naire, in which we enquired about their opinion on the
automatically given grades. For example, we asked them if
they considered the grades received as fair or not. This was
to verify that indeed the students found the grades given
acceptable. The results are shown in Figure 8. We saw that
74% said the grades received were fair while the rest 26%
considered the grades not completely fair. Some students
observed our system being not completely fair in those
cases our implementation failed to catch minor incorrect
syntax, for example for those unparseable queries contain-
ing random characters that proved difficult to automatically
identify and repair. We plan to work on this in our next
implementation.

Figure 8: Survey about students’ experience.

5.5. Configuration variables

In our method, there are 6 configuration variables that af-
fect the grading (number of syntax outcomes, number of
semantics outcomes, number of results outcomes, property
weight, text edit distance threshold and tree edit distance
threshold). Changing these variables alters the grading in
different ways. The first 3 variables affect the number of
outcomes for the different properties. The fourth variable
affects which property is focused more when grading. The
fifth variable is the threshold value for syntax analysis edit
distance calculation. Lastly, the sixth variable is the thresh-
old for the semantics tree edit distance calculation. All these
variables can be adjusted to change how grading is done.
The threshold parameter for edit distances for syntax and
semantics in this experiment were set to 2 and 1 respectively.
In our next implementation we plan to study in detail how
changing these variables will affect the grades awarded.

6. Discussion

During the introductory period of our course, one of the
main goals was for the students to learn the correct SQL
syntax and grammar. It was crucial for the students to be
able to form SQL queries that can be parsed. In our first quiz,
we tested whether the students had indeed understood how
syntactically correct SQL queries are written. We graded
the quiz focusing mostly on syntax with semantics and
results being secondary. This grading model is shown in
Table 1. Our results from Figure 2 showed that this goal was
accomplished as most students (235/270) were able to form
syntactically correct SQL queries. These students scored
more than 0.6. Furthermore, a large number (122/270) were
able to write semantically correct queries. This meant that
the teaching could proceed onto the next stage, which is
using SQL to accomplish the given tasks.

In the next stage of learning, the students could already
write syntactically correct SQL queries. This was the inter-
mediary stage, whereby the goal was using SQL to carry
out the given tasks. The quizzes in this stage were graded
focusing mostly on semantics while syntax and results were
secondary. This grading model is shown in Table 2. In one
of the questions, shown in Figure 5, most of the students
(230/262) could translate SQL into statements that could
accomplish the given task.

We graded the last quizzes for the course as advanced
quizzes. At this stage the students could write the cor-
rect SQL grammar and write semantically correct queries.
Therefore, when grading, we focused mostly on results
while semantics and syntax were secondary. Many students
were able to write queries with the correct results (110/164
students). The grading model used is shown in Table 3.

7. Conclusion

In this paper, we have demonstrated a model for generat-
ing discrete levels that enable effective partial grading of
SQL queries. We call these discrete levels, software correct-
ness levels that translate into partial grades. We have also
demonstrated how we can be able to offer personalized and
differentiated type of grading depending on the knowledge
level of the students. This is in contrast to the previous
research that utilize inflexible methods. we divided the
learning process into 3 stages and applied specific types
of grading to each stage. These stages were introductory,
intermediate, and advanced. At each stage of our course,
we were able to focus the grading on a specific goal which
depended on the skills of the students. This is dynamic
grading. Dynamic grading was enabled by weighing some
properties like syntax more than others at specific points of
the teaching process. Partial grading was enabled by indi-
vidually evaluating different properties in such a way that
their outcomes are categorized, for example in categories
like correct, minor incorrect and fully incorrect. In our cur-
rent implementation, we worked with the properties syntax,
semantics, and results, and we generated corresponding
correctness levels for those properties. In partial grading
we utilized software correctness levels while in dynamic
grading, we considered students’ skills level. This helped

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 12

http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

us to effectively provide partial grades that were dependent
upon the skill or knowledge level of students at different
stages of their learning process.

We observed that our grading model had some differ-
ences in the grades calculated from those awarded by the
instructor. We evaluated these differences from SQL ques-
tions from an exam and observed a mean average difference
of 0.16. We also administered a questionnaire to 46 stu-
dents whereby 74% observed that our implementation of
the model discussed was able to calculate grades they con-
sidered fair. Nevertheless, there were limitations which we
plan to address in both the grading model and its implemen-
tation. For the implementation, we plan on improving on:
handling unexpected special non-SQL characters, checking
query results against more than 1 data schema, extending
the supported queries to include, Create, Delete, Insert and
Update and a clear separation between syntax and semantics
analysis. The later limitation resulted in missing groups for
example, [syntax: minor incorrect, result: correct]. For the
model, we plan on adding another property or outcome for
more sensitivity and to evaluate the optimum configuration
for the minimum difference between the grades awarded
by the system and the instructor. More thorough work is
needed to present the full merits of the discussed model.

References

[1] T. Seifert, “Understanding student motivation”, Educational Research,
vol. 46, no. 2, pp. 137–149, 2004, doi:10.1080/0013188042000222421.

[2] B. Chandra, A. Banerjee, U. Hazra, M. Joseph, S. Sudarshan, “Au-
tomated grading of SQL queries”, “2019 IEEE 35th International
Conference on Data Engineering (ICDE)”, pp. 1630–1633, 2019,
doi:10.1109/ICDE.2019.00159.

[3] G. Dambić, M. Fabĳanić, A. L. Ćošković, “Automatic, configurable
and partial assessment of student SQL queries with joins and group-
ings”, “2021 44th International Convention on Information, Com-
munication and Electronic Technology (MIPRO)”, pp. 837–842, 2021,
doi:10.23919/MIPRO52101.2021.9596680.

[4] M. Fabĳanić, G. Dambić, J. Sasunić, “Automatic, configurable, and
partial assessment of student SQL queries with subqueries”, “2022
45th Jubilee International Convention on Information, Communi-
cation and Electronic Technology (MIPRO)”, pp. 542–547, 2022,
doi:10.23919/MIPRO55190.2022.9803559.

[5] J. Kjerstad, “Automatic evaluation and grading of SQL queries using
relational algebra trees”, Master’s thesis, Norwegian University of
Science and Technology, 2020.

[6] T. J. McGill, S. E. Volet, “A conceptual framework for analyz-
ing students’ knowledge of programming”, Journal of Research
on Computing in Education, vol. 29, no. 3, pp. 276–297, 1997,
doi:10.1080/08886504.1997.10782199.

[7] B. Shneiderman, R. Mayer, “Syntactic/semantic interactions in pro-
grammer behavior: A model and experimental results”, Interna-
tional Journal of Parallel Programming, vol. 8, pp. 219–238, 1979,
doi:10.1007/BF00977789.

[8] B. Shneiderman, “Teaching programming: A spiral approach to syn-
tax and semantics”, Computers & Education, vol. 1, no. 4, pp. 193–197,
1977.

[9] A. Stefik, S. Siebert, “An empirical investigation into programming
language syntax”, ACM Transactions on Computing Education (TOCE),
vol. 13, no. 4, pp. 1–40, 2013.

[10] K. Renaud, J. van Biljon, “Teaching sql — which pedagogical horse for
this course?”, H. Williams, L. MacKinnon, eds., “Key Technologies for
Data Management”, pp. 244–256, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2004.

[11] P. Garner, J. A. Mariani, “Learning sql in steps”, Journal on Systemics,
Cybernetics and Informatics, vol. 13, pp. 19–24, 2015.

[12] H. Al Shauily, K. Renaud, “A framework for sql learning: linking
learning taxonomy, cognitive model and cross cutting factors”, Inter-
national Journal of Computer and Systems Engineering, vol. 10, no. 9, pp.
3105–3111, 2016.

[13] A. Bhangdiya, B. Chandra, B. Kar, B. Radhakrishnan, K. V. M. Reddy,
S. Shah, S. Sudarshan, “The XDa-TA system for automated grading of
SQL query assignments”, 2015 IEEE 31st International Conference on
Data Engineering, pp. 1468–1471, 2015.

[14] S. Dekeyser, M. de Raadt, T. Y. Lee, “Computer assisted assessment
of SQL query skills”, “Proceedings of the Eighteenth Conference on
Australasian Database - Volume 63”, ADC ’07, p. 53–62, Australian
Computer Society, Inc., AUS, 2007.

[15] M. Gilsing, J. Pelay, F. Hermans, “Design, implementa-
tion and evaluation of the hedy programming language”,
Journal of Computer Languages, vol. 73, p. 101158, 2022,
doi:https://doi.org/10.1016/j.cola.2022.101158.

[16] J. C. Prior, R. Lister, “The backwash effect on SQL skills grading”,
“Proceedings of the 9th Annual SIGCSE Conference on Innovation and
Technology in Computer Science Education”, ITiCSE ’04, p. 32–36,
Association for Computing Machinery, New York, NY, USA, 2004,
doi:10.1145/1007996.1008008.

[17] M. Kramer, M. Barkmin, D. Tobinski, T. Brinda, “Understanding the
differences between novice and expert programmers in memoriz-
ing source code”, A. Tatnall, M. Webb, eds., “Tomorrow’s Learning:
Involving Everyone. Learning with and about Technologies and Com-
puting”, pp. 630–639, Springer International Publishing, Cham, 2017.

[18] M. Weiser, J. Shertz, “Programming problem representation in novice
and expert programmers”, International Journal of Man-Machine Studies,
vol. 19, no. 4, pp. 391–398, 1983, doi:https://doi.org/10.1016/S0020-
7373(83)80061-3.

[19] C. M. Zeitz, “Expert-novice differences in memory, abstraction, and
reasoning in the domain of literature”, Cognition and Instruction,
vol. 12, no. 4, pp. 277–312, 1994.

[20] M. T. Chi, P. J. Feltovich, R. Glaser, “Categorization and representation
of physics problems by experts and novices”, Cognitive Science, vol. 5,
no. 2, pp. 121–152, 1981.

[21] L. E. Winslow, “Programming pedagogy—a psychological
overview”, SIGCSE Bulletin, vol. 28, no. 3, p. 17–22, 1996,
doi:10.1145/234867.234872.

[22] A. Robins, J. Rountree, N. Rountree, “Learning and teaching program-
ming: A review and discussion”, Computer science education, vol. 13,
no. 2, pp. 137–172, 2003.

[23] B. Xie, D. Loksa, G. L. Nelson, M. J. Davidson, D. Dong, H. Kwik, A. H.
Tan, L. Hwa, M. Li, A. J. Ko, “A theory of instruction for introductory
programming skills”, Computer Science Education, vol. 29, no. 2-3, pp.
205–253, 2019, doi:10.1080/08993408.2019.1565235.

[24] C. Wilcox, “Testing strategies for the automated grading of stu-
dent programs”, “Proceedings of the 47th ACM Technical Sympo-
sium on Computing Science Education”, SIGCSE ’16, p. 437–442,
Association for Computing Machinery, New York, NY, USA, 2016,
doi:10.1145/2839509.2844616.

[25] C. Benac Earle, L.-r. Fredlund, J. Hughes, “Automatic grading of pro-
gramming exercises using property-based testing”, “Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer
Science Education”, ITiCSE ’16, p. 47–52, Association for Computing
Machinery, New York, NY, USA, 2016, doi:10.1145/2899415.2899443.

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 13

https://doi.org/10.1080/0013188042000222421
https://doi.org/10.1109/ICDE.2019.00159
https://doi.org/10.23919/MIPRO52101.2021.9596680
https://doi.org/10.23919/MIPRO55190.2022.9803559
https://doi.org/10.1080/08886504.1997.10782199
https://doi.org/10.1007/BF00977789
https://doi.org/https://doi.org/10.1016/j.cola.2022.101158
https://doi.org/10.1145/1007996.1008008
https://doi.org/https://doi.org/10.1016/S0020-7373(83)80061-3
https://doi.org/https://doi.org/10.1016/S0020-7373(83)80061-3
https://doi.org/10.1145/234867.234872
https://doi.org/10.1080/08993408.2019.1565235
https://doi.org/10.1145/2839509.2844616
https://doi.org/10.1145/2899415.2899443
http://www.jenrs.com

B. Wanjiru et al., Dynamic and Partial Grading of SQL Queries

[26] P. Runeson, “A survey of unit testing practices”, IEEE Software, vol. 23,
2006, doi:10.1109/MS.2006.91.

[27] B. Wanjiru, P. v. Bommel, D. Hiemstra, “Towards a generic model
for classifying software into correctness levels and its application to
SQL”, “2023 IEEE/ACM 5th International Workshop on Software
Engineering Education for the Next Generation (SEENG)”, pp. 37–40,
2023, doi:10.1109/SEENG59157.2023.00012.

[28] B. Wanjiru, P. v. Bommel, D. Hiemstra, “Sensitivity of automated
SQL grading in computer science courses”, “Proceedings of the Third
International Conference on Innovations in Computing Research
(ICR’24)”, 2024.

[29] C. Kleiner, C. Tebbe, F. Heine, “Automated grading and tutoring of
sql statements to improve student learning”, “Proceedings of the
13th Koli Calling International Conference on Computing Education
Research”, Koli Calling ’13, p. 161–168, Association for Computing
Machinery, New York, NY, USA, 2013, doi:10.1145/2526968.2526986.

[30] B. Chandra, B. Chawda, B. Kar, K. V. M. Reddy, S. Shah, S. Sudarshan,
“Data generation for testing and grading sql queries”, The VLDB
Journal, vol. 24, no. 6, p. 731–755, 2015, doi:10.1007/s00778-015-0395-0.

[31] S. Chaudhuri, “An overview of query optimization in relational
systems”, “Proceedings of the Seventeenth ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems”, PODS ’98,
p. 34–43, Association for Computing Machinery, New York, NY, USA,
1998, doi:10.1145/275487.275492.

[32] K. Ala-Mutka, T. Uimonen, H.-M. Järvinen, “Supporting students in
C++ programming courses with automatic program style assessment”,
JITE, vol. 3, pp. 245–262, 2004, doi:10.28945/300.

[33] F. G. Wilkie, B. Hylands, “Measuring complexity in C++ application
software”, Software: Practice and Experience, vol. 28, 1998.

[34] N. R. Tallent, J. M. Mellor-Crummey, “Effective performance mea-
surement and analysis of multithreaded applications”, PPoPP ’09, p.
229–240, Association for Computing Machinery, New York, NY, USA,
2009, doi:10.1145/1504176.1504210.

[35] M. Raasveldt, H. Mühleisen, “Duckdb: an embeddable analyt-
ical database”, “Proceedings of the 2019 International Confer-
ence on Management of Data”, SIGMOD ’19, p. 1981–1984, As-
sociation for Computing Machinery, New York, NY, USA, 2019,
doi:10.1145/3299869.3320212.

[36] T. pganalyze Developer Team, “libpg_query”, 2023, version 15-4.2.1.

[37] L. Yujian, L. Bo, “A normalized levenshtein distance metric”, IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007, doi:10.1109/TPAMI.2007.1078.

[38] K. Zhang, D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems”, SIAM J. Comput., vol. 18, pp.
1245–1262, 1989, doi:10.1137/0218082.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

www.jenrs.com Journal of Engineering Research and Sciences, 3(8): 1-14, 2024 14

https://doi.org/10.1109/MS.2006.91
https://doi.org/10.1109/SEENG59157.2023.00012
https://doi.org/10.1145/2526968.2526986
https://doi.org/10.1007/s00778-015-0395-0
https://doi.org/10.1145/275487.275492
https://doi.org/10.28945/300
https://doi.org/10.1145/1504176.1504210
https://doi.org/10.1145/3299869.3320212
https://doi.org/10.1109/TPAMI.2007.1078
https://doi.org/10.1137/0218082
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Advantages of skill based grading

	Related work
	Software correctness levels
	Property weight
	Introductory stage grading
	Intermediate stage grading
	Advanced stage grading

	Grading
	Flexibility in adding or removing properties

	Grading process
	Initialization
	Pre-processing
	Syntax analysis
	Result analysis
	Semantics analysis

	Implementation and findings
	Introductory stage grading
	Intermediate stage grading
	Advanced stage grading
	Comparison with manual grading
	Configuration variables

	Discussion
	Conclusion

