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ABSTRACT: Software-defined networking (SDN) represents an innovative approach to network 
architecture that enhances control, simplifies complexity, and improves operational efficiencies. This 
study evaluates the performance metrics of SDN frameworks using the Mininet simulator on virtual 
machines hosted on a Windows platform. The research objectives include assessing system 
performance across various predefined network topologies, investigating the impact of switch 
quantities on network performance, measuring CPU consumption, evaluating RAM demands under 
different network loads, and analyzing latency in packet transmission. Methods involved creating and 
testing different network topologies, including basic, hybrid, and custom, with the Mininet simulator. 
Performance metrics such as CPU and RAM usage, latency, and bandwidth were measured and 
analyzed. The study also examined the performance and extendibility of the OpenFlow Data Path 
(OFDP) protocol using the POX controller. Results indicate that balanced tree topologies consume the 
most CPU and RAM, while linear topologies are more efficient. Random topologies offer adaptability 
but face connection reliability issues. The POX controller and OFDP protocol effectively manage SDN 
network scalability. This research aims to analyze performance in a manner consistent with numerous 
previous studies, underscoring the importance of performance metrics and the scale of the network in 
determining the efficiency and reliability of SDN implementations. By benchmarking various 
topologies and protocols, the research offers a valuable reference for both academia and industry, 
promoting the development of more efficient SDN solutions. Understanding these performance 
metrics helps network administrators make informed decisions about implementing SDN frameworks 
to improve network performance and reliability. 
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1. Introduction 

Networks are all around us, integral to our lives and 
daily routines. Most of the needs of a modern, 
technologically advanced society require strong and 
reliable networks. The demand for efficient networks is 
increasing exponentially with the passage of years and 
technological development. Nowadays, most people from 
all age groups use networks daily, and their quality of life 
depends on these networks, even if this is not immediately 
apparent. The COVID-19 pandemic that the world 
experienced from the beginning of 2020 changed many 
aspects of network usage. People were forced to spend  

 

much more time at home. This situation led people to find 
smart ways to meet most of their daily needs within the 
walls of their homes. Thus, the concept of the network in 
general came to everyone's doorstep in the form of the 
largest known global network, the internet. Young people 
had to be educated remotely using the internet. Adults 
were mostly required to work from a distance, and the 
elderly and vulnerable groups had to seek their care and 
support in a different way with the help of the internet. 
This situation led to an unprecedented increase not only in 
the number of internet users but also in the number of 
different devices each user employs to access it. As a result, 
some weaknesses in the existing global networks were 
revealed, and new ones were created. Network providers 
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and researchers realized that the capacity, speed, 
management, and reliability of networks needed to be 
increased due to the excessive load. Traditional networks 
that had been used for several years began to collapse 
because they primarily relied on physical infrastructures. 
Technologies such as SDN, which had been around for the 
last 10 years (mainly from 2013 onwards), began to be more 
extensively researched and implemented in global 
networks to strengthen them and ensure the smooth 
survival of the world. SDN enhances the capabilities of the 
network and simplifies its structure, with their main goal 
being more efficient network management. In this study, 
the architecture and structure of SDN networks will be 
examined. Network topologies will be created through 
simulations, and their operation and performance will be 
analyzed. Specifically, the performance between different 
topologies will be compared. It will be shown how the total 
number of switches, which are a fundamental pillar in the 
architecture of SDN, affects and burdens the overall 
performance of the network. The main measurements to be 
taken to draw accurate conclusions are CPU usage, RAM 
memory, and the delay in packet transfer between nodes. 
To achieve the above in the form of simulation, the Mininet 
simulator will be used on a computer with a Windows 
operating system. Additional software will be used in 
conjunction with Mininet to ensure the integrity and 
number of results. In this way, the behavior and 
adaptability of SDN networks will be studied. The 
controller used in Mininet will be POX, and further 
analysis will be done on the topology creation protocol 
OFDP, through which virtual networks will be studied 
below and their performance and scalability examined. 
The aim is to draw conclusions about the operation of SDN 
with the POX controller, specifically the use of the OFDP 
protocol. The reason for using random topologies is their 
effects on traditional networks and raises the question of 
how these random graphs can affect OpenFlow as its 
evolution into an even more modern network topology 
creation protocol. Given that network technologies have a 
strong relationship with network graphs and consequently 
with the concept of graph theory in mathematics, an 
analytical model for computation, comparison, and 
prediction is established through simulations on realistic 
platforms so that faster implementation in real-time 
networks can be achieved. The remainder of the article is 
as follows: Related search, SDN controllers, SDN protocols, 
Software & Hardware specifications, experiment 
specifications, analysis of results and finally the total 
conclusions from this research [1]. 

2. Related Search 
     Several research publications have been made on the 
aspect of SDNs, using the POX controller as well as OFDP 
for creating topologies. However, few utilize random 
topologies for interpreting SDN performance. In our 
previous research, we studied the performance results of 

Software-Defined Networking (SDN) tests conducted on 
standard network topologies using simulation. 
Concurrently, the performance of the standard topologies 
was compared with that of the random ones. Specifically, 
the performance measurements examined included: the 
setup and teardown time of the topology, the CPU and 
RAM usage of the system, and the delay in packet transfer 
between nodes. The entire study was conducted on a 
Windows computer using a virtual machine to run a 
Mininet simulator, similar to what we will use in the 
present work. From the meticulous analysis of the results, 
the following are worth mentioning: (i) the total number 
of switches in an SDN architecture has a significant impact 
on CPU load. (ii) RAM usage depends on the number of 
host computers and in cases of excessive load, it shows a 
much greater increase compared to CPU usage. (iii) The 
overall performance significantly depends on the type of 
topology and its properties. The experiments then were 
conducted on a typical and limited range of devices [2]. 
      In his work, Guo created various types of network 
topologies for analysis, including ring topology, tree 
topology, and random Erdos-Renyi model topologies. In 
the randomly created networks, the probability of an edge 
between any two vertices was set at 0.4. Thus, these 
random networks were mostly dense networks with a 
short average path length. The ring networks had the 
longest average path length among the three topologies, 
while the tree topology was intermediate; all experiments 
were repeated 100 times. All nodes were subject to a 
common failure probability. Fifty nodes were used to 
create the three types of networks. The results show that 
the expected resilience of the network is inversely 
proportional to the average path length of the network 
topology, hence random topology networks perform 
better, and ring networks are less resilient [3]. 
    In another study, the performance of the proposed 
discovery mechanism, which primarily relies on the 
OFDP protocol regarding the overall load, was analyzed. 
Various topologies were examined, focusing on random 
networks based on the Erdős–Rényi model. The study 
highlighted that researchers' efforts are concentrated on 
reducing the number of messages reaching the controller. 
However, the performance and scalability of SDN 
networks depend more on other factors, such as CPU load, 
memory usage, network topology, and the time required 
for topology discovery. The scalability of OFDP and 
OFDPv2 for a wide range of random networks based on 
the Erdős–Rényi model was tested. Experimental results 
showed that the protocols consume almost equal 
resources (CPU and RAM), while OFDP requires more 
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time for topology discovery than OFDPv2 for the same 
topology [4]. 

3. SDN Controllers 

3.1. General SDN Information 

Software-Defined Networking (SDN) is a networking 
approach that uses software-based controllers or APIs to 
communicate with the underlying hardware 
infrastructure and direct traffic within a network. This 
model differs from traditional networks, which solely 
utilize hardware devices (routers and switches) to manage 
network traffic. SDN can create and manage a virtual 
network or control a traditional network through 
software. While network virtualization allows the 
segmentation of different virtual networks on a single 
physical network and the connection of devices across 
various physical networks to form a single virtual 
network, SDN enables a new method of controlling data 
packet routing through a central server. Consequently, 
SDN achieves the successful and functional separation of 
the Control Plane from the Forwarding Plane in a network. 
Below in Figure 1 the SDN architecture is depicted. 

 
Figure 1: Schematic representation of the SDN architecture. Adapted 
from [5] 

3.2. SDN Controller 

A software-defined networking controller is a central 
element of the SDN architecture. It provides control over 
network elements in the managed domain. In networking, 
there are management, control, and data planes. An SDN 
controller offers management and control functions for 
network elements within the managed domain. This 
means that an SDN controller, based on network 
information and a set of predefined rules and policies, 
manages network elements and configures (or 
"programs") the data plane (i.e., directs data flow through 
the network). One of the key advantages of using an SDN 
controller is that it allows for more efficient network 
management, and changes to the network configuration 
can be applied from a central location instead of needing 

to manually configure each individual network element. 
Additionally, an SDN controller can automate certain 
tasks, such as traffic management and security, which can 
reduce the risk of human error and improve the overall 
reliability of the network. SDN controllers provide an API 
known as the northbound interface, through which 
external applications or systems such as orchestration 
platforms can interact with the network. In such cases, an 
SDN controller translates application-level requirements 
(e.g., high-level network configuration description) into 
configurations specific to the supported network 
elements. SDN controllers can manage both physical 
network devices and software elements that perform 
network functions [6]. 

In summary, the main functions of an SDN controller 
include: 

• Managing data flow within the managed network 
• Providing an API for applications and other 

components (e.g., orchestration platforms) to interact 
with the network. 

• Providing visibility into the network, enabling network 
performance monitoring and troubleshooting 

• Automating network management tasks, such as 
provisioning new network elements and reconfiguring 
network paths 

More specifically, the controller provides the following 
capabilities: 

Southbound Support: Defined as how a controller 
interacts with network devices to achieve optimized 
traffic flow. There are various southbound protocols that 
can be used, each with specific functionalities such as field 
matching, network discovery with different protocols, etc. 
When supporting the southbound interface, 
implementers must consider not only the characteristics 
of the protocol but also potential extensions, newer 
versions, etc. 

Northbound Support: Northbound APIs are used for 
network integration and programming and can be 
utilized by orchestration systems that cater to customers 
and third-party applications. It is crucial to ensure that a 
controller is properly developed for orchestrating 
communications between layers. For example, the 
controller should support orchestration systems for 
applications such as cloud services, not only for open-
source controllers and protocols but also those provided 
by various vendors. These applications could also include 
traffic engineering or applications that collect data used 
for network management tasks. As we can see below in 
Figure 2 the differences between the structure of 
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Centralized and Distributed control path are presented 
[7]. 

 

Figure 2: Comparison of Centralized and Distributed Architecture. 

3.3.  NOX/POX Controller 

NOX was the first SDN controller. Initially developed 
by Nicira Networks, it was the first to support the 
OpenFlow protocol. Released to the research community 
in 2009, it laid the foundation for many SDN research 
projects. It was later expanded and supported at Stanford 
University with significant contributions from the 
University of California, Berkeley. Some popular NOX 
applications include SANE (an approach that represents 
the network as a file system) and Ethane. Today, NOX is 
considered inactive. Over the years, different versions of 
NOX have been introduced. These are known as NOX, 
NOX-MT, and POX. The new NOX only supports C++. It 
has a smaller application network compared to NOX but 
is much faster and has a much cleaner codebase. NOX-
MT, introduced as a slightly modified version of the NOX 
controller, uses optimization techniques to introduce 
multi-threaded processing to improve the rate and 
response time of NOX. These optimization techniques 
include I/O batching to minimize general input/output 
overhead and others. POX is the latest version based on 
Python. The idea behind its development was to return 
NOX to its roots in C++ and develop a separate platform 
based on Python. It also features a Python OpenFlow 
interface, reusable element samples for path selection, 
topology discovery, etc. The primary goal of POX is 
research. Given that many research projects are by nature 
short-lived, the focus of POX developers is on good 
interfaces rather than API stability. In the current research, 
due to the multiple interfaces and the stability of the 
controller and because the Python language was used to 
create network topologies, POX was used [8]. 

Generally, the NOX controller provides a complete 
OpenFlow API using C++ and Python languages, uses 
asynchronous inputs/outputs (I/O), and is oriented 
towards operation on Linux, Ubuntu, and Debian 
systems. NOX is used both as a standalone controller and 
as a component-based framework for developing SDN 
applications. It is built on an event-based programming 
model and adopts a simple programming interface model 
that revolves around three pillars: 

• Events 
• Namespace 
• Network view 

Events can be generated either directly from OpenFlow 
messages or from NOX applications because of 
processing low-level events or other events generated by 
applications. 

4. SDN Protocols 

The SDN protocol is a set of standards and rules that 
define how SDN controllers and switches communicate 
with each other. Essentially, a protocol allows the SDN 
controller to configure the behavior of the switch, such as 
determining which packets should be forwarded to which 
ports and setting quality of service (QoS) parameters for 
different types of traffic. The most popular SDN protocol 
is OpenFlow. 

4.1.  OpenFlow Protocol 

As mentioned, OpenFlow is the most widespread 
SDN protocol and defines the flow between the switch 
and the controller. It allows the controller to manage 
traffic forwarding between different network devices by 
controlling the switch's flow tables. This protocol was first 
developed by researchers at Stanford University in 2008 
and was first adopted by Google in their backbone 
network in 2011-2012. It is now managed by the Open 
Networking Foundation (ONF). The latest version widely 
used in the industry is V1.5, while V2.0 is being refined. It 
is also often referred to as OFDP, meaning the OpenFlow 
Topology Discovery Protocol, because whether referred 
to as OpenFlow or OFDP, it automatically means the 
same function [9], [10]. 

OpenFlow is the standard southbound interface 
protocol used between the SDN controller and the switch. 
The SDN controller takes information from the 
applications and converts it into flow entries, which are 
fed into the switch via OpenFlow. It can also be used to 
monitor switch and port statistics in network 
management. 
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It is worth noting that the OpenFlow protocol is only 
installed between a controller and a switch. It does not 
affect the rest of the network. If a packet capture were to 
be taken between two switches in a network, both 
connected to the controller via another port, the packet 
capture would not reveal any OF messages between the 
switches. It is strictly for use between a switch and the 
controller. The rest of the network is not affected [11]. 

4.2.  NetConf Protocol 

NetConf is a protocol used in SDN for managing 
network devices such as routers and switches, providing 
a standardized way of configuring, monitoring, and 
managing these devices. It is an IETF standard and is 
based on XML data encoding and the SSH protocol for 
secure communication. The default TCP port assigned is 
830. The NetConf server must listen for connections with 
the NetConf subsystem on this port. 

       With NetConf, network administrators can configure 
network devices programmatically using a standardized 
set of commands, rather than relying on proprietary 
interfaces for specific devices. This helps simplify 
network management and facilitates the automation of 
repetitive tasks such as deploying new network 
configurations or updates to hardware and software. 

        NetConf uses a client-server model, with the 
NetConf client sending requests to the device and the 
NetConf server responding with data or status updates. 
The protocol supports a range of functions, such as: 

Retrieve: Retrieve specific data or configuration 
information from the device 

Edit-config: Modify the device's configuration. 

Commit: Apply changes to the device's configuration 

Lock: Lock the device's configuration to prevent multiple 
managers from making conflicting changes 

Unlock: Release the configuration lock 

NetConf is often used in conjunction with YANG, a 
data modeling language that allows network 
administrators to describe network elements and their 
configurations in a structured and standardized way. 
Together, NetConf and YANG form a significant 
component of SDN, enabling greater automation and 
control in network management. 

4.3.  Open vSwitch Database Management Protocol (OVSDB) 

OVSDB is a protocol used in SDN networks for 
managing Open vSwitch instances, which are software-

based switches that can be used in an SDN environment. 
OVSDB provides a standard way to configure and 
manage Open vSwitch instances, allowing network 
administrators to deploy and manage switches more 
automatically and programmatically. It defines a set of 
functions that can be used for querying and modifying the 
configuration of Open vSwitch instances, including 
creating, deleting, and modifying ports, interfaces, and 
VLANs. 

OVSDB is based on a client-server model, with the 
OVSDB client sending requests to the OVSDB server, 
which responds with data or status updates. The protocol 
uses JSON data encoding and supports secure 
communication using TLS. 

In an SDN environment, Open vSwitch instances can 
be used to forward traffic between different network 
devices and allow network administrators to manage 
traffic flows using a central SDN controller. OVSDB 
provides a standardized way to configure and manage 
these switches, facilitating the development and 
management of large-scale SDN networks. 

4.4.  Border Gateway Protocol (BGP) 

BGP is a routing protocol commonly used in SDN 
networking environments to exchange routing 
information between different autonomous systems in 
large-scale networks. BGP is a path vector routing 
protocol that uses a network of interconnected 
autonomous systems to route traffic between different 
parts of the network. 

In an SDN environment, BGP can be used to facilitate 
communication between different network elements, 
such as the SDN controller and network devices, or 
between different SDN controllers. BGP provides a 
standardized way to exchange routing information, 
allowing network managers to manage traffic flows and 
optimize network performance. 

BGP uses a hierarchical routing table system, with 
each autonomous system maintaining its own routing 
table and exchanging updates with neighboring 
autonomous systems. The protocol supports both internal 
and external routing, allowing more efficient routing 
within a single autonomous system and between different 
autonomous systems [12]. 

4.5.  Locator/Identifier Separation Protocol (LISP) 

LISP is a protocol used in SDN to separate the 
network location of a device (essentially its IP address) 
from its identity or identifier. LISP provides a way to 
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assign multiple IP addresses to a device and allows 
routing of traffic based on the device's identity rather than 
its physical location. 

In an SDN environment, LISP can be used to simplify 
network management and enable more efficient routing 
of traffic between different devices. By separating the 
device's identity from its location, LISP allows network 
administrators to move devices between different 
network locations without changing their IP addresses, 
simplifying network management and reducing the 
likelihood of errors [13]. 

4.6. Simple Network Management Protocol (SNMP) 

SNMP is a protocol used in software-defined 
networking (SDN) for monitoring and managing network 
devices. SNMP provides a standardized way for network 
administrators to monitor the performance of network 
devices, such as switches and routers, and to configure 
them remotely. 

In an SDN environment, SNMP can be used to 
monitor and manage network devices from a central SDN 
controller. SNMP allows network administrators to 
monitor a range of device metrics, such as CPU usage, 
memory usage, and network traffic, and to receive alerts 
when performance issues arise. 

SNMP is based on a client-server model, with SNMP 
agents running on network devices and SNMP managers 
running on the SDN controller. The agents collect 
performance data and send it to the managers, who can 
then analyze the data and take actions to improve 
network performance. 

SNMP is a widely used protocol in network 
management and is supported by a range of network 
device suppliers and SDN controllers. It can be used in 
conjunction with all the above-mentioned SDN protocols 
to enable more effective and flexible network 
management. 

4.7. Link Layer Discovery Protocol (LLDP) 

LLDP is a Layer 2, vendor-neutral protocol used for 
discovering and advertising network device information 
on a local area network (LAN). It allows network devices 
to exchange information about their identity, capabilities, 
and connections [14]. 

LLDP operates by sending and receiving LLDP 
frames, which are multicast packets transmitted on every 
network interface. LLDP frames contain TLV (Type-
Length-Value) elements that carry specific information 
about the transmitting device, such as system name, port 

description, system capabilities, and management 
addresses. 

Key features and benefits of LLDP include: 

Device Discovery: LLDP enables network devices to 
discover neighboring devices on the LAN, providing 
information about their identity, such as device type, 
vendor, and model. 

Topology Discovery: By exchanging LLDP information, 
devices can gather details about the connections and 
topology of the network, including neighboring devices, 
port numbers, and connection speeds. 

Automatic Configuration: LLDP can be used by network 
management systems to automatically configure network 
devices based on their discovered capabilities, 
simplifying network setup and reducing the efforts of 
manual configuration. 

Troubleshooting and Monitoring: LLDP facilitates 
network troubleshooting by providing visibility into the 
network topology and device connectivity. It allows 
administrators to identify and locate devices, detect link 
failures, and monitor the status of connections. 

LLDP is supported by a wide range of network 
devices, including switches, routers, wireless access 
points, and IP phones. It is often used in conjunction with 
other network protocols, such as SNMP, to enable 
comprehensive network management and monitoring. 

It is important to note that LLDP is a Layer 2 protocol, 
and its functionality is limited to the local network 
segment. It does not route traffic nor provide visibility 
into the entire network. 

4.8. Advantages of SDN 

Software-defined networking (SDN) has emerged as 
a transformative approach to network architecture and 
management. By decoupling the control plane from the 
data plane and centralizing network control through 
software, SDN provides numerous benefits and impacts 
various industries. Key findings on SDN include: 

• Enhanced Network Flexibility: SDN allows 
organizations to quickly provision, configure, and 
modify network services via software, leading to 
improved network flexibility. It enables dynamic 
allocation of network resources, making it easier to 
adapt to changing business needs and network traffic 
patterns [15]. 

• Simplified Network Management: SDN centralizes 
network management through a software-managed 
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controller, providing a single point of control and 
monitoring. This simplifies network management, 
reduces complexity, and enhances troubleshooting 
capabilities. 

• Scalability and Flexibility: SDN offers scalability by 
abstracting network functionality from the 
underlying hardware. Organizations can more easily 
scale their networks by adding or reallocating 
resources according to needs. Furthermore, SDN 
allows flexibility in deploying new services and 
applications without significant changes to 
infrastructure. 

• Network Programmability: SDN enables network 
programmability, allowing administrators to 
automate network functions and control network 
behavior through software. This programmability 
facilitates the development of innovative applications 
and services that can interact directly with the 
network. 

• Enhanced Security: SDN provides enhanced security 
capabilities by leveraging centralized control and 
programmability. Security policies can be defined 
and enforced consistently across the network, making 
it easier to identify and respond to threats. 

• Cost Optimization: SDN offers cost savings by 
reducing hardware dependencies and enhancing 
resource utilization. With the ability to dynamically 
control and distribute network resources, 
organizations can optimize their infrastructure, 
leading to better cost performance. 

• Innovation and Ecosystem Development: SDN 
promotes innovation by enabling the development of 
new network services and applications. It encourages 
the development of an 'ecosystem' where vendors, 
developers, and researchers can collaborate to create 
new solutions and advance networking progress. 

• SD-WAN and Cloud Connectivity: SDN plays a 
critical role in the adoption of software-defined wide 
area networks (SD-WAN) and in connecting on-
premises networks to cloud environments. It 
simplifies the management of distributed networks, 
provides better visibility and control, and improves 
connectivity to cloud services. 

4.8 challenges and issues 

While SDN offers significant benefits, it also presents 
challenges, including interoperability among different 
SDN solutions, security concerns related to centralized 
control, the need for specialized personnel to manage and 
operate SDN environments, and the necessity for careful 

planning, testing, and collaboration with experienced 
vendors to overcome these challenges. 

SDN Protocols: 

• SDN protocols play a critical role in the 
implementation and operation of software-defined 
networking (SDN) environments. These protocols 
define the communication and interaction between 
different elements of an SDN architecture, facilitating 
network control and management. 

• OpenFlow is one of the most widely adopted SDN 
protocols. It provides a standard interface between the 
control layer and forwarding devices (switches). 
OpenFlow enables centralized network control by 
separating control logic from switches and allowing 
the controller to program forwarding rules. It has 
significantly contributed to the development and 
deployment of SDN solutions. 

SDN Controllers: 

• SDN controllers serve as the central intelligence of 
software-defined network (SDN) architectures. They 
are responsible for managing and orchestrating 
network resources, facilitating communication between 
the control layer and the data layer, and enabling 
network programmability. 

Table 1: below presents the network protocols along with 
their pros and cons. 

Table 1: Network protocols. 

PROTOCOLS PROS CONS 
OpenFlow Fully 

customizable, 
scalable 

Complex 

NetConf Simplicity, 
management 

Limited 
Performance 

OVSDB Customizable, 
management 

Few complex 
options 

BGP Usable across 
different 
networks, routing 

Recommended 
only for very 
large networks 

LISP Simplicity, 
efficient traffic 
control 

Limited 
capabilities 

SNMP Advanced control Complex 

LLDP Wide range of 
device 
compatibility 

Limited only to 
LAN networks 
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5. Software & Hardware specifications 

In this section, we will analyze each tool used for this 
work. Specifically, both the hardware and software 
components will be discussed. 

5.1. Hardware Specifications 

Compared to previous related research where high-
performance laptops, low-performance desktops, or even 
workstations were used, this research utilized a new high-
performance desktop computer. This system offers the 
capability to implement larger virtual networks as well as 
optimized management and distribution of physical 
resources, allowing for improved performance and more 
efficient scaling of the networks that will be created. In the 
heart of the computing system used for this research, the 
Gigabyte B550M AORUS PRO motherboard with an 
AMD B550 chipset lays the foundation. This motherboard 
was chosen for its robust support for modern connectivity 
standards such as PCI EXPRESS 4.0, which is pivotal for 
high-performance setups required in advanced 
simulations and experiments. The AMD Ryzen 5 5600X 
processor, featuring a 7nm FinFET technology with 6 
cores and 12 threads, is selected for its ability to handle 
extensive computations more effectively than comparable 
models used in preceding studies. Its overclocking ability 
up to 4.7 GHz facilitates faster processing of complex 
tasks, crucial for developing larger virtual networks and 
conducting intensive data analysis. 

Additionally, the system is equipped with 32GB of 
DDR4 RAM at 3600 MHz in dual-channel configuration, 
providing ample bandwidth and speed necessary for 
managing multiple operations simultaneously, which is 
essential when testing the limits of network simulations 
and other resource-intensive applications. The AMD 
Radeon RX 6750 XT graphics card with 12GB of GDDR6 
memory ensures smooth rendering of complex graphics 
and supports the visualization demands of the research, 
including the manipulation and analysis of high-
dimensional data sets. 

Storage is handled by a Kingston KC3000 NVMe SSD 
with a capacity of 2TB, leveraging PCI Express 4.0 
technology to offer rapid data access speeds of up to 7000 
MB/s, significantly reducing load times and improving 
the overall efficiency of data processing tasks. This 
storage solution is vital for handling large volumes of 
data generated during simulations, ensuring quick 
retrieval and processing that are imperative for 
maintaining workflow continuity during the research. 

Together, these hardware specifications are 
meticulously chosen not only for their individual 
capabilities but also for their synergy, which ensures a 
high-performance, stable, and reliable computing 
environment capable of supporting the sophisticated 
software tools and simulations utilized in this research. In 
Table: 2 we have the technical specifications of our 
systems. 

Table 2: Simulation system specifications. 

Component Specification 

CPU AMD Ryzen 5 5600X, 6 cores/12 threads, 
4.7 GHz, 45W 

RAM 32GB DDR4, 3600 MHz, Dual Channel 

GPU AMD Radeon RX 6750 XT, 12GB, PCI 
Express 4.0 

Storage Kingston KC3000, NVMe, PCI Express 
4.0, 7GB/s 

5.2. Software Specifications 

In this section, the specifications of the system 
software used are analyzed. It is crucial not only to 
conduct research to use the correct software that can 
deliver the desired results but also to ensure that all 
software can work harmoniously together. Cohesion, 
relevance, and repeated checks on the outcomes that will 
be extracted are necessary. For the software setup in this 
research, specific tools have been meticulously selected to 
complement the powerful hardware configuration and to 
meet the specialized requirements of the study. The 
primary operating system used is Windows 11 Pro for 
Workstations, which offers essential features like the 
ReFS file system for enhanced data resilience and support 
for advanced hardware configurations, critical for 
maximizing the potential of the system’s physical 
components. 

Oracle's VirtualBox plays a key role by allowing the 
deployment of multiple operating systems on a single 
physical machine, which is crucial for testing different 
network configurations and software interactions in a 
controlled, isolated environment. This flexibility is vital 
for reproducing and manipulating network scenarios in 
the development of software-defined networking (SDN) 
solutions. 
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Additionally, Visual Studio Code is employed as the 
primary code editor due to its robust support for multiple 
programming languages and its integrated development 
environment (IDE) features like debugging, code 
completion, and Git integration. These features enhance 
the efficiency of writing and testing code, particularly 
Python scripts used for creating network topologies in the 
research. 

Gephi, an open-source network visualization 
software, is used to analyze and visualize complex 
network structures, which helps in understanding the 
interactions within the network and identifying key 
patterns and anomalies. The ability to dynamically model 
network traffic and topology changes in real-time using 
Gephi significantly aids in the exploratory phase of the 
research. 

Furthermore, the inclusion of specialized tools like 
PuTTY for secure remote session management, WinSCP 
for secure file transfer, and Xming for running X Window 
System applications on Windows, consolidates the 
software environment.  

Together, these software tools form a cohesive 
ecosystem that supports the rigorous demands of the 
research, enabling sophisticated simulations, extensive 
data analysis, and effective management of resources 
across different stages of the project. Table 3 contains an 
analysis of all the software used. 

Table 3: Simulation software presentation. 

Software Brief Description 

Windows 11 
Pro for 
Workstations 

Operating system designed for high-tech 
hardware and workloads, with 
additional features for enhanced 
performance and reliability. 

VirtualBox Open-source virtualization software that 
allows running multiple operating 
systems on a single physical machine. 

Mininet Network emulator that facilitates the 
simulation and testing of Software-
Defined Networks (SDN). 

X-Ming Free X-Window-System server for 
Windows that enables remote graphical 
user interfaces over a network. 

WinSCP Free and open-source SFTP, FTP, and 
SCP client for Windows that enables 
secure file transfers between local and 
remote computers. 

PuTTY Free terminal emulator, serial console, 
and network file transfer application for 
Windows that supports multiple 
network protocols. 

Visual Studio 
Code 

Free, open-source code editor developed 
by Microsoft, supporting a wide range of 
programming languages and tools. 

Gephi Open-source software for visualizing 
and exploring graphs and networks, 
ideal for analyzing complex networks. 

6. Experiment Specifications 

6.1.  Network Topologies 

The term topology defines the geometric 
representation of the connections in a network. We 
examined three categories of topologies.  

• Basic 
• Hybrid 
• Custom 

Specifically, for the basic topologies, the bus 
topology was selected, for the hybrid topologies, the 
balanced tree topology was chosen, and for the Custom, 
the random topology was used [16], [17]. 

6.1.1. Basic Topologies 

There are many basic network topologies 
commonly used in computer networking. These include: 

Bus topology: All devices are connected to a single 
communication line or cable, known as the bus. Data 
travels in both directions along the bus and all devices on 
the network can receive the same message 
simultaneously. Figure 3 depicts bus topology. 

 

Figure 3: Example of bus topology. 

Star topology: All devices are connected to a central 
hub or switch, and data flows through the hub or switch 
to reach its destination. Each device has an exclusive 
connection to the hub or switch, which can help reduce 
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network congestion and improve performance. Figure 4 
depicts star topology. 

 

Figure 4: Example of star topology. 

Ring topology: All devices are connected in a closed loop, 
with data flowing in one direction around the loop. Each 
device receives data from the previous device in the loop 
and sends data to the next device in the loop. The ring 
topology is depicted in Figure 5 below. 

 

Figure 5: Example of ring topology. 

Mesh topology: Each device is connected to every other 
device in the network, creating a fully interconnected 
network. This can provide high redundancy and fault 
tolerance but can be complex to manage and requires a lot 
of wiring. Figure 6 presents mesh topology. 

 

Figure 6: Example of mesh topology. 

6.1.2. Hybrid Topologies 

Hybrid Topology is a combination of two or more 
basic topologies, such as a star-bus topology or a ring-
mesh topology. This can offer a balance between 
performance, redundancy, and ease of management. 

Tree topology, also known as hierarchical topology, 
is a type of network topology based on a hierarchical 
structure. In this topology, multiple star topologies relate 
to a bus topology, creating a structure that resembles a 
tree. In a tree topology, the central bus acts as the main 
trunk of the tree, with multiple branches extending from 
it. Each branch is a separate star topology with a hub or 
switch at the center and multiple devices connected to it. 
This allows the creation of subnetworks within the larger 
network, with each subnet having its own exclusive hub 
or switch. 

The main advantage of a tree topology is its 
scalability, as it can support many devices and 
subnetworks. It also provides a good balance between 
performance and redundancy, as each subnet can operate 
independently and problems in one subnet will not affect 
the rest of the network. 

However, the main disadvantage of a tree topology 
is its complexity, as it requires a significant amount of 
cabling and configuration. It can also be difficult to 
troubleshoot and manage, as problems in one part of the 
network can affect the entire tree. Below in Figure 7 an 
example of hybrid topology can be found. 

 
Figure 7: Example of hybrid tree topology. 

A balanced tree topology is a specific type of tree 
topology where each branch of the tree has the same 
number of levels. This means that each subnet is of equal 
size and has the same number of devices connected to it. 
In a balanced tree topology, the central bus is connected 
to a set of level-1 switches, each of which is connected to 
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a set of level-2 switches, and so on, until the final level of 
switches is reached. Each switch in the tree has an equal 
number of branches connected to it, which helps balance 
the network traffic and avoid congestion. 

6.1.3.  Custom Topologies 

Custom network topologies refer to network 
architectures designed to meet specific requirements or 
solve specific problems. They may be a combination of 
two or more basic topologies, or they may be entirely 
unique and tailored to a specific application or 
environment. Custom network topologies can be created 
by network designers and administrators using various 
networking devices and technologies, such as switches, 
routers, firewalls, load balancers, and others. These 
devices can be configured to implement specific routing 
protocols, VLANs, access control policies, and other 
features to achieve the desired network behavior and 
performance. Examples of custom network topologies 
include: 

Mesh topology with adaptive routing: This topology 
can be used in large-scale wireless networks to provide 
high redundancy and fault tolerance. Adaptive routing 
protocols such as OLSR or B.A.T.M.A.N. may be used to 
optimize network performance and reduce congestion. 
Hub-and-Spoke topology with VPN: This topology can be 
used to connect multiple remote offices or branches to a 
central location using VPN tunnels. A hub router or 
firewall is used to manage the traffic flow and provide 
secure connectivity between the spokes. 

Cluster topology with load balancing: This topology can 
be used to create a cluster of web or application servers 
for high availability. Load balancing devices are used to 
distribute traffic across multiple servers in the cluster, 
providing high performance and scalability. 

Custom network topologies can offer unique 
advantages and solve specific problems, but they also 
require careful design and management to ensure 
effectiveness and security. Network administrators 
should consider the specific needs of their organization 
and consult experienced network designers to create a 
custom topology that meets these needs. 

6.1.4.  Random Topology 

In computer networking, a random network topology 
refers to a network topology where connections between 
nodes are made in a random or stochastic manner. In such 
a topology, there is no predetermined plan or structure to 
the connections between nodes. Random network 
topologies are used in various applications, such as in the 

study of social networks, biological networks, and 
communication networks. They are also used in 
analyzing network properties, such as connectivity, 
robustness, and efficiency. It has been shown that they 
exhibit some interesting and unexpected behaviors, such 
as the emergence of small-world networks and scale-free 
networks. 

6.1.5. Erdős–Rényi Model 

 An example of a random network topology is the 
Erdős–Rényi model. The Erdős–Rényi model, also known 
as the ER model, is a mathematical model for creating 
random graphs. Introduced to the field of mathematics by 
mathematicians Paul Erdős and Alfréd Rényi in 1959, the 
ER model creates a random graph with "n" nodes starting 
with "n" isolated nodes and then randomly connecting 
pairs of nodes with a certain probability "p". The edges 
between the nodes are independent and occur with 
probability "p". There are two variations of the ER model: 
the G(n,m) model, which creates a random graph with "n" 
nodes and m edges, and the G(n,p) model, which creates 
a random graph with "n" nodes and an edge between each 
pair of nodes with probability "p". 

       The ER model has been used to study various 
properties of random graphs, including the appearance of 
the giant component, the phase transition of connectivity, 
and the degree distribution of the graph. The model has 
also been applied in various fields such as social networks, 
computer networks, and biology. However, it should be 
noted that the ER model assumes a completely random 
and uniform distribution of edges, which may not always 
reflect the real structure of many networks. As a result, 
other network models, such as small-world networks and 
scale-free networks, have been proposed to better map 
the properties of real networks. In Figure 8 below we can 
see a custom random topology is presented [18]. 

 
Figure 8: Example of Custom Random Topology using the Erdős–

Rényi mathematical model 
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6.2. Experiment Specifications 

The experiments implement topologies based on the 
random topology which in turn follows the Erdős–Rényi 
mathematical model. The SDN controller used is POX due 
to its compatibility with both topologies and the creation 
and parameterization of topologies through the PYTHON 
language. The topology creation protocol is OFDP, or 
otherwise OpenFlow [19]. 

The experiments examine the following: 

• Comparison of system performance according to 
topologies. 

• Comparison of system performance according to 
topology creation protocol. 

• Comparison of system performance according to the 
number of switches and how the total number of 
switches affects performance. 

• CPU usage. 
• RAM usage 
• The delay of packet transfer between network nodes. 
• The time of creation and destruction of a topology  

The above measurements will be compared: 

Topologies: 

• Linear 
• Balanced Tree 
• Random Topology 

Creation Protocols 

• OFDP 
• LLDP 
• BGP 
• LSDP 
• SNMP 
• OVSDB 

The number of switches will remain steadily 
increasing, and each switch will be connected to a host in 
the manner shown in the table below [20]. 

It is noted that a greater number of switches was 
achieved than in most similar studies. This fact alone 
allows for better interpretation of results and is primarily 
due to the available hardware resources. Table 4 contains 
the scale of the experiments depending on the number of 
switches and hosts. 

Table 4: Scale of experiments conducted 

SWITCHES HOSTS 

2 2 

4 4 

8 8 

16 16 

32 32 

64 64 

128 128 

256 256 

512 512 

1024 1024 

2048 2048 

4096 4096 

8192 8192 

6.3. Collection of General Results 

In this section, the statistical tables of the data 
collected from the above experiments will be presented. 
The controller used is POX and the topology creation 
protocol is OFDP. It is worth noting that each experiment 
was performed about a thousand times to ascertain the 
accuracy percentage of the results, and the deviations 
were minimal and consistent with the expected pattern. 
Therefore, the results presented are the overall average. 
Below the tables of experiment results are presented. 
Table 5 presents the results using random topologies, 
Table 6 presents the results using linear topologies and 
Table 7 presents the results using balanced tree topologies 
[21]. 

Table 5: Experiment results using random topologies. 

CP
U 
(%) 

MEMOR
Y (MB) 

SWITC
H 

HOST
S 

BW 
(Gbps
) 

SETU
P 
TIME 
(sec) 

TEAR 
TIME 
(sec) 

1.9 150 2 2 41 0.092 0.085 
2.6 170 4 4 42 0.145 0.136 
6.4 210 8 8 48 0.326 0.413 
11.2 250 16 16 48 1.256 1.646 
13.5 290 32 32 47 2.719 6.167 
18.1 330 64 64 38 12.752 22.39 
22.4 390 128 128 38 18.393 29.712 
27.8 440 256 256 36 26.715 39.513 
33.6 625 512 512 33 39.212 58.004 
39.2 1100 1024 1024 32 57.454 74.981 
44.5 2000 2048 2048 28 83.757 119.04

6 
47.3 3500 4096 4096 26 183.90

8 
244.90
1 

62.9 6800 8192 8192 27 274.48
3 

368.27
1 
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Table 6: Experiment results using linear topologies. 

CP
U 
(%) 

MEMOR
Y (MB) 

SWITC
H 

HOST
S 

BW 
(Gbps
) 

SETU
P 
TIME 
(sec) 

TEAR 
TIME 
(sec) 

1.2 300 2 2 45 0.098 0.067 
1.9 340 4 4 44 0.182 0.224 
4.8 380 8 8 49 0.295 0.313 
9.3 420 16 16 47 0.542 0.621 
10.3 480 32 32 48 0.894 1.128 
14.5 560 64 64 481 1.889 2.359 
19.3 680 128 128 38 3.319 4.858 
23.6 1050 256 256 38 6.822 7.254 
28.1 1680 512 512 39 14.841 18.952 
33.6 2200 1024 1024 37 33.713 39.701 
38.4 3500 2048 2048 36 55.915 62.113 
42.5 7300 4096 4096 33 98.009 127.98

9 
53.6 12300 8192 8192 31 181.41

1 
229.41
0 

Table 7: Experiment results using balanced tree topologies. 

CP
U 
(%) 

MEMOR
Y (MB) 

SWITC
H 

HOST
S 

BW 
(Gbps
) 

SETU
P 
TIME 
(sec) 

TEAR 
TIME 
(sec) 

3.2 180 2 2 43 0.150 0.141 
4.5 220 4 4 42 0.265 0.181 
8.9 270 8 8 38 0.429 0.284 
14.7 380 16 16 44 1.854 1.678 
17.6 490 32 32 48 3.535 3.280 
21,2 600 64 64 41 6.614 7.252 
24.8 710 128 128 43 8.325 10.053 
29.1 930 256 256 40 17.783 19.993 
36.1 1450 512 512 39 26.977 41.900 
44.9 2580 1024 1024 41 56.672 77.451 
52.4 4310 2048 2048 37 128.33

4 
168.51
3 

59.9 8200 4096 4096 38 190.98
5 

212.71
7 

74.4 15200 8192 8192 30 260.51
1 

332.55
7 

6.3.1. Collection of Latency Results 

Latency measurement will be done differently as 
each network is measured under similar conditions with 
a fixed packet size, increasing the number of packets and 
observing how this affects the network. The average and 
total transfer times are collected. The size of each packet 
is defined as 1024Bytes (1KB), and simulations will be 
executed with the corresponding packet numbers 
[1,10,50,100,500]. In previous studies, a usage limit of 
about 600 packets of this packet size was observed in 
Mininet. Below Table 8 is presented in which we can see 
the latency results of each topology. 

Table 8: Latency results of experiments across all topologies. 

PACKET 
NUMBER 

TREE 
AVERAGE 
LATENCY 
(ms) 

LINEAR 
AVERAGE 
LATENCY 
(ms) 

ERDOS 
RENYI 
AVERAGE 
LATENCY 
(ms) 

1 0.048 0.018 0.013 

10 0.053 0.027 0.016 
50 0.044 0.026 0.018 
100 0.031 0.023 0.021 
500 0.041 0.015 0.022 
TOTAL 
AVERAGE 

0.0434 0.0218 0.0181 

7. Analysis of results 

The results obtained in the present research are 
appropriately transformed into diagrams. On the vertical 
axis, each studied element (CPU, RAM, Bandwidth, Setup 
Time, Tear Time, Latency) is distributed, while on the 
horizontal axis there is the number of switches used, thus 
conclusions are drawn based on the quantity of Switches. 
In the Latency diagram, on the horizontal axis, the 
number of Switches is replaced by the number of packets. 

7.1. CPU Analysis 

The following section provides an in-depth analysis 
of CPU usage in relation to the number of switches in 
various network topologies. The data illustrates that CPU 
usage increases as the number of switches rises. The 
analysis is based on comparative data from three 
topologies: balanced tree, random, and linear. 

7.1.1. Balanced Tree Topology 

Highest CPU Consumption: The balanced tree 
topology consumes the most CPU resources among the 
three topologies. This is attributed to the complexity and 
structure of the tree-branches, which require more 
processing power to manage the available paths. 

CPU Usage Increases with Switches: As the number 
of switches increases, CPU usage significantly rises. At 
the peak of 8192 switches, the CPU usage reaches 74.4%, 
which is 11.5% higher than the random topology and 20.8% 
higher than the linear topology. 

7.1.2. Random Topology: 

Close to Balanced Tree: The random topology's CPU 
consumption is slightly less than the balanced tree but 
higher than the linear topology. This is due to the 
adaptable nature of the random topology, which requires 
complex computations to manage dynamic connections. 

Instabilities: Some instabilities in CPU usage are 
observed, caused by the probability of unsuccessful 
connections between nodes, which adds variability to the 
CPU load. 

7.1.3. Linear Topology 

Least CPU Usage: The linear topology demonstrates the 
least CPU usage due to its simple and straightforward 
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connectivity. The simplicity of managing linear 
connections results in lower processing requirements. 

Stable Performance: The linear topology shows stable 
CPU performance, with less variability and lower overall 
CPU consumption compared to the other topologies. 

Complexity and Resource Allocation: The balanced tree 
topology requires more CPU resources due to its 
hierarchical structure. Managing multiple levels and 
branches in the network involves more processing to 
maintain efficient routing and data flow. This complexity 
inherently increases the CPU load as the network scales. 

Adaptability of Random Topology: While the random 
topology is designed for flexibility and adaptability, this 
also introduces challenges in maintaining stable 
connections. The CPU must handle dynamic routing and 
potential connection failures, leading to increased CPU 
usage and occasional spikes. 

Efficiency of Linear Topology: The linear topology 
benefits from its simplicity, where each switch is directly 
connected in a straightforward path. This minimizes the 
processing required for routing decisions, leading to 
lower and more consistent CPU usage. The linear 
approach simplifies network management and reduces 
the computational burden on the CPU. 

The analysis highlights that network topology 
significantly impacts CPU usage. The balanced tree 
topology, while offering robust and hierarchical 
structuring, imposes a high CPU load due to its 
complexity. The random topology, though adaptable, 
faces challenges with connection stability, leading to 
variable CPU consumption. Linear topology remains the 
most efficient in terms of CPU usage, owing to its simple 
and direct connectivity. These findings are crucial for 
network administrators and designers, emphasizing the 
need to consider topology choice based on the expected 
network load and performance requirements. Balancing 
complexity, adaptability, and efficiency is key to 
optimizing network performance and resource utilization. 
Figure 9 analyses the CPU usage in each experiment. 

 
Figure 9: Comparative CPU usage diagram for the three topologies. 

7.2. RAM Analysis 

The following section provides an in-depth analysis of 
RAM usage in relation to the number of switches in 
various network topologies. The data illustrates that 
RAM usage varies significantly with the topology used 
and the number of switches in the network. This analysis 
is based on comparative data from three topologies: linear, 
balanced tree, and random. 

7.2.1. Linear Topology 

Initial High Memory Consumption: Initially, the linear 
topology consumes more RAM compared to the other 
two topologies, despite using less CPU than the balanced 
tree. This higher initial memory usage can be attributed 
to the straightforward but memory-intensive nature of 
maintaining direct connections between each switch. 

Memory Usage Trends: As the number of switches 
increases, the memory usage grows but at a predictable 
and steady rate due to the simple structure of the linear 
topology. 

7.2.2. Balanced Tree Topology 

High Memory Consumption with Increased 
Switches: While the number of switches increases, the 
balanced tree topology eventually consumes the most 
memory. This is due to the complexity of managing a 
hierarchical tree structure, which requires more memory 
to store the state and routing information for multiple 
levels and branches. 

Complexity Impact: The tree-branch structure inherently 
requires more memory to maintain the hierarchical 
relationships and efficient routing, resulting in higher 
memory usage as the network scales. 

7.2.3. Random Topology 

Lowest Memory Consumption: The random topology 
consistently shows lower RAM usage compared to the 
other two topologies. This is largely due to its 
customization and the retrospective improvements made 
to its implementation in Mininet, which optimize 
memory usage. 

Efficiency of Customization: Due to its adaptable nature 
and optimized design, the random topology reduces 
memory consumption by about 45-55% compared to the 
linear and balanced tree topologies. 

Initial Memory Usage in Linear Topology: The linear 
topology, despite its simplicity, requires substantial 
memory initially to establish and maintain direct 
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connections between each switch. This direct approach, 
while less CPU-intensive, places a higher initial burden 
on RAM. 

Increasing Complexity in Balanced Tree Topology: As the 
network grows, the balanced tree topology's memory 
requirements increase significantly. This is because the 
hierarchical structure demands more memory to store the 
details of each level and branch, ensuring efficient data 
routing and network management. 

Optimized Memory Usage in Random Topology: The 
random topology benefits from its customized and 
optimized implementation in Mininet. This design 
reduces unnecessary memory usage and streamlines the 
management of random connections, leading to 
significantly lower RAM consumption. The flexibility and 
adaptability of the random topology also contribute to its 
efficient memory usage. 

The analysis highlights that network topology 
significantly impacts RAM usage. The linear topology, 
while simple, initially demands more memory but grows 
predictably. The balanced tree topology, due to its 
hierarchical structure, consumes the most memory as the 
network expands. The random topology, with its 
optimized and adaptable design, demonstrates the most 
efficient memory usage. These insights are crucial for 
network administrators and designers, emphasizing the 
need to consider topology choice based on the expected 
network load and performance requirements. Balancing 
complexity, adaptability, and efficiency is key to 
optimizing network performance and resource utilization, 
particularly in terms of memory usage. Figure 10 analyses 
the RAM usage in each experiment. 

 

Figure 10: Comparative RAM usage diagram for the three topologies. 

7.3. Bandwidth Analysis 

The following section provides an in-depth analysis of 
RAM usage in relation to the number of switches in 
various network topologies. The data illustrates that 
RAM usage varies significantly with the topology used 
and the number of switches in the network. This analysis 

is based on the comparative data from three topologies: 
linear, balanced tree, and random. 

7.3.1. Linear Topology 

Initial High Memory Consumption: Initially, the linear 
topology consumes more RAM compared to the other 
two topologies, despite using less CPU than the balanced 
tree. This higher initial memory usage can be attributed 
to the straightforward but memory-intensive nature of 
maintaining direct connections between each switch. 

Memory Usage Trends: As the number of switches 
increases, the memory usage grows but at a predictable 
and steady rate due to the simple structure of the linear 
topology. 

7.3.2. Balanced Tree Topology 

High Memory Consumption with Increased Switches: 
While the number of switches increases, the balanced tree 
topology eventually consumes the most memory. This is 
due to the complexity of managing a hierarchical tree 
structure, which requires more memory to store the state 
and routing information for multiple levels and branches. 

Complexity Impact: The tree-branch structure inherently 
requires more memory to maintain the hierarchical 
relationships and efficient routing, resulting in higher 
memory usage as the network scales. 

7.3.3. Random Topology 

Lowest Memory Consumption: The random topology 
consistently shows lower RAM usage compared to the 
other two topologies. This is largely due to its 
customization and the retrospective improvements made 
to its implementation in Mininet, which optimize 
memory usage. 

Efficiency of Customization: Due to its adaptable nature 
and optimized design, the random topology reduces 
memory consumption by about 45-55% compared to the 
linear and balanced tree topologies. 

Initial Memory Usage in Linear Topology: The linear 
topology, despite its simplicity, requires substantial 
memory initially to establish and maintain direct 
connections between each switch. This direct approach, 
while less CPU-intensive, places a higher initial burden 
on RAM. 

Increasing Complexity in Balanced Tree Topology: As the 
network grows, the balanced tree topology's memory 
requirements increase significantly. This is because the 
hierarchical structure demands more memory to store the 
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details of each level and branch, ensuring efficient data 
routing and network management. 

Optimized Memory Usage in Random Topology: The 
random topology benefits from its customized and 
optimized implementation in Mininet. This design 
reduces unnecessary memory usage and streamlines the 
management of random connections, leading to 
significantly lower RAM consumption. The flexibility and 
adaptability of the random topology also contribute to its 
efficient memory usage. 

The analysis highlights that network topology 
significantly impacts RAM usage. The linear topology, 
while simple, initially demands more memory but grows 
predictably. The balanced tree topology, due to its 
hierarchical structure, consumes the most memory as the 
network expands. The random topology, with its 
optimized and adaptable design, demonstrates the most 
efficient memory usage. These insights are crucial for 
network administrators and designers, emphasizing the 
need to consider topology choice based on the expected 
network load and performance requirements. Balancing 
complexity, adaptability, and efficiency is key to 
optimizing network performance and resource utilization, 
particularly in terms of memory usage. Figure 11 analyses 
the bandwidth of each experiment. 

 

Figure 11: Comparative Bandwidth diagram for the three topologies. 

7.4. Setup Time Analysis 

The setup time refers to the duration required to create a 
network topology, measured from the moment the 
creation command is initiated. The analysis compares the 
setup times for three different network topologies: 
random, balanced tree, and linear. The results indicate 
significant differences in the time taken to establish each 
topology, highlighting the efficiency and complexity 
involved in their creation. 

7.4.1. Random Topology 

Longest Setup Time: The random topology consistently 
shows the longest time required to create a topology. This 
is due to its inherent complexity and the need for random 

connections between nodes, which involves additional 
computational overhead to ensure successful creation 
and connectivity. 

Marginally Longer: Among the topologies with long 
setup times, the random topology takes slightly longer 
than the balanced tree, indicating higher variability and 
complexity in establishing random connections. 

7.4.2. Balanced Tree Topology 

Long Setup Time: The balanced tree topology also 
exhibits a long setup time, slightly less than the random 
topology. The hierarchical structure requires careful 
planning and execution to ensure all branches and levels 
are correctly established, which adds to the setup time. 

Complexity Contribution: The structured nature of the 
balanced tree, with multiple levels and branches, 
contributes to the extended time needed for its creation. 

7.4.3. Linear Topology 

Shortest Setup Time: The linear topology shows a 
significantly reduced setup time compared to the other 
two topologies. This is due to its straightforward design, 
where each node is directly connected to the next in a 
simple chain. 

Efficiency in Large Networks: In very large networks, the 
linear topology is approximately 30-40% faster to set up 
than the random and balanced tree topologies. This 
efficiency is attributed to the minimal complexity in 
establishing direct connections sequentially. 

Complexity and Overhead: The random and balanced 
tree topologies require more time to create due to their 
inherent complexity. Random topology involves the 
creation of non-deterministic connections that need 
verification and correction, while the balanced tree 
requires a hierarchical setup with multiple levels, each 
adding to the overall setup time. 

Linear Topology Efficiency: Linear topology's setup 
process is inherently simpler. Each new node is added in 
a straightforward manner, reducing the time required for 
planning and establishing connections. This simplicity 
translates to a significant reduction in setup time, 
especially as the network scales. 

Scalability and Performance: As the network size 
increases, the difference in setup times becomes more 
pronounced. The linear topology's efficient setup process 
becomes increasingly advantageous in larger networks, 
where the time savings are substantial compared to the 
more complex topologies. 
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Practical Implications: For practical applications, the 
choice of topology can significantly impact the time 
required to deploy a network. In scenarios where rapid 
deployment is critical, the linear topology offers a clear 
advantage. Conversely, if the network's structural 
complexity and adaptability are priorities, the additional 
setup time for random or balanced tree topologies may be 
justified. 

The setup time analysis underscores the importance 
of topology selection based on deployment time 
requirements and network complexity. The linear 
topology offers the fastest setup time, making it suitable 
for scenarios requiring quick deployment and 
straightforward management. The random and balanced 
tree topologies, while taking longer to set up, provide 
more complex and potentially more resilient network 
structures. Understanding these trade-offs is essential for 
network administrators and designers to optimize 
network deployment strategies and achieve the desired 
balance between setup efficiency and structural 
complexity. Figure 12 show the results of setup time of the 
experiments. 

 

Figure 12: Comparative setup time diagram for the three topologies 

7.5. Tear Time Analysis 

The tear time refers to the duration required to 
dismantle a network topology, measured from the 
moment the destruction command is initiated. The 
analysis compares the tear times for three different 
network topologies: linear, balanced tree, and random. 
The results indicate significant differences in the time 
taken to dismantle each topology, highlighting the 
efficiency and complexity involved in their destruction. 

7.5.1. Linear Topology 

Shortest Tear Time: As expected, the linear topology takes 
the least amount of time to tear down. This is due to its 
straightforward structure, where nodes are connected in 
a simple chain, making it easy to dismantle. 

Efficiency in Large Networks: In large networks, the 
linear topology shows about 30-40% faster tear times 
compared to the random and balanced tree topologies. 

This efficiency is attributed to the minimal complexity 
involved in breaking the direct sequential connections. 

7.5.2. Random Topology 

Longest Tear Time: The random topology consistently 
shows the longest tear time among the three topologies. 
This is due to the complexity and unpredictability of its 
connections, which require additional time to ensure all 
links are properly dismantled. 

Peak Tear Times: The tear time peaks higher in the 
random topology, reflecting the inherent variability and 
instability in its structure. 

7.5.3. Balanced Tree Topology 

Long Tear Time: The balanced tree topology also exhibits 
a long tear time, like the random topology but slightly less. 
The hierarchical structure requires careful dismantling of 
multiple levels and branches, adding to the overall tear 
time. 

Deviations in Linearity: Some deviations in the linearity 
of tear time are observed in the balanced tree topology. 
These deviations are due to the changes in the tree 
structure as different branches and levels are dismantled. 

Efficiency of Linear Topology: The linear topology’s 
simplicity extends to its tear-down process. Each node is 
directly connected to its predecessor and successor, 
making it easy to break these connections in sequence. 
This straightforward dismantling process results in 
consistently lower tear times. 

Complexity in Random Topology: The random 
topology’s longer tear time is attributed to its complex 
and unpredictable nature. The random connections 
between nodes mean that each dismantling process is 
unique and requires more time to ensure all links are 
effectively broken. This variability results in higher and 
more inconsistent tear times. 

Structured Dismantling in Balanced Tree Topology: The 
balanced tree topology requires careful dismantling of its 
hierarchical structure. Each branch and level must be 
carefully broken down, which increases the overall tear 
time. The deviations in linearity are due to the varying 
complexity of dismantling different parts of the tree. 

Instabilities and Variability: Both the random and 
balanced tree topologies show instabilities and variability 
in tear times. These instabilities are natural given the 
complexity of the structures and the need for careful 
dismantling to avoid leaving residual connections. 
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The tear time analysis highlights the impact of network 
topology on the efficiency of dismantling processes. 
Linear topology offers the fastest and most efficient tear-
down times, making it suitable for scenarios requiring 
quick and straightforward network reconfiguration. The 
random and balanced tree topologies, while offering 
more complex and potentially more resilient structures, 
require significantly more time to dismantle. 
Understanding these differences is crucial for network 
administrators and designers in optimizing network 
management strategies, particularly in environments 
where frequent reconfiguration is necessary. Figure 13 
show the results of tear time for each experiment. 

Figure 13: Comparative tear time diagram for the three topologies. 

7.6. Latency Analysis 

Latency measurement refers to the time taken for an 
information packet to travel from one network node to 
another, measured in milliseconds (ms). For this analysis, 
the packet size was set to 1024 Bytes (1 Kilobyte), and the 
maximum number of transferred packets was capped at 
500, a limit identified in previous Mininet research for 
reliable measurements. 

7.6.1. Balanced Tree Topology 

7.6.1.1. Highest Delay 

The balanced tree topology exhibits the highest latency 
among the three topologies. This significant delay is due 
to the complexity of its hierarchical structure, which 
requires packets to traverse multiple levels and branches 
before reaching their destination. 

7.6.1.2. Impact of Complexity 

The structured nature of the balanced tree increases the 
distance and processing time for packets, leading to 
higher latency. 

7.6.2. Linear and Random Topologies 

7.6.2.1. Similar Delays 

Both linear and random topologies show similar latency 
measurements, but still lower than the balanced tree 

topology. These topologies have less complex routing 
paths, which reduces the overall transmission time. 

7.6.2.2. Comparative Analysis 

Although their delays are similar, the linear topology 
generally maintains a slightly more predictable and stable 
latency due to its straightforward path structure, while 
the random topology may experience more variability 
due to its non-deterministic connections. 

7.6.3. Latency Comparison 

Double the Delay in Balanced Tree: The latency in the 
balanced tree topology is at least double that of the other 
two topologies. This stark difference underscores the 
impact of hierarchical complexity on network 
performance. 

7.6.4. Balanced Tree Topology 

7.6.4.1. Hierarchical Routing 

The balanced tree’s multi-level structure means that 
packets often need to travel through several intermediary 
nodes (branches) before reaching their target. Each 
additional hop adds to the overall delay, resulting in the 
highest latency. 

7.6.4.2. Increased Processing Time 

Managing and routing through the hierarchical levels 
introduces additional processing delays, further 
contributing to the higher latency. 

7.6.5. Linear Topology 

7.6.5.1. Direct Pathways 

 The linear topology benefits from direct, sequential 
connections between nodes. This straightforward routing 
minimizes the number of hops and processing required, 
leading to more predictable and lower latency. 

7.6.5.2. Stable Performance 

The linear nature of the topology ensures consistent 
performance, with each packet following a clear and 
defined path. 

7.6.6. Random Topology 

Variable Pathways: The random topology features non-
deterministic connections, meaning packets may traverse 
different paths depending on the network state. This 
variability can introduce occasional increases in latency, 
although the average delay remains lower than the 
balanced tree topology. 
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Adaptability and Efficiency: Despite its variability, the 
random topology’s design aims to balance load and 
optimize pathways, helping to maintain relatively low 
latency overall. 

The latency analysis highlights the significant 
influence of network topology on transmission delays. 
The balanced tree topology, with its complex hierarchical 
structure, results in the highest latency, making it less 
suitable for applications requiring rapid data 
transmission. Linear topology, with its direct and 
predictable pathways, offers the lowest latency and stable 
performance, ideal for time-sensitive applications. The 
random topology, while variable, maintains lower latency 
than the balanced tree and can adapt to different network 
conditions effectively. These insights are crucial for 
network administrators and designers to optimize 
network performance based on specific latency 
requirements and application needs. Figure 14 presents 
the latency results. 

 

Figure 14: Comparative latency diagram for the three topologies. 

7.7. Future Research 

The content of this specific postgraduate work is a 
fundamental pillar of research on SDN networks and 
extends existing research in the field of computer science, 
networks, and telecommunications. Future research 
could be expanded on an even larger scale with the aid of 
supercomputers from major academic structures to show 
how a total shift in networking towards SDN would affect 
the internet and the world in general. With the right 
available resources, even more realistic simulations 
would be possible, aiming for direct integration, 
improvement, and gradual adaptation, initially in 
academic structures and subsequently in society, aiming 
for a stronger global network that would be more efficient, 
reliable, and capable of withstanding the continuously 
increasing needs of modern society. Lastly, as an 
extension of what was studied, the combination of 
currently active protocols to create a new improved one 
is feasible. 

 

8. Conclusions 

8.1. Performance of Topologies 

Through experimental procedures, we can 
understand how SDN functions best and the operation of 
distinct topologies. Large-scale networks are created, and 
their characteristics are studied. This postgraduate work 
achieves an understanding of these network structures in 
real-time and how their effective application is possible in 
real-time. 

The results indicate that the balanced tree topology 
consumes the most CPU resources due to its complexity, 
followed by the random topology. Linear topologies 
showed the least CPU usage. RAM consumption was 
highest in the balanced tree topology, while the random 
topology demonstrated lower RAM usage due to its 
customized nature. Latency measurements revealed that 
the balanced tree topology had the highest delay, while 
the linear and random topologies performed better with 
less delay. The random topology achieves improved 
results due to its adaptability and the ability to be 
parameterized. However, there is always the possibility 
of unsuccessful connections in the random topology, 
which affects performance but adds a more "realistic" 
application. The linear topology remains simple and 
maintains top performance. In contrast, the balanced tree 
topology, due to its architecture, reduces performance as 
it is burdened and expanded because of the complexity 
and calculations required for the successful creation of the 
tree. The use of the POX controller in collaboration with 
the OFDP protocol facilitated the expansion of SDN 
network sizes through parameterization. 
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