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ABSTRACT: The increasing popularity and attention in Vehicular Ad-hoc Networks (VANETs) have
prompted researchers to develop accurate and realistic simulation tools. Realistic simulation for VANETs
is challenging due to the high mobility of vehicles and the need to integrate various communication
modalities such as Vehicle-to-Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) interactions. Existing
simulators lack the capability to simulate VANET environments based on IoT infrastructure. In this
work, we propose SimulatorBridger, a novel simulator that bridges IoTSim-OsmosisRES with SUMO,
a traffic simulator, to simulate VANET environments with integrated IoT infrastructure. Our study
focuses on analyzing the generated dataflows from V2I and V2V interactions and their impact on vehicle
energy efficiency. Even though On-Board Units (OBUs) appear to have insignificant energy demands
compared to other vehicle energy consumptions such as electric motors or auxiliary systems (HVAC,
lights, comfort facilities), we found a near-perfect correlation between the intensity of communication
dataflows and the battery consumption. This correlation indicates that increased communication
activity can contribute to an increase in overall energy consumption. Furthermore, we propose future
research directions, including traffic rerouting based on battery consumption optimization, which can
be efficiently tested using our simulation platform. By including communication energy costs in the
design of energy-efficient vehicular networks, these insights contribute to a deeper understanding of
energy management in VANETs.
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1. Introduction

The advancement of technology leads us towards a new
area of communication connecting two or more vehicles
to exchange data within an IoT ecosystem. This drives us
through a new VANET (Vehicular Adhoc Network) frame-
work making the conventional transport system safer, full of
infotainment, convenient, and smart. In VANET research, re-
searchers aim to develop a simulator platform that provides
quick and cost-efficient transmission of data for passenger
safety and comfort. As described earlier, VANET simulators
consist of two components: Traffic Simulators (software en-
vironments that generate vehicle movements in trace files)
and Network Simulators (used to test the performance of
networking protocols). The network simulators are used to
build communication topologies, evaluate network proto-
cols, and exchange routing information between the nodes
after importing the traces of mobility models generated
by traffic simulators. These mobility models, which are
the depiction of real-world scenarios, are called traces and
contain the simulated infrastructure and event information
such as vehicle speed, type, origin, destination, arrival time,
arrival rate, maximum density, number of lanes, speed lim-
its, capacity, intersection type, queuing, service distribution,
service rate, traffic signs, location, etc. Green and orange

paths in Figure 1a provide a minimalistic view of these
traces where only the vehicle’s geographical position is con-
sidered. The traces generated with the mobility generator,
microscopic or macroscopic [1, 2], are imported into the
network simulator and generate a vehicular program: boxes
surrounding paths in Figure 1b provide a depiction of the
vehicular programs associated with simulated IoT agents.

1.1. Objective and motivation

We have used IoTSim-OsmosisRES [3] as the IoT simulator
for our proposed coupling platform, as it is the only IoT
simulator considering energy management, a variety of
power sources, and network infrastructure, while others
can neither simulate floating weather conditions, nor renew-
able energy sources. However, the current implementation
of the IoT simulator, IoTSim-OsmosisRES assumes IoT de-
vices to be in fixed locations. So, IoT device mobility is
not supported. Hence, we propose a new simulator Sim-
ulatorBridger that couples a state-of-the-art IoT simulator
(IoTSim-OsmosisRES [3]) with a traffic simulator (SUMO
[4]) to simulate VANET environments. This proposed sim-
ulator is designed to meet these goals: coupling the IoT
simulator IoTSim-OsmosisRES with the traffic simulator,
SUMOU, enhancing IoTSim-OsmosisRES capabilities to be
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able to simulate moving IoT devices and to support battery
information associated to the IoT devices (vehicles).

Our proposed simulator allows a smooth integration of
mobility, IoT devices, heterogeneity, and battery manage-
ment in highly heterogeneous and dynamic environment.
Still, we demonstrate that our architecture has sufficient
flexibility to bridge any possible traffic simulator using a
plug-and-play approach. We provide all the necessary func-
tionality for the accurately couple simulators that can meet
the complexity of traffic environments by using the most
recent IoT simulator and the first simulation framework
that offers unified modelling and simulation of complex IoT
applications over heterogeneous edge-cloud environments.
Preliminary results (§5) remark the partial correctness of our
simulator, as the vehicular battery consumption distribution
follows the same trend as packet distribution. By limiting
the communications to exchanging one single packet be-
tween the cloud and the IoT node, we also show that the
number of communications follows a similar distribution to
the former. We finally show that increasing the number of
packets travelling in the network increases the overall time
required by the network to process these, as bottlenecks
might occur in the network simulator infrastructure. Future
work will focus on testing different communication policies
aiming to decrease the packet processing overhead within
the network. These preliminary fidelity results remark the
adequacy of using the simulator as a digital twin for a realistic
urban mobility scenario, thus allowing any policy-maker to
test disparate network configuration and traffic distributions
to minimise network communication overload.

1.2. Use Case Scenario

The recent Car-as-a-Service paradigm [5] has remarked the
possibility of using the cars’ IoT sensors not only for the
personal purposes of travellers but, with the driver’s agree-
ment, for the benefit of the entire community. As most
modern cars are equipped with navigation systems and
video cameras, cars can collect videos and images of their
surroundings and geo-tag such information. This might
be extremely useful for any town hall highly committed to
road surface remaking for car safety so that they can spot
tarmac conditions before they degenerate into potholes [6].
To do so, the data needs to be collected from cars and then
streamed towards the main data centre, Figure 1, where
an AI model is going to detect the seriousness of the situa-
tion [7]. Road-Side Units (RSU) might first collect the data
from the cars through 5G antennae supporting massive low-
latency communication and stream it towards the primary
data centre thanks to the core networks. Communication
between 5G antennae is supported by optical fibres realis-
ing low-latency communications. As a result of the data
collection process, a massive amount of data will stream
every second from the cars towards the data centres, which
will severely increase during rush hours when road conges-
tions might happen with higher probability [8]. Figure 2
represents a portion of the simulated traffic from Hamburg
1. Due to the massive volume of data generated by the high
number of vehicles during rush hours, any road congestion

will constitute a communication bottleneck degrading the
overall communication performance [9]. To achieve success
in these situations, the traffic load needs to be balanced [10]
to reduce communication delays. Given that the traffic flow
might be redirected at run-time, this motivates the represen-
tation of each RSU as a specific Edge [3]. The exploitation
of Osmotic Computation [11] eases communication flow
management, thus dynamically establishing new streams.
This also motivates the definition of a simulator bridging
traffic simulation to network communication systems.

2. Design of the Simulator

Our framework twins traffic simulation and IoT simulation.
Thus, it incorporates well-known models for road traffic
micro-simulation with a comprehensive selection of models
of network protocols. By running the vehicular generator,
we collect all the vehicular geographical information and the
position of the Edge node (§2.1). This is required to set up
the network topologies associated with each Edge node and
determine the vehicular program to be injected into the IoT
devices in the IoT simulator (§2.2). At each simulation time,
each IoT device will query a centre to determine whether the
IoT device shall to establish communication with the cloud
through an edge device or not (§2.3). Upon confirmation,
the IoT device directly contacts the MEL router associated
with the edge node of choice, establishing communication
between the IoT device and the cloud through one of its
hosts (§2.4).

2.1. Vehicular Data Collection

First, the simulator collects the mobility information gen-
erated by the traffic generator. This simulator might be
configured by setting the begin τb and the end τe simula-
tion time, as well as a temporal granularity δ defining the
sampling rate of the vehicular information. This allows
do determine the time at the i-th simulation step for each
vehicle ν as the following relation:

τiν

τi−1
ν δ i > 0
τb oth.

At the end of the traffic generation, the VANET simulator
returns a list of pairs associating each simulation time τiν
to a geographical location ϖi

ν for each vehicle ν. Figure 1a
provides a graphical depiction of such traces, highlighted
in either green or orange. From the network topology, we
might also infer the geographical position of each RSU of
interest r alongside its position ϖr and its communication
radius ρr. This operation is performed by a simulator wrap-
per, which provides a standard interface for generating the
data of interest in a uniform representation independently
from the specific traffic simulator of choice.

2.2. Software Defined Network Configuration

The next step assumes that each vehicle ν is associated with
just one single IoT device potentially communicating with
the cloud infrastructure. We collect the sequence of pairs

1https://github.com/DLR-TS/sumo-scenarios/tree/main/TAVF-Hamburg
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(a) Output of the SUMO simulator, associating each
vehicle ν to a trace (paths in green or orange) deter-
mining their location ϖi

ν at each simulation frame
τi. RSU r are associated with fixed geographical
coordinatesϖr .
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(b) Osmotic Applications (MEL representation) re-
marking the Vehicle2Edge (V2E), Edge2Edge (E2E),
and the Edge2Cloud (E2C) communication channels.
Boxes denoted as p1 and p2 associated to each vehi-
cle indicate the “simulation programs” retaining the
mobility information.

Central Agent

(c) Supporting the Osmotic Agent configuration from
IoT-Osmosis-RES with centralized training and de-
centralized execution for dynamically updating the
communication strategies of the IoT devices. This
enables us to support dynamic load balancing in the
future.

Figure 1: Osmotic Computing in car traffic scenario in Newcastle Upon Tyne.

(a) Some road lanes (black) and some RSU (colored
circles). Black triangles are vehicles not associated
with an RSU.

(b) Associating each semaphore with the nearest cars
within the radius of θ : cars and RSU with the same
colour communicate.

(c) After exploiting a load balancing algorithm, the
cars are distributed to other semaphores in the neigh-
bourhood.

Figure 2: A subset of the Sumo TAV Hamburg Dataset for mobility

[(
τ0ν , ϖ

0
ν

)
, . . . ,

(
τnν , ϖ

n
ν

)], where τn τe, as a vehicular program
ν that will be injected within the IoTOsmosis-RES simulator.

This will allow the IoT device to update its position at
each instant of the SUMO simulation time in the network
simulator. Fig. 1b represents such vehicular programs as
minimizations of the traces represented in Fig. 1a.

Contextually, we define Software-Defined Wide Area
Networks for the RSU nodes. To do so, we first define an
undirected graph G V, E, where the vertices V list the RSU
nodes r obtained from the VANET simulator, and the edges
establish a communication channel between two distinct
RSU r and r′ if and only if they can both communicate
between each other:
∀r, r′ ∈ V.

(
r, r′
)
∈ E ↔ r , r′∧∥ϖr −ϖr′∥ ≤ min

(
ρr, ρr′

)
For each strongly connected component of such graph,

we establish a distinct Edge SDN with an associated Dat-
acenter and Software-Defined Network Controller, where
each RSU is described as an Edge device associated with at
least one host. Each light blue cloud in Fig. 1b represents
a distinct Edge SDN, for which only the Edge nodes are
remarked. We also set up a Cloud network towards which
each IoT device will communicate to send the sensed data,
as well as an SDWAN network bridging each Edge SDN to a
Cloud SDN. Both these structures are engulfed in the white
cloud in Fig. 1b. Last, we completely set up the edge con-
nectivity between these networks by setting up Edge2Edge

and Edge2Cloud communication links. VehicleToEdge links
will be established at simulation time.

2.3. Osmotic agents module

The osmotic agents’ module is exploited for simulating net-
work discovery procedures and determining each IoT device
which should be the best edge node for establishing the
communication. This cannot be necessarily determined at
the local level, as each IoT device has only the information of
which edges it can communicate with, but it doesn’t know
which is going to be the best neighbouring agent towards
which establish the first-mile communication towards for
reaching the cloud. An IoT device acts as an reinforcement
agent, which sends the information about the observed
environment to the central agent. In particular, each IoT
device sends its geographical position, while the geograph-
ical position of each edge device is known a priori. We
implemented two specific types of central agents:

• NearestCentralAgent: for each querying IoT device,
the central agent will always respond with the nearest
Edge device to the IoT that is within mutual signal
coverage. This strategy does not require any alteration
to the SDN Routing Policy of each Edge Network,
which might still exploit the SHORTESTPATHMAXI-
MUMBANDWIDTH discussed in [12].
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• FlowDataCenterAgent: after associating each IoT de-
vice to a possible edge device, the agent runs a multi-
source and multi-target minimum-cost flow problem
for establishing the best strategy to minimize the chan-
nel communication. This algorithm will then return
for each IoT device the best edge device. This also
requires updating the SDN Routing Policy Maximum-
FlowRoutingPolicy associated with each network via
its SDN Controller, thus returning the paths calculated
by the Central Agent.

Upon reception of a non-empty edge device, the IoT will
generate a novel Osmotic Application and start communi-
cation towards the cloud through the elected edge node.
Figure 1c illustrates the bidirectional communication flow
between IoT or SDN Rounters and the Central Agent.

2.4. Dynamic Adaptive Routing

In osmotic computing, each IoT device directly interacts with
MicroELements (MEL) software components that might be
instantiated anywhere in a given network associated to
Edges [3]. To faithfully represent real communication sce-
narios, an IoT device must directly establish communication
with a precise edge node [13]: the Adaptive Routing in [3]
was further extended to directly select the MEL associated
with a given edge node instead of picking one in a round-
robin fashion. As IoT-OsmosisRES further associates a MEL
to one or more hosts, the routing algorithm picks one of
the hosts running the MEL as its first-mile communication
point. Contextually, the host establishes the communication
channel with the cloud network indicated by the IoT device,
thus starting the communication.

3. Implementation in Java

The proposed simulator, SimulatorBridger, is programmed
using the Java programming language, and it is avail-
able in Github 2. The NetworkTopology.java class in the
SimulatorBridger-IOTSimOsmosisRES module is crucial for
setting up the network layer in the simulation. It generates
a topological network, which is used to simulate latency
in network traffic. The IoTDevice.java class represents IoT
devices within the IoTSimOsmosisRES framework. The
CloudletScheduler class is responsible for scheduling tasks
in the cloud. And EdgeDeviceManager class is managing
edge devices.

The implementation of the SimulatorBridger platform
contains several modules and a large number of Java source
files. Here’s an overview of its structure:

SimulatorBridger-core component contains shared depen-
dencies and core functionalities used across the project. It
serves as the foundational codebase that other modules in
the project rely on.

SimulatorBridger-traffic-information-collector involves run-
ning the traffic simulator and collecting data from it. It pro-
cesses the output of the simulation, identifying IoT nodes
and Edge nodes. The Edge nodes are used for interactions
by the IoT nodes.

SimulatorBridger-central-agent-planner provides a theoret-
ical omniscient algorithm capable of scheduling time as
required. Depending on the network simulator chosen, it
also generate potential network connectivity information
based on the IoT and Edge information provided by the
simulation.

SumoOsmosisBridger is an example that bridges all the
simulations together with Dynamic IoTSimOsmosisRES sim-
ulator. It illustrates how the components can be integrated
in a seamless manner.

Each of these components plays a specific role in inte-
grating and processing traffic data within the IoTSimOsmo-
sisRES environment. The process starts with data collection
and processing, followed by planning and scheduling us-
ing the central agent planner, and finally, the integration
of all these elements through the SumoOsmosisBridger to
work with Dynamic IoTSimOsmosisRES. This integration
allows for a comprehensive simulation environment that
can handle complex IoT and traffic data scenarios.

4. Dataset and Experiment Setup

This section covers running the Bologna dataset 3, through
our proposed simulator, where vehicles have an embedded
IoT device and RSU are Edge nodes associated to MELs. Fig.
3 shows the SUMO network of this dataset. The dataset has
16 RSUs and 239 vehicles. The Bologna scenario includes
the area around the football stadium and was set up to
simulate the mobility of big events such as football matches
or concerts.

Figure 3: Bologna Dataset [14]

Our experiments orchestrate a traffic simulator (SUMO)
with a network simulator (IoTOsmosis-RES) with each sim-
ulation second in the former corresponding to a second in
the latter. We arbitrarily set the IoT battery consumption
rate to 1.02% when a vehicle communicates with a MEL.
We assumed embedded IoT devices cannot be re-charged
to better analyse the simulator’s correctness by correlating
the number of packets sent by an IoT device with its battery
consumption. When a vehicle was near an RSU in the traffic
simulator, we scheduled a new communication between the
IoT device embedded in the vehicle and the Cloud via the
Edge node representing the RSU in the network simulator.
This schedule is selected according to the granularity δ of
the traffic simulator: in our scenario, this is set to start every
1 second. In this time frame, the IoT device in the vehicle
sends one single packet. The simulation time for these plots
begins at the start of the traffic simulator and ends when the
last MEL has successfully sent all the packets to the cloud.

2https://github.com/jackbergus/SimulatorBridger/releases/tag/v0.1
3https://github.com/DLR-TS/sumo-scenarios/tree/main/bologna/acosta
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Our simulator assumes each RSU is an Edge device
containing multiple MELs. As per the previous discus-
sion, the network simulator was extended to establish direct
communication between IoT and Edge devices by resolv-
ing an available MEL associated with the Edge device. A
round-robin policy selects an available MEL in the Edge
node to ease each MEL’s workload. For this experiment, the
maximum simulation time of IoTOsmosis-RES was 3898.4s,
corresponding to 100% of the simulation, starting at the
same time, the maximum time for the SUMO simulator
was 186.7s (τe), with vehicles no longer able to enter the
urban environment after around 55% of the overall traffic
simulator time, or 100s. From this, as the number of ve-
hicles in the simulation decreases, the number of starting
communications will also decrease, resulting in a normal
distribution for both the number of communicating vehicles
and the number of packets sent. The traffic simulation
takes less than 5% of the total simulation time. This is due
to packet network delays which delayed communication
patterns even though the IoT devices sent no new packets.
We consider all communications between an IoT vehicle and
a MEL.

5. Analysis and Results

In this section, we analyze and discuss the key findings
from the Bologna dataset experiment conducted on the Sim-
ulatorBridger platform. The results of our simulation are
meticulously examined, focusing on critical performance
metrics and the effectiveness of various strategies imple-
mented throughout the process. This analysis not only
highlights the successes and challenges encountered but
also provides valuable insights into the practical implica-
tions and potential improvements for future iterations.

Fig 4 shows that each of the 163 embedded IoT devices
(in distinct colours) shows an almost perfect correlation be-
tween the number of packets sent (solid line) and its battery
consumption (dashed). The Spearman correlation between
those for each vehicle is almost 1 , with a p-Value of 0 ,
thus indicating a very strong correlation between these two.
From Fig 5, for most of the RSUs the number of connected
to each has an approximate normal-like distribution, with
most plateauing after the 100s mark, which is at about the
55% mark in VANET simulation time mentioned earlier. A
maximum number of 39 IoT devices were connected to a
single MEL and its Edge node at any time. This figure also
explicitly shows vehicles starting at an RSU, as Edge#12
has 15 connected vehicles from the very beginning of the
simulation. This figure also shows the simulation time
used for these plots, the simulation time starts at time 0
seconds and then stops around 190 seconds once all the
RSUs have no more connected vehicles. Next, we tested
if there was a strong correlation between the number of
vehicles in the simulation within a given time interval, with
the overall battery consumed within that same time interval,
as common-sense suggests that an increase of the number of
the vehicles should match an increase of communications be-
tween a IoT and Edge devices, thus reflecting in an increase
of the overall battery consumption. We found no strong
correlation between these two aspects as, even though more

vehicles lead to an increase of communications, this does not
necessarily entail that either more communications should
take place (e.g., vehicles might not be in a region covered
by RSUs) or even that all vehicles have the same number of
communications within the same time interval.

Spearman's Correlation Coefficient = 0.99998249893168

Spearman's Rank p−value = 0
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Figure 4: Correlation between battery consumption and number of packets
being sent per vehicle within the simulation.
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Figure 5: Number of IoT devices communicating with an Edge per simula-
tion time.

Following this, any potential correlation between pack-
ets sent from vehicles and the overall battery consumption
was investigated. Fig 6 shows the probability density of the
overall battery consumed by all vehicles in the simulation
(within each 5% time interval of simulation time), along
with probability density of the number of packets sent by all
vehicles (always within each 5% time interval of simulation
time). From Fig 6 both sets of data not only closely follow
a normal distribution, but also are closely correlated with
each other, as both distributions and both normal plots com-
pletely overlap one another. These two variables correlating
with each other was expected, as in the current simulator
setup, the packets being sent are responsible for the battery
consumption, and the fact that we found these two variables
do in fact correlate indicates that the simulation is behaving
as expected. Fig 6 shows a spike occurring at the 35 − 45%
for both the overall consumption and the number of packets
sent. This spike can be explained in terms of Fig 7 showing
the distribution of the communications starting within each
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traffic and VANET simulation time interval: this spike is
also present for the number of starting communications
within this same time interval. Given the current simulator
settings of a vehicle sending a single packet as a result of
communication with an RSU, this likefor-like behaviour of
communications and packets sent is not only expected but
demonstrates the simulator is functioning correctly. The
reason more packets were sent and therefore why more
battery was consumed in this time interval is due to more
communications occurring within this time interval. Fig 7
also validates our preliminary hypothesis observing that
the number of starting communications should drop after a
55% elapse of the Sumo simulation time.

0.000

0.005

0.010

0.015

0.020

0 25 50 75 100
Percentage of VANET Simulation Time Elapsed

P
ro

ba
bi

lit
y 

D
en

si
ty Number of Packets Sent

Overall Consumption

Normal Plot for Consumption

Normal Plot for Packets

Figure 6: The distribution of packets sent in the network follows the same
trend as the overall IoT battery consumption.
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Figure 7: The distribution of the number of communications starting within
each time interval.

We might also observe another spike at the beginning
of the simulation where the influx of traffic starts entering
the simulation while approaching RSUs, thus justifying the
increase of the overall number of communications. The
explanation for the initial drop-off between the first two
intervals, 0 − 5% and 510%, can be explained with the first
interval being artificially high as a node is placed very close
to where vehicles initially join when the simulation starts.
This behaviour can also be seen on Fig 5 as Edge#12 having
15 connected vehicles just 1 second into the simulation.

From Fig 8 vehicles at the start of the simulation enter

from the most southwestern entrance, which, when fac-
toring in the 100 m radius of communication of the nodes,
explains how vehicles are able to connect to Edge#12 (i.e.
the light blue Node 12 in the bottom left of the plot). After
190 seconds in the simulation, the Sumo simulation stops,
and therefore we observed no vehicles connected to any of
the RSUs. In fact, the IoTOsmosis-RES still has to wait for
all the Edge nodes to send their packets to the cloud while
receiving an acknowledgement for this. The discrepancy
between the end of the traffic simulator and the Network
simulator also matching the end of the VANET simulator
has been cut off for the sake of legibility. This processing of
all the packets by the network infrastructure therefore takes
over 3700 seconds: we refer to this as shutdown time. Fig 9
shows how this shutdown time is affected by the number
of total communications in the simulator: the more time
steps in the simulation, or the longer vehicles are allowed to
navigate in the traffic simulator, the more the communica-
tions between vehicles and RSUs take place. This matches
the intuition that more time for potential communications
entails an increase in the number of communications. The
more relevant result from this figure with respect to the
shutdown, however, shows that more communications lead
to a longer and longer shutdown time.

Figure 8: Showing Edge displacements as RSU in the Bologna Dataset:
their colour represents the intensity of the undergoing communication.
Black lines show the trajectory of the vehicles carrying embedded IoT
devices.

Hence, the effectiveness of SimulatorBridger was vali-
dated through both simulation and experimental tests using
the Bologna dataset. The simulation results demonstrated a
near-perfect correlation between packet transmission and
battery consumption, with a Spearman correlation coeffi-
cient close to 1 and a p-value of 0, indicating strong statistical
significance. Experimental tests mirrored these findings,
showing similar trends and validating the simulator’s ac-
curacy in modeling real-world communication patterns
and their impact on energy usage. Minor discrepancies
between the simulation and experimental data were ob-
served, primarily due to real-world variances such as sensor
inaccuracies and environmental factors. Statistical tests
confirmed that both datasets followed similar distributions,
with most errors within acceptable limits. Overall, the
strong alignment between simulation and experimental re-
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sults underscores the reliability of SimulatorBridger. These
findings demonstrate the robustness of SimulatorBridger
and its value as a tool for studying and optimizing vehicular
networks.

Finally, the results offer significant improvements over
previous simulation benchmarks. The correlation analysis
between packet transmission and battery consumption re-
veals a Spearman correlation coefficient close to 1, indicating
a strong relationship between communication activity and
energy usage. Enhanced traffic flow and load balancing
capabilities are achieved through dynamic management of
communication loads among RSUs, resulting in smoother
traffic flow and reduced bottlenecks. The scalability of the
simulator is demonstrated by its ability to manage extensive
simulations, addressing the scalability issues faced by ear-
lier systems. Additionally, the detailed energy management
features, considering various power sources and their con-
sumption rates, set SimulatorBridger apart from traditional
models that often overlooked these aspects. These findings
affirm the simulator’s effectiveness in providing a robust
platform for studying and optimizing vehicular network
performance and energy efficiency.

6. Conclusion and future works

Due to the high mobility of vehicles in VANETs, realistic
simulation is a challenging task. This paper proposes a
novel simulator, SimulatorBridger, by bridging the IoT net-
work simulation with the traffic simulation. The efficacy of
SimulatorBridger is validated using a case study for urban
roads in Bologna city. Results show the various capabilities
of SimulatorBridger in terms of vehicular network lifetime,
vehicle battery, and energy consumption. According to our
results, SimulatorBridger is also scalable in terms of vehi-
cle count and simulation time. Notably, SimulatorBridger
simulates VANET based on IoT infrastructure, a capabil-
ity not present in existing VANET simulators, providing a
more comprehensive and integrated approach to vehicular
network simulation. Furthermore, our framework can be
easily extended to support a load balancing scheme between
traffic lights, thus minimising load imbalances in the com-
munication network while improving energy management
and implementation time. A cooperative approach for load
balancing among the network might be used when the traffic
light receives more requests than the maximum number,
resulting in high traffic or load. Also, vehicular network
lifetime is increased by reducing energy consumption which
is necessary to balance energy in traffic lights. In addition,
the simulator we propose combines IoTSim-OsmosisRES
with any potential traffic simulator. Then for future work, a
different traffic simulator can be used in conjunction with
IoTSim-OsmosisRES. Fig. 9 suggests that the network infras-
tructure is severely affected by the communication delays by
the way it processes and transmits the packets received from
the IoT devices to the cloud. Our future work will identify
the specific causes of the long shutdown times and alleviate
any problems in the infrastructure to reduce the shutdown
time of the simulation. For instance, we will try whether
different packet routing policies or network configurations
might help mitigate such problems. In conclusion, our study

demonstrates the impact of communication dataflows on the
battery consumption of IoT devices in vehicles, highlighting
a significant correlation that is crucial for understanding
overall energy efficiency in VANETs. The findings validate
the effectiveness of SimulatorBridger in providing accurate
simulations of VANET environments based on IoT infras-
tructure. Future research could explore traffic rerouting
strategies based on battery optimization criteria, leveraging
the capabilities of our proposed simulator.

20 time steps

30 time steps

40 time steps

50 time steps

60 time steps

70 time steps

80 time steps

90 time steps

100 time steps

0

500

1000

1500

2000

2500

3000

3500

4000

0 2000 4000 6000 8000 10000 12000 14000
Total Communications

S
hu

td
ow

n 
T

im
e

Figure 9: Correlation between simulation time, number of undergoing
communications, and their effect to the shutdown time.
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