
Special Issue on Computing, Engineering and Sciences

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 23

Received: 30 April 2024, Revised: 28 June 2024, Accepted: 30 June 2024, Online: 18 July 2024

DOI: https://doi.org/10.55708/js0307003

Comprehensive Analysis of Software-Defined Networking:
Evaluating Performance Across Diverse Topologies and
Investigating Topology Discovery Protocols
Nikolaos V. Oikonomou*1, Dimitrios V. Oikonomou 2, Eleftherios Stergiou 1, Dimitrios Liarokapis 1

1Department of Informatics & Telecommunications, University of Ioannina, Arta,47150, Greece
2Department of Regional & Cross Border Studies, University of Western Macedonia, Kozani,50100, Greece
*Corresponding author: Nikolaos V. Oikonomou, University of Ioannina Department of Informatics & Telecommunications, haikos13@gmail.com

ABSTRACT: Software-defined networking (SDN) represents an innovative approach to network
architecture that enhances control, simplifies complexity, and improves operational efficiencies. This
study evaluates the performance metrics of SDN frameworks using the Mininet simulator on virtual
machines hosted on a Windows platform. The research objectives include assessing system
performance across various predefined network topologies, investigating the impact of switch
quantities on network performance, measuring CPU consumption, evaluating RAM demands under
different network loads, and analyzing latency in packet transmission. Methods involved creating and
testing different network topologies, including basic, hybrid, and custom, with the Mininet simulator.
Performance metrics such as CPU and RAM usage, latency, and bandwidth were measured and
analyzed. The study also examined the performance and extendibility of the OpenFlow Data Path
(OFDP) protocol using the POX controller. Results indicate that balanced tree topologies consume the
most CPU and RAM, while linear topologies are more efficient. Random topologies offer adaptability
but face connection reliability issues. The POX controller and OFDP protocol effectively manage SDN
network scalability. This research aims to analyze performance in a manner consistent with numerous
previous studies, underscoring the importance of performance metrics and the scale of the network in
determining the efficiency and reliability of SDN implementations. By benchmarking various
topologies and protocols, the research offers a valuable reference for both academia and industry,
promoting the development of more efficient SDN solutions. Understanding these performance
metrics helps network administrators make informed decisions about implementing SDN frameworks
to improve network performance and reliability.

Keywords: Network Architecture, Efficiency, SDN Controllers, Network Simulation, OpenFlow Protocol

1. Introduction

Networks are all around us, integral to our lives and
daily routines. Most of the needs of a modern,
technologically advanced society require strong and
reliable networks. The demand for efficient networks is
increasing exponentially with the passage of years and
technological development. Nowadays, most people from
all age groups use networks daily, and their quality of life
depends on these networks, even if this is not immediately
apparent. The COVID-19 pandemic that the world
experienced from the beginning of 2020 changed many
aspects of network usage. People were forced to spend

much more time at home. This situation led people to find
smart ways to meet most of their daily needs within the
walls of their homes. Thus, the concept of the network in
general came to everyone's doorstep in the form of the
largest known global network, the internet. Young people
had to be educated remotely using the internet. Adults
were mostly required to work from a distance, and the
elderly and vulnerable groups had to seek their care and
support in a different way with the help of the internet.
This situation led to an unprecedented increase not only in
the number of internet users but also in the number of
different devices each user employs to access it. As a result,
some weaknesses in the existing global networks were
revealed, and new ones were created. Network providers

http://www.jenrs.com/
https://doi.org/10.55708/js0307003
mailto:haikos13@gmail.com

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 24

and researchers realized that the capacity, speed,
management, and reliability of networks needed to be
increased due to the excessive load. Traditional networks
that had been used for several years began to collapse
because they primarily relied on physical infrastructures.
Technologies such as SDN, which had been around for the
last 10 years (mainly from 2013 onwards), began to be more
extensively researched and implemented in global
networks to strengthen them and ensure the smooth
survival of the world. SDN enhances the capabilities of the
network and simplifies its structure, with their main goal
being more efficient network management. In this study,
the architecture and structure of SDN networks will be
examined. Network topologies will be created through
simulations, and their operation and performance will be
analyzed. Specifically, the performance between different
topologies will be compared. It will be shown how the total
number of switches, which are a fundamental pillar in the
architecture of SDN, affects and burdens the overall
performance of the network. The main measurements to be
taken to draw accurate conclusions are CPU usage, RAM
memory, and the delay in packet transfer between nodes.
To achieve the above in the form of simulation, the Mininet
simulator will be used on a computer with a Windows
operating system. Additional software will be used in
conjunction with Mininet to ensure the integrity and
number of results. In this way, the behavior and
adaptability of SDN networks will be studied. The
controller used in Mininet will be POX, and further
analysis will be done on the topology creation protocol
OFDP, through which virtual networks will be studied
below and their performance and scalability examined.
The aim is to draw conclusions about the operation of SDN
with the POX controller, specifically the use of the OFDP
protocol. The reason for using random topologies is their
effects on traditional networks and raises the question of
how these random graphs can affect OpenFlow as its
evolution into an even more modern network topology
creation protocol. Given that network technologies have a
strong relationship with network graphs and consequently
with the concept of graph theory in mathematics, an
analytical model for computation, comparison, and
prediction is established through simulations on realistic
platforms so that faster implementation in real-time
networks can be achieved. The remainder of the article is
as follows: Related search, SDN controllers, SDN protocols,
Software & Hardware specifications, experiment
specifications, analysis of results and finally the total
conclusions from this research [1].

2. Related Search
 Several research publications have been made on the
aspect of SDNs, using the POX controller as well as OFDP
for creating topologies. However, few utilize random
topologies for interpreting SDN performance. In our
previous research, we studied the performance results of

Software-Defined Networking (SDN) tests conducted on
standard network topologies using simulation.
Concurrently, the performance of the standard topologies
was compared with that of the random ones. Specifically,
the performance measurements examined included: the
setup and teardown time of the topology, the CPU and
RAM usage of the system, and the delay in packet transfer
between nodes. The entire study was conducted on a
Windows computer using a virtual machine to run a
Mininet simulator, similar to what we will use in the
present work. From the meticulous analysis of the results,
the following are worth mentioning: (i) the total number
of switches in an SDN architecture has a significant impact
on CPU load. (ii) RAM usage depends on the number of
host computers and in cases of excessive load, it shows a
much greater increase compared to CPU usage. (iii) The
overall performance significantly depends on the type of
topology and its properties. The experiments then were
conducted on a typical and limited range of devices [2].
 In his work, Guo created various types of network
topologies for analysis, including ring topology, tree
topology, and random Erdos-Renyi model topologies. In
the randomly created networks, the probability of an edge
between any two vertices was set at 0.4. Thus, these
random networks were mostly dense networks with a
short average path length. The ring networks had the
longest average path length among the three topologies,
while the tree topology was intermediate; all experiments
were repeated 100 times. All nodes were subject to a
common failure probability. Fifty nodes were used to
create the three types of networks. The results show that
the expected resilience of the network is inversely
proportional to the average path length of the network
topology, hence random topology networks perform
better, and ring networks are less resilient [3].
 In another study, the performance of the proposed
discovery mechanism, which primarily relies on the
OFDP protocol regarding the overall load, was analyzed.
Various topologies were examined, focusing on random
networks based on the Erdős–Rényi model. The study
highlighted that researchers' efforts are concentrated on
reducing the number of messages reaching the controller.
However, the performance and scalability of SDN
networks depend more on other factors, such as CPU load,
memory usage, network topology, and the time required
for topology discovery. The scalability of OFDP and
OFDPv2 for a wide range of random networks based on
the Erdős–Rényi model was tested. Experimental results
showed that the protocols consume almost equal
resources (CPU and RAM), while OFDP requires more

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 25

time for topology discovery than OFDPv2 for the same
topology [4].

3. SDN Controllers

3.1. General SDN Information

Software-Defined Networking (SDN) is a networking
approach that uses software-based controllers or APIs to
communicate with the underlying hardware
infrastructure and direct traffic within a network. This
model differs from traditional networks, which solely
utilize hardware devices (routers and switches) to manage
network traffic. SDN can create and manage a virtual
network or control a traditional network through
software. While network virtualization allows the
segmentation of different virtual networks on a single
physical network and the connection of devices across
various physical networks to form a single virtual
network, SDN enables a new method of controlling data
packet routing through a central server. Consequently,
SDN achieves the successful and functional separation of
the Control Plane from the Forwarding Plane in a network.
Below in Figure 1 the SDN architecture is depicted.

Figure 1: Schematic representation of the SDN architecture. Adapted
from [5]

3.2. SDN Controller

A software-defined networking controller is a central
element of the SDN architecture. It provides control over
network elements in the managed domain. In networking,
there are management, control, and data planes. An SDN
controller offers management and control functions for
network elements within the managed domain. This
means that an SDN controller, based on network
information and a set of predefined rules and policies,
manages network elements and configures (or
"programs") the data plane (i.e., directs data flow through
the network). One of the key advantages of using an SDN
controller is that it allows for more efficient network
management, and changes to the network configuration
can be applied from a central location instead of needing

to manually configure each individual network element.
Additionally, an SDN controller can automate certain
tasks, such as traffic management and security, which can
reduce the risk of human error and improve the overall
reliability of the network. SDN controllers provide an API
known as the northbound interface, through which
external applications or systems such as orchestration
platforms can interact with the network. In such cases, an
SDN controller translates application-level requirements
(e.g., high-level network configuration description) into
configurations specific to the supported network
elements. SDN controllers can manage both physical
network devices and software elements that perform
network functions [6].

In summary, the main functions of an SDN controller
include:

• Managing data flow within the managed network
• Providing an API for applications and other

components (e.g., orchestration platforms) to interact
with the network.

• Providing visibility into the network, enabling network
performance monitoring and troubleshooting

• Automating network management tasks, such as
provisioning new network elements and reconfiguring
network paths

More specifically, the controller provides the following
capabilities:

Southbound Support: Defined as how a controller
interacts with network devices to achieve optimized
traffic flow. There are various southbound protocols that
can be used, each with specific functionalities such as field
matching, network discovery with different protocols, etc.
When supporting the southbound interface,
implementers must consider not only the characteristics
of the protocol but also potential extensions, newer
versions, etc.

Northbound Support: Northbound APIs are used for
network integration and programming and can be
utilized by orchestration systems that cater to customers
and third-party applications. It is crucial to ensure that a
controller is properly developed for orchestrating
communications between layers. For example, the
controller should support orchestration systems for
applications such as cloud services, not only for open-
source controllers and protocols but also those provided
by various vendors. These applications could also include
traffic engineering or applications that collect data used
for network management tasks. As we can see below in
Figure 2 the differences between the structure of

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 26

Centralized and Distributed control path are presented
[7].

Figure 2: Comparison of Centralized and Distributed Architecture.

3.3. NOX/POX Controller

NOX was the first SDN controller. Initially developed
by Nicira Networks, it was the first to support the
OpenFlow protocol. Released to the research community
in 2009, it laid the foundation for many SDN research
projects. It was later expanded and supported at Stanford
University with significant contributions from the
University of California, Berkeley. Some popular NOX
applications include SANE (an approach that represents
the network as a file system) and Ethane. Today, NOX is
considered inactive. Over the years, different versions of
NOX have been introduced. These are known as NOX,
NOX-MT, and POX. The new NOX only supports C++. It
has a smaller application network compared to NOX but
is much faster and has a much cleaner codebase. NOX-
MT, introduced as a slightly modified version of the NOX
controller, uses optimization techniques to introduce
multi-threaded processing to improve the rate and
response time of NOX. These optimization techniques
include I/O batching to minimize general input/output
overhead and others. POX is the latest version based on
Python. The idea behind its development was to return
NOX to its roots in C++ and develop a separate platform
based on Python. It also features a Python OpenFlow
interface, reusable element samples for path selection,
topology discovery, etc. The primary goal of POX is
research. Given that many research projects are by nature
short-lived, the focus of POX developers is on good
interfaces rather than API stability. In the current research,
due to the multiple interfaces and the stability of the
controller and because the Python language was used to
create network topologies, POX was used [8].

Generally, the NOX controller provides a complete
OpenFlow API using C++ and Python languages, uses
asynchronous inputs/outputs (I/O), and is oriented
towards operation on Linux, Ubuntu, and Debian
systems. NOX is used both as a standalone controller and
as a component-based framework for developing SDN
applications. It is built on an event-based programming
model and adopts a simple programming interface model
that revolves around three pillars:

• Events
• Namespace
• Network view

Events can be generated either directly from OpenFlow
messages or from NOX applications because of
processing low-level events or other events generated by
applications.

4. SDN Protocols

The SDN protocol is a set of standards and rules that
define how SDN controllers and switches communicate
with each other. Essentially, a protocol allows the SDN
controller to configure the behavior of the switch, such as
determining which packets should be forwarded to which
ports and setting quality of service (QoS) parameters for
different types of traffic. The most popular SDN protocol
is OpenFlow.

4.1. OpenFlow Protocol

As mentioned, OpenFlow is the most widespread
SDN protocol and defines the flow between the switch
and the controller. It allows the controller to manage
traffic forwarding between different network devices by
controlling the switch's flow tables. This protocol was first
developed by researchers at Stanford University in 2008
and was first adopted by Google in their backbone
network in 2011-2012. It is now managed by the Open
Networking Foundation (ONF). The latest version widely
used in the industry is V1.5, while V2.0 is being refined. It
is also often referred to as OFDP, meaning the OpenFlow
Topology Discovery Protocol, because whether referred
to as OpenFlow or OFDP, it automatically means the
same function [9], [10].

OpenFlow is the standard southbound interface
protocol used between the SDN controller and the switch.
The SDN controller takes information from the
applications and converts it into flow entries, which are
fed into the switch via OpenFlow. It can also be used to
monitor switch and port statistics in network
management.

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 27

It is worth noting that the OpenFlow protocol is only
installed between a controller and a switch. It does not
affect the rest of the network. If a packet capture were to
be taken between two switches in a network, both
connected to the controller via another port, the packet
capture would not reveal any OF messages between the
switches. It is strictly for use between a switch and the
controller. The rest of the network is not affected [11].

4.2. NetConf Protocol

NetConf is a protocol used in SDN for managing
network devices such as routers and switches, providing
a standardized way of configuring, monitoring, and
managing these devices. It is an IETF standard and is
based on XML data encoding and the SSH protocol for
secure communication. The default TCP port assigned is
830. The NetConf server must listen for connections with
the NetConf subsystem on this port.

 With NetConf, network administrators can configure
network devices programmatically using a standardized
set of commands, rather than relying on proprietary
interfaces for specific devices. This helps simplify
network management and facilitates the automation of
repetitive tasks such as deploying new network
configurations or updates to hardware and software.

 NetConf uses a client-server model, with the
NetConf client sending requests to the device and the
NetConf server responding with data or status updates.
The protocol supports a range of functions, such as:

Retrieve: Retrieve specific data or configuration
information from the device

Edit-config: Modify the device's configuration.

Commit: Apply changes to the device's configuration

Lock: Lock the device's configuration to prevent multiple
managers from making conflicting changes

Unlock: Release the configuration lock

NetConf is often used in conjunction with YANG, a
data modeling language that allows network
administrators to describe network elements and their
configurations in a structured and standardized way.
Together, NetConf and YANG form a significant
component of SDN, enabling greater automation and
control in network management.

4.3. Open vSwitch Database Management Protocol (OVSDB)

OVSDB is a protocol used in SDN networks for
managing Open vSwitch instances, which are software-

based switches that can be used in an SDN environment.
OVSDB provides a standard way to configure and
manage Open vSwitch instances, allowing network
administrators to deploy and manage switches more
automatically and programmatically. It defines a set of
functions that can be used for querying and modifying the
configuration of Open vSwitch instances, including
creating, deleting, and modifying ports, interfaces, and
VLANs.

OVSDB is based on a client-server model, with the
OVSDB client sending requests to the OVSDB server,
which responds with data or status updates. The protocol
uses JSON data encoding and supports secure
communication using TLS.

In an SDN environment, Open vSwitch instances can
be used to forward traffic between different network
devices and allow network administrators to manage
traffic flows using a central SDN controller. OVSDB
provides a standardized way to configure and manage
these switches, facilitating the development and
management of large-scale SDN networks.

4.4. Border Gateway Protocol (BGP)

BGP is a routing protocol commonly used in SDN
networking environments to exchange routing
information between different autonomous systems in
large-scale networks. BGP is a path vector routing
protocol that uses a network of interconnected
autonomous systems to route traffic between different
parts of the network.

In an SDN environment, BGP can be used to facilitate
communication between different network elements,
such as the SDN controller and network devices, or
between different SDN controllers. BGP provides a
standardized way to exchange routing information,
allowing network managers to manage traffic flows and
optimize network performance.

BGP uses a hierarchical routing table system, with
each autonomous system maintaining its own routing
table and exchanging updates with neighboring
autonomous systems. The protocol supports both internal
and external routing, allowing more efficient routing
within a single autonomous system and between different
autonomous systems [12].

4.5. Locator/Identifier Separation Protocol (LISP)

LISP is a protocol used in SDN to separate the
network location of a device (essentially its IP address)
from its identity or identifier. LISP provides a way to

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 28

assign multiple IP addresses to a device and allows
routing of traffic based on the device's identity rather than
its physical location.

In an SDN environment, LISP can be used to simplify
network management and enable more efficient routing
of traffic between different devices. By separating the
device's identity from its location, LISP allows network
administrators to move devices between different
network locations without changing their IP addresses,
simplifying network management and reducing the
likelihood of errors [13].

4.6. Simple Network Management Protocol (SNMP)

SNMP is a protocol used in software-defined
networking (SDN) for monitoring and managing network
devices. SNMP provides a standardized way for network
administrators to monitor the performance of network
devices, such as switches and routers, and to configure
them remotely.

In an SDN environment, SNMP can be used to
monitor and manage network devices from a central SDN
controller. SNMP allows network administrators to
monitor a range of device metrics, such as CPU usage,
memory usage, and network traffic, and to receive alerts
when performance issues arise.

SNMP is based on a client-server model, with SNMP
agents running on network devices and SNMP managers
running on the SDN controller. The agents collect
performance data and send it to the managers, who can
then analyze the data and take actions to improve
network performance.

SNMP is a widely used protocol in network
management and is supported by a range of network
device suppliers and SDN controllers. It can be used in
conjunction with all the above-mentioned SDN protocols
to enable more effective and flexible network
management.

4.7. Link Layer Discovery Protocol (LLDP)

LLDP is a Layer 2, vendor-neutral protocol used for
discovering and advertising network device information
on a local area network (LAN). It allows network devices
to exchange information about their identity, capabilities,
and connections [14].

LLDP operates by sending and receiving LLDP
frames, which are multicast packets transmitted on every
network interface. LLDP frames contain TLV (Type-
Length-Value) elements that carry specific information
about the transmitting device, such as system name, port

description, system capabilities, and management
addresses.

Key features and benefits of LLDP include:

Device Discovery: LLDP enables network devices to
discover neighboring devices on the LAN, providing
information about their identity, such as device type,
vendor, and model.

Topology Discovery: By exchanging LLDP information,
devices can gather details about the connections and
topology of the network, including neighboring devices,
port numbers, and connection speeds.

Automatic Configuration: LLDP can be used by network
management systems to automatically configure network
devices based on their discovered capabilities,
simplifying network setup and reducing the efforts of
manual configuration.

Troubleshooting and Monitoring: LLDP facilitates
network troubleshooting by providing visibility into the
network topology and device connectivity. It allows
administrators to identify and locate devices, detect link
failures, and monitor the status of connections.

LLDP is supported by a wide range of network
devices, including switches, routers, wireless access
points, and IP phones. It is often used in conjunction with
other network protocols, such as SNMP, to enable
comprehensive network management and monitoring.

It is important to note that LLDP is a Layer 2 protocol,
and its functionality is limited to the local network
segment. It does not route traffic nor provide visibility
into the entire network.

4.8. Advantages of SDN

Software-defined networking (SDN) has emerged as
a transformative approach to network architecture and
management. By decoupling the control plane from the
data plane and centralizing network control through
software, SDN provides numerous benefits and impacts
various industries. Key findings on SDN include:

• Enhanced Network Flexibility: SDN allows
organizations to quickly provision, configure, and
modify network services via software, leading to
improved network flexibility. It enables dynamic
allocation of network resources, making it easier to
adapt to changing business needs and network traffic
patterns [15].

• Simplified Network Management: SDN centralizes
network management through a software-managed

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 29

controller, providing a single point of control and
monitoring. This simplifies network management,
reduces complexity, and enhances troubleshooting
capabilities.

• Scalability and Flexibility: SDN offers scalability by
abstracting network functionality from the
underlying hardware. Organizations can more easily
scale their networks by adding or reallocating
resources according to needs. Furthermore, SDN
allows flexibility in deploying new services and
applications without significant changes to
infrastructure.

• Network Programmability: SDN enables network
programmability, allowing administrators to
automate network functions and control network
behavior through software. This programmability
facilitates the development of innovative applications
and services that can interact directly with the
network.

• Enhanced Security: SDN provides enhanced security
capabilities by leveraging centralized control and
programmability. Security policies can be defined
and enforced consistently across the network, making
it easier to identify and respond to threats.

• Cost Optimization: SDN offers cost savings by
reducing hardware dependencies and enhancing
resource utilization. With the ability to dynamically
control and distribute network resources,
organizations can optimize their infrastructure,
leading to better cost performance.

• Innovation and Ecosystem Development: SDN
promotes innovation by enabling the development of
new network services and applications. It encourages
the development of an 'ecosystem' where vendors,
developers, and researchers can collaborate to create
new solutions and advance networking progress.

• SD-WAN and Cloud Connectivity: SDN plays a
critical role in the adoption of software-defined wide
area networks (SD-WAN) and in connecting on-
premises networks to cloud environments. It
simplifies the management of distributed networks,
provides better visibility and control, and improves
connectivity to cloud services.

4.8 challenges and issues

While SDN offers significant benefits, it also presents
challenges, including interoperability among different
SDN solutions, security concerns related to centralized
control, the need for specialized personnel to manage and
operate SDN environments, and the necessity for careful

planning, testing, and collaboration with experienced
vendors to overcome these challenges.

SDN Protocols:

• SDN protocols play a critical role in the
implementation and operation of software-defined
networking (SDN) environments. These protocols
define the communication and interaction between
different elements of an SDN architecture, facilitating
network control and management.

• OpenFlow is one of the most widely adopted SDN
protocols. It provides a standard interface between the
control layer and forwarding devices (switches).
OpenFlow enables centralized network control by
separating control logic from switches and allowing
the controller to program forwarding rules. It has
significantly contributed to the development and
deployment of SDN solutions.

SDN Controllers:

• SDN controllers serve as the central intelligence of
software-defined network (SDN) architectures. They
are responsible for managing and orchestrating
network resources, facilitating communication between
the control layer and the data layer, and enabling
network programmability.

Table 1: below presents the network protocols along with
their pros and cons.

Table 1: Network protocols.

PROTOCOLS PROS CONS
OpenFlow Fully

customizable,
scalable

Complex

NetConf Simplicity,
management

Limited
Performance

OVSDB Customizable,
management

Few complex
options

BGP Usable across
different
networks, routing

Recommended
only for very
large networks

LISP Simplicity,
efficient traffic
control

Limited
capabilities

SNMP Advanced control Complex

LLDP Wide range of
device
compatibility

Limited only to
LAN networks

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 30

5. Software & Hardware specifications

In this section, we will analyze each tool used for this
work. Specifically, both the hardware and software
components will be discussed.

5.1. Hardware Specifications

Compared to previous related research where high-
performance laptops, low-performance desktops, or even
workstations were used, this research utilized a new high-
performance desktop computer. This system offers the
capability to implement larger virtual networks as well as
optimized management and distribution of physical
resources, allowing for improved performance and more
efficient scaling of the networks that will be created. In the
heart of the computing system used for this research, the
Gigabyte B550M AORUS PRO motherboard with an
AMD B550 chipset lays the foundation. This motherboard
was chosen for its robust support for modern connectivity
standards such as PCI EXPRESS 4.0, which is pivotal for
high-performance setups required in advanced
simulations and experiments. The AMD Ryzen 5 5600X
processor, featuring a 7nm FinFET technology with 6
cores and 12 threads, is selected for its ability to handle
extensive computations more effectively than comparable
models used in preceding studies. Its overclocking ability
up to 4.7 GHz facilitates faster processing of complex
tasks, crucial for developing larger virtual networks and
conducting intensive data analysis.

Additionally, the system is equipped with 32GB of
DDR4 RAM at 3600 MHz in dual-channel configuration,
providing ample bandwidth and speed necessary for
managing multiple operations simultaneously, which is
essential when testing the limits of network simulations
and other resource-intensive applications. The AMD
Radeon RX 6750 XT graphics card with 12GB of GDDR6
memory ensures smooth rendering of complex graphics
and supports the visualization demands of the research,
including the manipulation and analysis of high-
dimensional data sets.

Storage is handled by a Kingston KC3000 NVMe SSD
with a capacity of 2TB, leveraging PCI Express 4.0
technology to offer rapid data access speeds of up to 7000
MB/s, significantly reducing load times and improving
the overall efficiency of data processing tasks. This
storage solution is vital for handling large volumes of
data generated during simulations, ensuring quick
retrieval and processing that are imperative for
maintaining workflow continuity during the research.

Together, these hardware specifications are
meticulously chosen not only for their individual
capabilities but also for their synergy, which ensures a
high-performance, stable, and reliable computing
environment capable of supporting the sophisticated
software tools and simulations utilized in this research. In
Table: 2 we have the technical specifications of our
systems.

Table 2: Simulation system specifications.

Component Specification

CPU AMD Ryzen 5 5600X, 6 cores/12 threads,
4.7 GHz, 45W

RAM 32GB DDR4, 3600 MHz, Dual Channel

GPU AMD Radeon RX 6750 XT, 12GB, PCI
Express 4.0

Storage Kingston KC3000, NVMe, PCI Express
4.0, 7GB/s

5.2. Software Specifications

In this section, the specifications of the system
software used are analyzed. It is crucial not only to
conduct research to use the correct software that can
deliver the desired results but also to ensure that all
software can work harmoniously together. Cohesion,
relevance, and repeated checks on the outcomes that will
be extracted are necessary. For the software setup in this
research, specific tools have been meticulously selected to
complement the powerful hardware configuration and to
meet the specialized requirements of the study. The
primary operating system used is Windows 11 Pro for
Workstations, which offers essential features like the
ReFS file system for enhanced data resilience and support
for advanced hardware configurations, critical for
maximizing the potential of the system’s physical
components.

Oracle's VirtualBox plays a key role by allowing the
deployment of multiple operating systems on a single
physical machine, which is crucial for testing different
network configurations and software interactions in a
controlled, isolated environment. This flexibility is vital
for reproducing and manipulating network scenarios in
the development of software-defined networking (SDN)
solutions.

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 31

Additionally, Visual Studio Code is employed as the
primary code editor due to its robust support for multiple
programming languages and its integrated development
environment (IDE) features like debugging, code
completion, and Git integration. These features enhance
the efficiency of writing and testing code, particularly
Python scripts used for creating network topologies in the
research.

Gephi, an open-source network visualization
software, is used to analyze and visualize complex
network structures, which helps in understanding the
interactions within the network and identifying key
patterns and anomalies. The ability to dynamically model
network traffic and topology changes in real-time using
Gephi significantly aids in the exploratory phase of the
research.

Furthermore, the inclusion of specialized tools like
PuTTY for secure remote session management, WinSCP
for secure file transfer, and Xming for running X Window
System applications on Windows, consolidates the
software environment.

Together, these software tools form a cohesive
ecosystem that supports the rigorous demands of the
research, enabling sophisticated simulations, extensive
data analysis, and effective management of resources
across different stages of the project. Table 3 contains an
analysis of all the software used.

Table 3: Simulation software presentation.

Software Brief Description

Windows 11
Pro for
Workstations

Operating system designed for high-tech
hardware and workloads, with
additional features for enhanced
performance and reliability.

VirtualBox Open-source virtualization software that
allows running multiple operating
systems on a single physical machine.

Mininet Network emulator that facilitates the
simulation and testing of Software-
Defined Networks (SDN).

X-Ming Free X-Window-System server for
Windows that enables remote graphical
user interfaces over a network.

WinSCP Free and open-source SFTP, FTP, and
SCP client for Windows that enables
secure file transfers between local and
remote computers.

PuTTY Free terminal emulator, serial console,
and network file transfer application for
Windows that supports multiple
network protocols.

Visual Studio
Code

Free, open-source code editor developed
by Microsoft, supporting a wide range of
programming languages and tools.

Gephi Open-source software for visualizing
and exploring graphs and networks,
ideal for analyzing complex networks.

6. Experiment Specifications

6.1. Network Topologies

The term topology defines the geometric
representation of the connections in a network. We
examined three categories of topologies.

• Basic
• Hybrid
• Custom

Specifically, for the basic topologies, the bus
topology was selected, for the hybrid topologies, the
balanced tree topology was chosen, and for the Custom,
the random topology was used [16], [17].

6.1.1. Basic Topologies

There are many basic network topologies
commonly used in computer networking. These include:

Bus topology: All devices are connected to a single
communication line or cable, known as the bus. Data
travels in both directions along the bus and all devices on
the network can receive the same message
simultaneously. Figure 3 depicts bus topology.

Figure 3: Example of bus topology.

Star topology: All devices are connected to a central
hub or switch, and data flows through the hub or switch
to reach its destination. Each device has an exclusive
connection to the hub or switch, which can help reduce

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 32

network congestion and improve performance. Figure 4
depicts star topology.

Figure 4: Example of star topology.

Ring topology: All devices are connected in a closed loop,
with data flowing in one direction around the loop. Each
device receives data from the previous device in the loop
and sends data to the next device in the loop. The ring
topology is depicted in Figure 5 below.

Figure 5: Example of ring topology.

Mesh topology: Each device is connected to every other
device in the network, creating a fully interconnected
network. This can provide high redundancy and fault
tolerance but can be complex to manage and requires a lot
of wiring. Figure 6 presents mesh topology.

Figure 6: Example of mesh topology.

6.1.2. Hybrid Topologies

Hybrid Topology is a combination of two or more
basic topologies, such as a star-bus topology or a ring-
mesh topology. This can offer a balance between
performance, redundancy, and ease of management.

Tree topology, also known as hierarchical topology,
is a type of network topology based on a hierarchical
structure. In this topology, multiple star topologies relate
to a bus topology, creating a structure that resembles a
tree. In a tree topology, the central bus acts as the main
trunk of the tree, with multiple branches extending from
it. Each branch is a separate star topology with a hub or
switch at the center and multiple devices connected to it.
This allows the creation of subnetworks within the larger
network, with each subnet having its own exclusive hub
or switch.

The main advantage of a tree topology is its
scalability, as it can support many devices and
subnetworks. It also provides a good balance between
performance and redundancy, as each subnet can operate
independently and problems in one subnet will not affect
the rest of the network.

However, the main disadvantage of a tree topology
is its complexity, as it requires a significant amount of
cabling and configuration. It can also be difficult to
troubleshoot and manage, as problems in one part of the
network can affect the entire tree. Below in Figure 7 an
example of hybrid topology can be found.

Figure 7: Example of hybrid tree topology.

A balanced tree topology is a specific type of tree
topology where each branch of the tree has the same
number of levels. This means that each subnet is of equal
size and has the same number of devices connected to it.
In a balanced tree topology, the central bus is connected
to a set of level-1 switches, each of which is connected to

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 33

a set of level-2 switches, and so on, until the final level of
switches is reached. Each switch in the tree has an equal
number of branches connected to it, which helps balance
the network traffic and avoid congestion.

6.1.3. Custom Topologies

Custom network topologies refer to network
architectures designed to meet specific requirements or
solve specific problems. They may be a combination of
two or more basic topologies, or they may be entirely
unique and tailored to a specific application or
environment. Custom network topologies can be created
by network designers and administrators using various
networking devices and technologies, such as switches,
routers, firewalls, load balancers, and others. These
devices can be configured to implement specific routing
protocols, VLANs, access control policies, and other
features to achieve the desired network behavior and
performance. Examples of custom network topologies
include:

Mesh topology with adaptive routing: This topology
can be used in large-scale wireless networks to provide
high redundancy and fault tolerance. Adaptive routing
protocols such as OLSR or B.A.T.M.A.N. may be used to
optimize network performance and reduce congestion.
Hub-and-Spoke topology with VPN: This topology can be
used to connect multiple remote offices or branches to a
central location using VPN tunnels. A hub router or
firewall is used to manage the traffic flow and provide
secure connectivity between the spokes.

Cluster topology with load balancing: This topology can
be used to create a cluster of web or application servers
for high availability. Load balancing devices are used to
distribute traffic across multiple servers in the cluster,
providing high performance and scalability.

Custom network topologies can offer unique
advantages and solve specific problems, but they also
require careful design and management to ensure
effectiveness and security. Network administrators
should consider the specific needs of their organization
and consult experienced network designers to create a
custom topology that meets these needs.

6.1.4. Random Topology

In computer networking, a random network topology
refers to a network topology where connections between
nodes are made in a random or stochastic manner. In such
a topology, there is no predetermined plan or structure to
the connections between nodes. Random network
topologies are used in various applications, such as in the

study of social networks, biological networks, and
communication networks. They are also used in
analyzing network properties, such as connectivity,
robustness, and efficiency. It has been shown that they
exhibit some interesting and unexpected behaviors, such
as the emergence of small-world networks and scale-free
networks.

6.1.5. Erdős–Rényi Model

 An example of a random network topology is the
Erdős–Rényi model. The Erdős–Rényi model, also known
as the ER model, is a mathematical model for creating
random graphs. Introduced to the field of mathematics by
mathematicians Paul Erdős and Alfréd Rényi in 1959, the
ER model creates a random graph with "n" nodes starting
with "n" isolated nodes and then randomly connecting
pairs of nodes with a certain probability "p". The edges
between the nodes are independent and occur with
probability "p". There are two variations of the ER model:
the G(n,m) model, which creates a random graph with "n"
nodes and m edges, and the G(n,p) model, which creates
a random graph with "n" nodes and an edge between each
pair of nodes with probability "p".

 The ER model has been used to study various
properties of random graphs, including the appearance of
the giant component, the phase transition of connectivity,
and the degree distribution of the graph. The model has
also been applied in various fields such as social networks,
computer networks, and biology. However, it should be
noted that the ER model assumes a completely random
and uniform distribution of edges, which may not always
reflect the real structure of many networks. As a result,
other network models, such as small-world networks and
scale-free networks, have been proposed to better map
the properties of real networks. In Figure 8 below we can
see a custom random topology is presented [18].

Figure 8: Example of Custom Random Topology using the Erdős–

Rényi mathematical model

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 34

6.2. Experiment Specifications

The experiments implement topologies based on the
random topology which in turn follows the Erdős–Rényi
mathematical model. The SDN controller used is POX due
to its compatibility with both topologies and the creation
and parameterization of topologies through the PYTHON
language. The topology creation protocol is OFDP, or
otherwise OpenFlow [19].

The experiments examine the following:

• Comparison of system performance according to
topologies.

• Comparison of system performance according to
topology creation protocol.

• Comparison of system performance according to the
number of switches and how the total number of
switches affects performance.

• CPU usage.
• RAM usage
• The delay of packet transfer between network nodes.
• The time of creation and destruction of a topology

The above measurements will be compared:

Topologies:

• Linear
• Balanced Tree
• Random Topology

Creation Protocols

• OFDP
• LLDP
• BGP
• LSDP
• SNMP
• OVSDB

The number of switches will remain steadily
increasing, and each switch will be connected to a host in
the manner shown in the table below [20].

It is noted that a greater number of switches was
achieved than in most similar studies. This fact alone
allows for better interpretation of results and is primarily
due to the available hardware resources. Table 4 contains
the scale of the experiments depending on the number of
switches and hosts.

Table 4: Scale of experiments conducted

SWITCHES HOSTS

2 2

4 4

8 8

16 16

32 32

64 64

128 128

256 256

512 512

1024 1024

2048 2048

4096 4096

8192 8192

6.3. Collection of General Results

In this section, the statistical tables of the data
collected from the above experiments will be presented.
The controller used is POX and the topology creation
protocol is OFDP. It is worth noting that each experiment
was performed about a thousand times to ascertain the
accuracy percentage of the results, and the deviations
were minimal and consistent with the expected pattern.
Therefore, the results presented are the overall average.
Below the tables of experiment results are presented.
Table 5 presents the results using random topologies,
Table 6 presents the results using linear topologies and
Table 7 presents the results using balanced tree topologies
[21].

Table 5: Experiment results using random topologies.

CP
U
(%)

MEMOR
Y (MB)

SWITC
H

HOST
S

BW
(Gbps
)

SETU
P
TIME
(sec)

TEAR
TIME
(sec)

1.9 150 2 2 41 0.092 0.085
2.6 170 4 4 42 0.145 0.136
6.4 210 8 8 48 0.326 0.413
11.2 250 16 16 48 1.256 1.646
13.5 290 32 32 47 2.719 6.167
18.1 330 64 64 38 12.752 22.39
22.4 390 128 128 38 18.393 29.712
27.8 440 256 256 36 26.715 39.513
33.6 625 512 512 33 39.212 58.004
39.2 1100 1024 1024 32 57.454 74.981
44.5 2000 2048 2048 28 83.757 119.04

6
47.3 3500 4096 4096 26 183.90

8
244.90
1

62.9 6800 8192 8192 27 274.48
3

368.27
1

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 35

Table 6: Experiment results using linear topologies.

CP
U
(%)

MEMOR
Y (MB)

SWITC
H

HOST
S

BW
(Gbps
)

SETU
P
TIME
(sec)

TEAR
TIME
(sec)

1.2 300 2 2 45 0.098 0.067
1.9 340 4 4 44 0.182 0.224
4.8 380 8 8 49 0.295 0.313
9.3 420 16 16 47 0.542 0.621
10.3 480 32 32 48 0.894 1.128
14.5 560 64 64 481 1.889 2.359
19.3 680 128 128 38 3.319 4.858
23.6 1050 256 256 38 6.822 7.254
28.1 1680 512 512 39 14.841 18.952
33.6 2200 1024 1024 37 33.713 39.701
38.4 3500 2048 2048 36 55.915 62.113
42.5 7300 4096 4096 33 98.009 127.98

9
53.6 12300 8192 8192 31 181.41

1
229.41
0

Table 7: Experiment results using balanced tree topologies.

CP
U
(%)

MEMOR
Y (MB)

SWITC
H

HOST
S

BW
(Gbps
)

SETU
P
TIME
(sec)

TEAR
TIME
(sec)

3.2 180 2 2 43 0.150 0.141
4.5 220 4 4 42 0.265 0.181
8.9 270 8 8 38 0.429 0.284
14.7 380 16 16 44 1.854 1.678
17.6 490 32 32 48 3.535 3.280
21,2 600 64 64 41 6.614 7.252
24.8 710 128 128 43 8.325 10.053
29.1 930 256 256 40 17.783 19.993
36.1 1450 512 512 39 26.977 41.900
44.9 2580 1024 1024 41 56.672 77.451
52.4 4310 2048 2048 37 128.33

4
168.51
3

59.9 8200 4096 4096 38 190.98
5

212.71
7

74.4 15200 8192 8192 30 260.51
1

332.55
7

6.3.1. Collection of Latency Results

Latency measurement will be done differently as
each network is measured under similar conditions with
a fixed packet size, increasing the number of packets and
observing how this affects the network. The average and
total transfer times are collected. The size of each packet
is defined as 1024Bytes (1KB), and simulations will be
executed with the corresponding packet numbers
[1,10,50,100,500]. In previous studies, a usage limit of
about 600 packets of this packet size was observed in
Mininet. Below Table 8 is presented in which we can see
the latency results of each topology.

Table 8: Latency results of experiments across all topologies.

PACKET
NUMBER

TREE
AVERAGE
LATENCY
(ms)

LINEAR
AVERAGE
LATENCY
(ms)

ERDOS
RENYI
AVERAGE
LATENCY
(ms)

1 0.048 0.018 0.013

10 0.053 0.027 0.016
50 0.044 0.026 0.018
100 0.031 0.023 0.021
500 0.041 0.015 0.022
TOTAL
AVERAGE

0.0434 0.0218 0.0181

7. Analysis of results

The results obtained in the present research are
appropriately transformed into diagrams. On the vertical
axis, each studied element (CPU, RAM, Bandwidth, Setup
Time, Tear Time, Latency) is distributed, while on the
horizontal axis there is the number of switches used, thus
conclusions are drawn based on the quantity of Switches.
In the Latency diagram, on the horizontal axis, the
number of Switches is replaced by the number of packets.

7.1. CPU Analysis

The following section provides an in-depth analysis
of CPU usage in relation to the number of switches in
various network topologies. The data illustrates that CPU
usage increases as the number of switches rises. The
analysis is based on comparative data from three
topologies: balanced tree, random, and linear.

7.1.1. Balanced Tree Topology

Highest CPU Consumption: The balanced tree
topology consumes the most CPU resources among the
three topologies. This is attributed to the complexity and
structure of the tree-branches, which require more
processing power to manage the available paths.

CPU Usage Increases with Switches: As the number
of switches increases, CPU usage significantly rises. At
the peak of 8192 switches, the CPU usage reaches 74.4%,
which is 11.5% higher than the random topology and 20.8%
higher than the linear topology.

7.1.2. Random Topology:

Close to Balanced Tree: The random topology's CPU
consumption is slightly less than the balanced tree but
higher than the linear topology. This is due to the
adaptable nature of the random topology, which requires
complex computations to manage dynamic connections.

Instabilities: Some instabilities in CPU usage are
observed, caused by the probability of unsuccessful
connections between nodes, which adds variability to the
CPU load.

7.1.3. Linear Topology

Least CPU Usage: The linear topology demonstrates the
least CPU usage due to its simple and straightforward

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 36

connectivity. The simplicity of managing linear
connections results in lower processing requirements.

Stable Performance: The linear topology shows stable
CPU performance, with less variability and lower overall
CPU consumption compared to the other topologies.

Complexity and Resource Allocation: The balanced tree
topology requires more CPU resources due to its
hierarchical structure. Managing multiple levels and
branches in the network involves more processing to
maintain efficient routing and data flow. This complexity
inherently increases the CPU load as the network scales.

Adaptability of Random Topology: While the random
topology is designed for flexibility and adaptability, this
also introduces challenges in maintaining stable
connections. The CPU must handle dynamic routing and
potential connection failures, leading to increased CPU
usage and occasional spikes.

Efficiency of Linear Topology: The linear topology
benefits from its simplicity, where each switch is directly
connected in a straightforward path. This minimizes the
processing required for routing decisions, leading to
lower and more consistent CPU usage. The linear
approach simplifies network management and reduces
the computational burden on the CPU.

The analysis highlights that network topology
significantly impacts CPU usage. The balanced tree
topology, while offering robust and hierarchical
structuring, imposes a high CPU load due to its
complexity. The random topology, though adaptable,
faces challenges with connection stability, leading to
variable CPU consumption. Linear topology remains the
most efficient in terms of CPU usage, owing to its simple
and direct connectivity. These findings are crucial for
network administrators and designers, emphasizing the
need to consider topology choice based on the expected
network load and performance requirements. Balancing
complexity, adaptability, and efficiency is key to
optimizing network performance and resource utilization.
Figure 9 analyses the CPU usage in each experiment.

Figure 9: Comparative CPU usage diagram for the three topologies.

7.2. RAM Analysis

The following section provides an in-depth analysis of
RAM usage in relation to the number of switches in
various network topologies. The data illustrates that
RAM usage varies significantly with the topology used
and the number of switches in the network. This analysis
is based on comparative data from three topologies: linear,
balanced tree, and random.

7.2.1. Linear Topology

Initial High Memory Consumption: Initially, the linear
topology consumes more RAM compared to the other
two topologies, despite using less CPU than the balanced
tree. This higher initial memory usage can be attributed
to the straightforward but memory-intensive nature of
maintaining direct connections between each switch.

Memory Usage Trends: As the number of switches
increases, the memory usage grows but at a predictable
and steady rate due to the simple structure of the linear
topology.

7.2.2. Balanced Tree Topology

High Memory Consumption with Increased
Switches: While the number of switches increases, the
balanced tree topology eventually consumes the most
memory. This is due to the complexity of managing a
hierarchical tree structure, which requires more memory
to store the state and routing information for multiple
levels and branches.

Complexity Impact: The tree-branch structure inherently
requires more memory to maintain the hierarchical
relationships and efficient routing, resulting in higher
memory usage as the network scales.

7.2.3. Random Topology

Lowest Memory Consumption: The random topology
consistently shows lower RAM usage compared to the
other two topologies. This is largely due to its
customization and the retrospective improvements made
to its implementation in Mininet, which optimize
memory usage.

Efficiency of Customization: Due to its adaptable nature
and optimized design, the random topology reduces
memory consumption by about 45-55% compared to the
linear and balanced tree topologies.

Initial Memory Usage in Linear Topology: The linear
topology, despite its simplicity, requires substantial
memory initially to establish and maintain direct

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 37

connections between each switch. This direct approach,
while less CPU-intensive, places a higher initial burden
on RAM.

Increasing Complexity in Balanced Tree Topology: As the
network grows, the balanced tree topology's memory
requirements increase significantly. This is because the
hierarchical structure demands more memory to store the
details of each level and branch, ensuring efficient data
routing and network management.

Optimized Memory Usage in Random Topology: The
random topology benefits from its customized and
optimized implementation in Mininet. This design
reduces unnecessary memory usage and streamlines the
management of random connections, leading to
significantly lower RAM consumption. The flexibility and
adaptability of the random topology also contribute to its
efficient memory usage.

The analysis highlights that network topology
significantly impacts RAM usage. The linear topology,
while simple, initially demands more memory but grows
predictably. The balanced tree topology, due to its
hierarchical structure, consumes the most memory as the
network expands. The random topology, with its
optimized and adaptable design, demonstrates the most
efficient memory usage. These insights are crucial for
network administrators and designers, emphasizing the
need to consider topology choice based on the expected
network load and performance requirements. Balancing
complexity, adaptability, and efficiency is key to
optimizing network performance and resource utilization,
particularly in terms of memory usage. Figure 10 analyses
the RAM usage in each experiment.

Figure 10: Comparative RAM usage diagram for the three topologies.

7.3. Bandwidth Analysis

The following section provides an in-depth analysis of
RAM usage in relation to the number of switches in
various network topologies. The data illustrates that
RAM usage varies significantly with the topology used
and the number of switches in the network. This analysis

is based on the comparative data from three topologies:
linear, balanced tree, and random.

7.3.1. Linear Topology

Initial High Memory Consumption: Initially, the linear
topology consumes more RAM compared to the other
two topologies, despite using less CPU than the balanced
tree. This higher initial memory usage can be attributed
to the straightforward but memory-intensive nature of
maintaining direct connections between each switch.

Memory Usage Trends: As the number of switches
increases, the memory usage grows but at a predictable
and steady rate due to the simple structure of the linear
topology.

7.3.2. Balanced Tree Topology

High Memory Consumption with Increased Switches:
While the number of switches increases, the balanced tree
topology eventually consumes the most memory. This is
due to the complexity of managing a hierarchical tree
structure, which requires more memory to store the state
and routing information for multiple levels and branches.

Complexity Impact: The tree-branch structure inherently
requires more memory to maintain the hierarchical
relationships and efficient routing, resulting in higher
memory usage as the network scales.

7.3.3. Random Topology

Lowest Memory Consumption: The random topology
consistently shows lower RAM usage compared to the
other two topologies. This is largely due to its
customization and the retrospective improvements made
to its implementation in Mininet, which optimize
memory usage.

Efficiency of Customization: Due to its adaptable nature
and optimized design, the random topology reduces
memory consumption by about 45-55% compared to the
linear and balanced tree topologies.

Initial Memory Usage in Linear Topology: The linear
topology, despite its simplicity, requires substantial
memory initially to establish and maintain direct
connections between each switch. This direct approach,
while less CPU-intensive, places a higher initial burden
on RAM.

Increasing Complexity in Balanced Tree Topology: As the
network grows, the balanced tree topology's memory
requirements increase significantly. This is because the
hierarchical structure demands more memory to store the

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 38

details of each level and branch, ensuring efficient data
routing and network management.

Optimized Memory Usage in Random Topology: The
random topology benefits from its customized and
optimized implementation in Mininet. This design
reduces unnecessary memory usage and streamlines the
management of random connections, leading to
significantly lower RAM consumption. The flexibility and
adaptability of the random topology also contribute to its
efficient memory usage.

The analysis highlights that network topology
significantly impacts RAM usage. The linear topology,
while simple, initially demands more memory but grows
predictably. The balanced tree topology, due to its
hierarchical structure, consumes the most memory as the
network expands. The random topology, with its
optimized and adaptable design, demonstrates the most
efficient memory usage. These insights are crucial for
network administrators and designers, emphasizing the
need to consider topology choice based on the expected
network load and performance requirements. Balancing
complexity, adaptability, and efficiency is key to
optimizing network performance and resource utilization,
particularly in terms of memory usage. Figure 11 analyses
the bandwidth of each experiment.

Figure 11: Comparative Bandwidth diagram for the three topologies.

7.4. Setup Time Analysis

The setup time refers to the duration required to create a
network topology, measured from the moment the
creation command is initiated. The analysis compares the
setup times for three different network topologies:
random, balanced tree, and linear. The results indicate
significant differences in the time taken to establish each
topology, highlighting the efficiency and complexity
involved in their creation.

7.4.1. Random Topology

Longest Setup Time: The random topology consistently
shows the longest time required to create a topology. This
is due to its inherent complexity and the need for random

connections between nodes, which involves additional
computational overhead to ensure successful creation
and connectivity.

Marginally Longer: Among the topologies with long
setup times, the random topology takes slightly longer
than the balanced tree, indicating higher variability and
complexity in establishing random connections.

7.4.2. Balanced Tree Topology

Long Setup Time: The balanced tree topology also
exhibits a long setup time, slightly less than the random
topology. The hierarchical structure requires careful
planning and execution to ensure all branches and levels
are correctly established, which adds to the setup time.

Complexity Contribution: The structured nature of the
balanced tree, with multiple levels and branches,
contributes to the extended time needed for its creation.

7.4.3. Linear Topology

Shortest Setup Time: The linear topology shows a
significantly reduced setup time compared to the other
two topologies. This is due to its straightforward design,
where each node is directly connected to the next in a
simple chain.

Efficiency in Large Networks: In very large networks, the
linear topology is approximately 30-40% faster to set up
than the random and balanced tree topologies. This
efficiency is attributed to the minimal complexity in
establishing direct connections sequentially.

Complexity and Overhead: The random and balanced
tree topologies require more time to create due to their
inherent complexity. Random topology involves the
creation of non-deterministic connections that need
verification and correction, while the balanced tree
requires a hierarchical setup with multiple levels, each
adding to the overall setup time.

Linear Topology Efficiency: Linear topology's setup
process is inherently simpler. Each new node is added in
a straightforward manner, reducing the time required for
planning and establishing connections. This simplicity
translates to a significant reduction in setup time,
especially as the network scales.

Scalability and Performance: As the network size
increases, the difference in setup times becomes more
pronounced. The linear topology's efficient setup process
becomes increasingly advantageous in larger networks,
where the time savings are substantial compared to the
more complex topologies.

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 39

Practical Implications: For practical applications, the
choice of topology can significantly impact the time
required to deploy a network. In scenarios where rapid
deployment is critical, the linear topology offers a clear
advantage. Conversely, if the network's structural
complexity and adaptability are priorities, the additional
setup time for random or balanced tree topologies may be
justified.

The setup time analysis underscores the importance
of topology selection based on deployment time
requirements and network complexity. The linear
topology offers the fastest setup time, making it suitable
for scenarios requiring quick deployment and
straightforward management. The random and balanced
tree topologies, while taking longer to set up, provide
more complex and potentially more resilient network
structures. Understanding these trade-offs is essential for
network administrators and designers to optimize
network deployment strategies and achieve the desired
balance between setup efficiency and structural
complexity. Figure 12 show the results of setup time of the
experiments.

Figure 12: Comparative setup time diagram for the three topologies

7.5. Tear Time Analysis

The tear time refers to the duration required to
dismantle a network topology, measured from the
moment the destruction command is initiated. The
analysis compares the tear times for three different
network topologies: linear, balanced tree, and random.
The results indicate significant differences in the time
taken to dismantle each topology, highlighting the
efficiency and complexity involved in their destruction.

7.5.1. Linear Topology

Shortest Tear Time: As expected, the linear topology takes
the least amount of time to tear down. This is due to its
straightforward structure, where nodes are connected in
a simple chain, making it easy to dismantle.

Efficiency in Large Networks: In large networks, the
linear topology shows about 30-40% faster tear times
compared to the random and balanced tree topologies.

This efficiency is attributed to the minimal complexity
involved in breaking the direct sequential connections.

7.5.2. Random Topology

Longest Tear Time: The random topology consistently
shows the longest tear time among the three topologies.
This is due to the complexity and unpredictability of its
connections, which require additional time to ensure all
links are properly dismantled.

Peak Tear Times: The tear time peaks higher in the
random topology, reflecting the inherent variability and
instability in its structure.

7.5.3. Balanced Tree Topology

Long Tear Time: The balanced tree topology also exhibits
a long tear time, like the random topology but slightly less.
The hierarchical structure requires careful dismantling of
multiple levels and branches, adding to the overall tear
time.

Deviations in Linearity: Some deviations in the linearity
of tear time are observed in the balanced tree topology.
These deviations are due to the changes in the tree
structure as different branches and levels are dismantled.

Efficiency of Linear Topology: The linear topology’s
simplicity extends to its tear-down process. Each node is
directly connected to its predecessor and successor,
making it easy to break these connections in sequence.
This straightforward dismantling process results in
consistently lower tear times.

Complexity in Random Topology: The random
topology’s longer tear time is attributed to its complex
and unpredictable nature. The random connections
between nodes mean that each dismantling process is
unique and requires more time to ensure all links are
effectively broken. This variability results in higher and
more inconsistent tear times.

Structured Dismantling in Balanced Tree Topology: The
balanced tree topology requires careful dismantling of its
hierarchical structure. Each branch and level must be
carefully broken down, which increases the overall tear
time. The deviations in linearity are due to the varying
complexity of dismantling different parts of the tree.

Instabilities and Variability: Both the random and
balanced tree topologies show instabilities and variability
in tear times. These instabilities are natural given the
complexity of the structures and the need for careful
dismantling to avoid leaving residual connections.

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 40

The tear time analysis highlights the impact of network
topology on the efficiency of dismantling processes.
Linear topology offers the fastest and most efficient tear-
down times, making it suitable for scenarios requiring
quick and straightforward network reconfiguration. The
random and balanced tree topologies, while offering
more complex and potentially more resilient structures,
require significantly more time to dismantle.
Understanding these differences is crucial for network
administrators and designers in optimizing network
management strategies, particularly in environments
where frequent reconfiguration is necessary. Figure 13
show the results of tear time for each experiment.

Figure 13: Comparative tear time diagram for the three topologies.

7.6. Latency Analysis

Latency measurement refers to the time taken for an
information packet to travel from one network node to
another, measured in milliseconds (ms). For this analysis,
the packet size was set to 1024 Bytes (1 Kilobyte), and the
maximum number of transferred packets was capped at
500, a limit identified in previous Mininet research for
reliable measurements.

7.6.1. Balanced Tree Topology

7.6.1.1. Highest Delay

The balanced tree topology exhibits the highest latency
among the three topologies. This significant delay is due
to the complexity of its hierarchical structure, which
requires packets to traverse multiple levels and branches
before reaching their destination.

7.6.1.2. Impact of Complexity

The structured nature of the balanced tree increases the
distance and processing time for packets, leading to
higher latency.

7.6.2. Linear and Random Topologies

7.6.2.1. Similar Delays

Both linear and random topologies show similar latency
measurements, but still lower than the balanced tree

topology. These topologies have less complex routing
paths, which reduces the overall transmission time.

7.6.2.2. Comparative Analysis

Although their delays are similar, the linear topology
generally maintains a slightly more predictable and stable
latency due to its straightforward path structure, while
the random topology may experience more variability
due to its non-deterministic connections.

7.6.3. Latency Comparison

Double the Delay in Balanced Tree: The latency in the
balanced tree topology is at least double that of the other
two topologies. This stark difference underscores the
impact of hierarchical complexity on network
performance.

7.6.4. Balanced Tree Topology

7.6.4.1. Hierarchical Routing

The balanced tree’s multi-level structure means that
packets often need to travel through several intermediary
nodes (branches) before reaching their target. Each
additional hop adds to the overall delay, resulting in the
highest latency.

7.6.4.2. Increased Processing Time

Managing and routing through the hierarchical levels
introduces additional processing delays, further
contributing to the higher latency.

7.6.5. Linear Topology

7.6.5.1. Direct Pathways

 The linear topology benefits from direct, sequential
connections between nodes. This straightforward routing
minimizes the number of hops and processing required,
leading to more predictable and lower latency.

7.6.5.2. Stable Performance

The linear nature of the topology ensures consistent
performance, with each packet following a clear and
defined path.

7.6.6. Random Topology

Variable Pathways: The random topology features non-
deterministic connections, meaning packets may traverse
different paths depending on the network state. This
variability can introduce occasional increases in latency,
although the average delay remains lower than the
balanced tree topology.

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 41

Adaptability and Efficiency: Despite its variability, the
random topology’s design aims to balance load and
optimize pathways, helping to maintain relatively low
latency overall.

The latency analysis highlights the significant
influence of network topology on transmission delays.
The balanced tree topology, with its complex hierarchical
structure, results in the highest latency, making it less
suitable for applications requiring rapid data
transmission. Linear topology, with its direct and
predictable pathways, offers the lowest latency and stable
performance, ideal for time-sensitive applications. The
random topology, while variable, maintains lower latency
than the balanced tree and can adapt to different network
conditions effectively. These insights are crucial for
network administrators and designers to optimize
network performance based on specific latency
requirements and application needs. Figure 14 presents
the latency results.

Figure 14: Comparative latency diagram for the three topologies.

7.7. Future Research

The content of this specific postgraduate work is a
fundamental pillar of research on SDN networks and
extends existing research in the field of computer science,
networks, and telecommunications. Future research
could be expanded on an even larger scale with the aid of
supercomputers from major academic structures to show
how a total shift in networking towards SDN would affect
the internet and the world in general. With the right
available resources, even more realistic simulations
would be possible, aiming for direct integration,
improvement, and gradual adaptation, initially in
academic structures and subsequently in society, aiming
for a stronger global network that would be more efficient,
reliable, and capable of withstanding the continuously
increasing needs of modern society. Lastly, as an
extension of what was studied, the combination of
currently active protocols to create a new improved one
is feasible.

8. Conclusions

8.1. Performance of Topologies

Through experimental procedures, we can
understand how SDN functions best and the operation of
distinct topologies. Large-scale networks are created, and
their characteristics are studied. This postgraduate work
achieves an understanding of these network structures in
real-time and how their effective application is possible in
real-time.

The results indicate that the balanced tree topology
consumes the most CPU resources due to its complexity,
followed by the random topology. Linear topologies
showed the least CPU usage. RAM consumption was
highest in the balanced tree topology, while the random
topology demonstrated lower RAM usage due to its
customized nature. Latency measurements revealed that
the balanced tree topology had the highest delay, while
the linear and random topologies performed better with
less delay. The random topology achieves improved
results due to its adaptability and the ability to be
parameterized. However, there is always the possibility
of unsuccessful connections in the random topology,
which affects performance but adds a more "realistic"
application. The linear topology remains simple and
maintains top performance. In contrast, the balanced tree
topology, due to its architecture, reduces performance as
it is burdened and expanded because of the complexity
and calculations required for the successful creation of the
tree. The use of the POX controller in collaboration with
the OFDP protocol facilitated the expansion of SDN
network sizes through parameterization.

References

[1] B. A. Nunes, M. Mendonca, N. Nguyen, K. Obraczka and T.
Turletti, "A Survey of Software-Defined Networking: Past,
Present, and Future of Programmable Networks," in IEEE
Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634,
Third Quarter 2014, doi: 10.1109/SURV.2014.012214.00180.

[2] N. V. Oikonomou, S. V. Margariti, E. Stergiou, and D. Liarokapis,
“Performance Evaluation of Software-Defined Networking
Implemented on Various Network Topologies,” in 2021 6th
South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-
CECNSM), Preveza, Greece, 2021, pp. 1-6, doi: 10.1109/SEEDA-
CECNSM53056.2021.9566213.

[3] A. Zacharis, S. V. Margariti, E. Stergiou, and C. Angelis,
“Performance evaluation of topology discovery protocols in
software defined networks,” in 2021 IEEE Conference on
Network Function Virtualization and Software Defined
Networks (NFV-SDN), Heraklion, Greece, 2021, 135-140, doi:
10.1109/NFV-SDN53031.2021.9665006.

[4] M. Guo and P. Bhattacharya, “Controller Placement for
Improving Resilience of Software-Defined Networks,” in 2013
Fourth International Conference on Networking and Distributed

http://www.jenrs.com/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 42

Computing, Los Angeles, CA, USA, 2013, 23-27, doi:
10.1109/ICNDC.2013.15.

[5] IETF RFC 7426, “Request for Comments: 7426, ISSN: 2070-1721
EICT. Category: Informational,” K. Pentikousis, Ed.,
2015.,doi:10.20535/2411-2976.12021.24-32

[6] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” arXiv, 2014, [Online],
doi:/10.48550/arXiv.1406.0440

[7] A. Nayak, A. Reimers, N. Feamster, and R. Clark,“Resonance:
Dynamic access control in enterprise networks,” in Proc.
Workshop: Research on Enterprise Networking, Barcelona, Spain,
2009, 1-6, doi:10.1145/2602204.2602219

[8] A. Voellmy and P. Hudak, “Nettle: Functional reactive
programming of OpenFlow networks,” in Proc. Workshop on
Practical Issues in Programming, 2009, pp. 1-6,doi: 10112206

[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P.
Sharma, S. Banerjee, and N. McKeown, “ElasticTree: Saving
energy in data center networks,” in Proc. 7th USENIX
Symposium on Networked Systems Design and Implementation,
2010, 1-6,doi: 10.5555/1855711.1855728

[10] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server
load balancing gone wild,” in Hot-ICE, 2011, 1-6,doi:
10.5555/1972422.1972438

[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S.
Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S.
Stuart, and A. Vahdat, “B4: Experience with a globally deployed
software defined WAN,” in ACM SIGCOMM, 2013, pp. 1-6,doi:
10.1145/2534169.2486019

[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M.
Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker,
“Onix: A distributed control platform for large-scale production
networks,” in OSDI, vol. 10, 1–6, 2010,doi: 10:351-364

[13] X. Zhao, S. S. Band, S. Elnaffar, M. Sookhak, A. Mosavi, and E.
Salwana, “The Implementation of Border Gateway Protocol
Using Software-Defined Networks: A Systematic Literature
Review,” IEEE Access, vol. 9, 112596-112606, 2021, doi:
10.1109/ACCESS.2021.3103241.

[14] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap
for traffic engineering in SDN-OpenFlow networks,” Elsevier
Computer Networks, vol. 71, pp. 1–30,
2014,doi:10.1016/j.comnet.2014.06.002

[15] ONF TR-537, “Negotiable Datapath Model and Table Type
Pattern Signing,” Version 1.0, Sep. 2016, pp. 1-6.

[16] N. Handigol, M. Flajslik, S. Seetharaman, N. McKeown, and R.
Johari, “Aster*x: Load-balancing as a network primitive,” in
ACLD ’10: Architectural Concerns in Large Datacenters, 2010, 1-
6,doi: 10.1109/GREE.2014.9

[17] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N.
McKeown, and G. Parulkar, “Can the production network be the
testbed?” in Proc. 9th USENIX OSDI, Vancouver, Canada, 2010,
1-6, doi: 10.5555/1924943.19249691

[18] A. Rodriguez-Natal, M. Portoles-Comeras, V. Ermagan, D. Lewis,
D. Farinacci, F. Maino, and A. Cabello, “LISP: a southbound SDN
protocol?” IEEE Communications Magazine, vol. 53, 201-207,
2015, doi: 10.1109/MCOM.2015.7158286.

[19] K. Greene, “TR10: Software-defined networking,” MIT
Technology Review, 2009, [Online].
Available:..http://www2.technologyreview.com/article/412194/tr
10-software-defined-networking/,
doi:10.1109/COMST.2016.2633579

[20] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S.
Shenker, “Ethane: Taking control of the enterprise,” in ACM
SIGCOMM ’07, 2007, 1-6, doi:10.1145/1282427.1282382

[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “NOX: Towards an operating system for
networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 3, 105–110, 2008, doi:10.1145/1384609.1384625

Copyright: This article is an open access article
distributed under the terms and conditions of the
Creative Commons Attribution (CC BY-SA) license
(https://creativecommons.org/licenses/by-sa/4.0/).

NIKOLAOS V. OIKONOMOU has
received his BSc degree from the
University of Ioannina, Department of
Informatics and Telecommunications
in 2021. He received his MSc degree
from the same institution in 2023. He
is an academic researcher also

working as a private tutor in the field of Computer
Science and mathematics. He has years of experience as a
Computer Engineer, IT specialist and Network
consultant. He also taught at the University of Ioannina
and worked as an application developer.

DIMITRIOS V. OIKONOMOU has
received his BSc from University of
Western Macedonia, Department of
Regional and Cross Border Studies in
2024. He is currently an active research
member of the University of Western
Macedonia and is about to begin his MSc

studies.

ELEFTHERIOS STERGIOU has
received his Meng Degree from
National University of Athens,
Department of Electrical Engineering
and Informatics. He received his MSc in
Telematics from the University of
Sheffield Department of Computer

Science and his PhD degree in the field of Computer
Science from University of Patras. Currently he is an
Associate Professor at the Department of Informatics and
Telecommunications, University of Ioannina. His
research interests include mainly Performance issues of
computer networks and Telecommunication systems.

 DIMITRIOS LIAROKAPIS has
received his Meng Degree from
University of Patras, Department of
Computer Engineering and
Informatics. He received his MSc and
PhD degree in the field of Computer
Science from the University of

Massachusetts Boston. Currently he is a professor of

http://www.jenrs.com/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/
https://creativecommons.org/licenses/by-sa/4.0/

 N. V. Oikonomou et al., Comprehensive Analysis of Software-Defined Networking

www.jenrs.com Journal of Engineering Research and Sciences, 3(7): 23-43, 2024 43

practice Professor at Department of Informatics and
Telecommunications, University of Ioannina since 2012.
His research interests include mainly databases and
programing languages.

http://www.jenrs.com/

	1. Introduction
	2. Related Search
	Several research publications have been made on the aspect of SDNs, using the POX controller as well as OFDP for creating topologies. However, few utilize random topologies for interpreting SDN performance. In our previous research, we studied th...
	3. SDN Controllers
	3.1. General SDN Information
	3.2. SDN Controller
	3.3. NOX/POX Controller

	4. SDN Protocols
	4.1. OpenFlow Protocol
	4.2. NetConf Protocol
	4.3. Open vSwitch Database Management Protocol (OVSDB)
	4.4. Border Gateway Protocol (BGP)
	4.5. Locator/Identifier Separation Protocol (LISP)
	4.6. Simple Network Management Protocol (SNMP)
	4.7. Link Layer Discovery Protocol (LLDP)
	4.8. Advantages of SDN

	5. Software & Hardware specifications
	5.1. Hardware Specifications
	5.2. Software Specifications

	6. Experiment Specifications
	6.1. Network Topologies
	6.1.1. Basic Topologies
	6.1.2. Hybrid Topologies
	6.1.3. Custom Topologies
	6.1.4. Random Topology
	6.1.5. Erdős–Rényi Model

	6.2. Experiment Specifications
	6.3. Collection of General Results
	6.3.1. Collection of Latency Results

	7. Analysis of results
	7.1. CPU Analysis
	7.1.1. Balanced Tree Topology
	7.1.2. Random Topology:
	7.1.3. Linear Topology

	7.2. RAM Analysis
	7.2.1. Linear Topology
	7.2.2. Balanced Tree Topology
	7.2.3. Random Topology

	7.3. Bandwidth Analysis
	7.3.1. Linear Topology
	7.3.2. Balanced Tree Topology
	7.3.3. Random Topology

	7.4. Setup Time Analysis
	7.4.1. Random Topology
	7.4.2. Balanced Tree Topology
	7.4.3. Linear Topology

	7.5. Tear Time Analysis
	7.5.1. Linear Topology
	7.5.2. Random Topology
	7.5.3. Balanced Tree Topology

	7.6. Latency Analysis
	7.6.1. Balanced Tree Topology
	7.6.1.1. Highest Delay
	7.6.1.2. Impact of Complexity
	7.6.2. Linear and Random Topologies
	7.6.2.1. Similar Delays
	7.6.2.2. Comparative Analysis
	7.6.3. Latency Comparison
	7.6.4. Balanced Tree Topology
	7.6.4.1. Hierarchical Routing
	7.6.4.2. Increased Processing Time
	7.6.5. Linear Topology
	7.6.5.1. Direct Pathways
	7.6.5.2. Stable Performance
	7.6.6. Random Topology

	7.7. Future Research

	8. Conclusions
	8.1. Performance of Topologies

	References
	[1] B. A. Nunes, M. Mendonca, N. Nguyen, K. Obraczka and T. Turletti, "A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks," in IEEE Communications Surveys & Tutorials, vol. 16, no. 3, pp. 1617-1634, Third Quart...
	[2] N. V. Oikonomou, S. V. Margariti, E. Stergiou, and D. Liarokapis, “Performance Evaluation of Software-Defined Networking Implemented on Various Network Topologies,” in 2021 6th South-East Europe Design Automation, Computer Engineering, Computer Ne...
	[3] A. Zacharis, S. V. Margariti, E. Stergiou, and C. Angelis, “Performance evaluation of topology discovery protocols in software defined networks,” in 2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), H...
	[4] M. Guo and P. Bhattacharya, “Controller Placement for Improving Resilience of Software-Defined Networks,” in 2013 Fourth International Conference on Networking and Distributed Computing, Los Angeles, CA, USA, 2013, 23-27, doi: 10.1109/ICNDC.2013.15.
	[5] IETF RFC 7426, “Request for Comments: 7426, ISSN: 2070-1721 EICT. Category: Informational,” K. Pentikousis, Ed., 2015.,doi:10.20535/2411-2976.12021.24-32
	[6] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A Comprehensive Survey,” arXiv, 2014, [Online], doi:/10.48550/arXiv.1406.0440
	[7] A. Nayak, A. Reimers, N. Feamster, and R. Clark,“Resonance: Dynamic access control in enterprise networks,” in Proc. Workshop: Research on Enterprise Networking, Barcelona, Spain, 2009, 1-6, doi:10.1145/2602204.2602219
	[8] A. Voellmy and P. Hudak, “Nettle: Functional reactive programming of OpenFlow networks,” in Proc. Workshop on Practical Issues in Programming, 2009, pp. 1-6,doi: 10112206
	[9] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma, S. Banerjee, and N. McKeown, “ElasticTree: Saving energy in data center networks,” in Proc. 7th USENIX Symposium on Networked Systems Design and Implementation, 2010, 1-6,doi: 10.55...
	[10] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based server load balancing gone wild,” in Hot-ICE, 2011, 1-6,doi: 10.5555/1972422.1972438
	[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a globally deployed software defined WAN,” in ACM SIGCOMM, 2013, pp. 1-6,...
	[12] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, “Onix: A distributed control platform for large-scale production networks,” in OSDI, vol. 10, 1–6, 2010,doi: 10:351-364
	[13] X. Zhao, S. S. Band, S. Elnaffar, M. Sookhak, A. Mosavi, and E. Salwana, “The Implementation of Border Gateway Protocol Using Software-Defined Networks: A Systematic Literature Review,” IEEE Access, vol. 9, 112596-112606, 2021, doi: 10.1109/ACCES...
	[14] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for traffic engineering in SDN-OpenFlow networks,” Elsevier Computer Networks, vol. 71, pp. 1–30, 2014,doi:10.1016/j.comnet.2014.06.002
	[15] ONF TR-537, “Negotiable Datapath Model and Table Type Pattern Signing,” Version 1.0, Sep. 2016, pp. 1-6.
	[16] N. Handigol, M. Flajslik, S. Seetharaman, N. McKeown, and R. Johari, “Aster*x: Load-balancing as a network primitive,” in ACLD ’10: Architectural Concerns in Large Datacenters, 2010, 1-6,doi: 10.1109/GREE.2014.9
	[17] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McKeown, and G. Parulkar, “Can the production network be the testbed?” in Proc. 9th USENIX OSDI, Vancouver, Canada, 2010, 1-6, doi: 10.5555/1924943.19249691
	[18] A. Rodriguez-Natal, M. Portoles-Comeras, V. Ermagan, D. Lewis, D. Farinacci, F. Maino, and A. Cabello, “LISP: a southbound SDN protocol?” IEEE Communications Magazine, vol. 53, 201-207, 2015, doi: 10.1109/MCOM.2015.7158286.
	[19] K. Greene, “TR10: Software-defined networking,” MIT Technology Review, 2009, [Online]. Available:..http://www2.technologyreview.com/article/412194/tr10-software-defined-networking/, doi:10.1109/COMST.2016.2633579
	[20] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker, “Ethane: Taking control of the enterprise,” in ACM SIGCOMM ’07, 2007, 1-6, doi:10.1145/1282427.1282382
	[21] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and S. Shenker, “NOX: Towards an operating system for networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 3, 105–110, 2008, doi:10.1145/1384609.1384625

