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ABSTRACT: Solving classification problems by Liquid State Machines (LSM) usually ignores the 

influence of the liquid state representation on performance, leaving the role to the reader circuit. In 

most studies, the decoding of the internally generated neural states is performed on spike rate-based 

vector representations. This approach occults the interspike timing, a central aspect of biological neural 

coding, with potentially detrimental consequences on the LSM performance. In this work, we propose 

a model of  liquid state representation that builds the feature vectors from temporal information 

extracted from the spike trains, hence using spike synchrony instead of rate. Using pairs of Poisson-

distributed spike trains in noisy conditions, we show that such model outperforms a rate-only model 

in distinguishing two spike trains regardless of the sampling frequency of the liquid states or the noise 

level. In the same vein, we suggest a synchrony-based measure of the separation property (SP), a core 

feature of LSMs regarding classification performance, for a more robust and biologically plausible 

interpretation. 
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1. Introduction 

Liquid State Machines (LSMs) are generic models of 

computation inspired by biological cortical circuits. As such, 

they are well suited for real-time, online and anytime 

computations, and they can under certain circumstances 

exhibit unlimited computational power [1].  One important 

aspect of LSMs is their conceptual simplicity and relative 

ease of implementation in comparison to multilayer 

networks with error backpropagation training. LSMs have 

been tested with relative success in a variety of experimental 

contexts: identification of spoken words, voice, phonemes 

([2], [3], [4]) and musical instruments ([5], [6]), robotics [7], 

movement prediction [8]; classification of musical styles [9], 

seismic data for military vehicles [10], nuclear stockpile data 

[3]; recognition of signature counterfeits  [11], and even the 

study of biological neurons [12]. However, the LSM 

performance for classification tasks is variable ([13], [14], 

[15], [16]), potentially due to the randomly connected and 

untrained liquid regardless of application. Several authors 

have investigated liquid optimization approaches to raise 

the performance of LSMs, including Genetic Algorithms 

[13], [17], Separation Driven Synaptic Modification [18], 

Reinforcement Learning [17], Particle Swarm Optimization 

[19], and a number of different learning methods for 

temporal representations of artificial spiking neural 

networks (statistics, Hebbian learning, gradient estimation, 

linear algebra formalisms, etc.) that are reviewed in [20].   

Still, the research on LSMs rarely focuses on the influence 

of the liquid state representations on performance. In most 

studies, the decoding of the discrete input spike trains relies 

on rate-based feature vectors used as inputs to a classifier. 

The rate coding typically counts the number of spikes in 

arbitrary time bins and filters the results with an 

exponential kernel due to its shape resemblance to the 

postsynaptic currents in biological neurons [21]. This 

ignores the spike timing, with potentially detrimental 

consequences on LSM classification performance. In this 

work, we propose a model of the liquid states that is based 
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on temporal information  extracted from the input spike 

trains, aiming to improve classification performance 

without increasing the liquid’s dimensionality. We show 

that this model outperforms a rate-based model at 

classifying Poisson-distributed spike trains in noisy 

conditions regardless of the sampling frequency of the 

liquid states. We therefore suggest a synchrony-based 

measure of the Separation Property (SP) of LSMs, for a more 

robust and biologically plausible interpretation. 

This paper is divided as follows: the next section 

provides a brief description of the LSM model, with 

examples of use in classification problems. In section III, we 

focus on the common rate-based representation of liquid 

states to show that it leaves apart critical temporal 

information about spike trains. We also review the known 

measures of SP and underline the absence of synchrony-

based methods to quantify it. Section IV proposes a novel 

representation of the liquid state based on spike metrics, as 

well as a composite state model that incorporates both rate 

and temporal representations in a composite feature vector. 

We also describe the methodology used to test performance 

hypotheses about synchrony in the context of classifying 

Poisson-distributed input spike trains, as well as the 

correlation of performance with SP measures. We present 

the simulation results in Section V before a discussion and 

conclusions.  

2. The Liquid State Machine Model (LSM) 

Figure 1 summarizes the processing steps in the LSM model, 

showing the input signal encoding (a, b), the spatio-

temporal propagation within the liquid (c), the liquid state 

vector coding (d) and the interpretation by a readout 

mechanism (e).  The  core  of  the  LSM is the neural liquid, 

or microcircuit, which consists in a grid of interconnected 

artificial spiking neurons, usually in 3-dimensional space by 

analogy to biological cortical columns (see Figure 1.c). The 

neurons occupy the nodes of this structure and are usually 

connected by randomly generated synapses. Due to its 

inputs and recurrent connections, the liquid forms a 

dynamic system endowed with the memory of previous 

states ([4], [23]). As a result, it continuously projects input 

signals onto a high-dimensional space. This mapping fosters 

the emergence of spatiotemporal patterns (trajectories, or 

“time-varying changes in the active state” [24], p. 114) that may 

be identified by simple, memoryless readouts ([13], [3]), as 

long as two major constraints are enforced: the 

Approximation Property (AP) and the Separation 

Properties (SP); AP guarantees that the readout can 

approximate any function of the liquid states to an arbitrary 

level of accuracy, whereas SP ensures that trajectories 

produced in the liquid by different input stimuli are well 

differentiated. 

The readout maps liquid states to meaningful outputs; in 

the case of classification, it projects state vectors onto classes. 

Similar to Support Vector Machines, the capability to 

separate complex trajectories by linear discriminators is 

guaranteed by the fact that the “the dimension of the state space 

exceeds the ‘complexity’ of the trajectories” ([24], p. 120).  

The readout is the only LSM element that requires 

training, which may confer an advantage to the model over 

alternative architectures, since training a recurrent network 

of artificial spiking neurons can be a hard problem. 

However, the way the liquid states are encoded to serve as 

input feature vectors to the readout may play a role in 

achieving peak performance. This subject seems to have 

been largely ignored by the research community and most 

studies represent the liquid states by the same approach: 

measuring the spike rate in preset time intervals. Therefore, 

any potential phase information benefit is lost. 

2.1. Models of Liquid States 

Figure 1: Typical Liquid State Machine model (from: [46], p. 4244) 
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Two broad approaches to represent the liquid states can be 

seen in the literature: sampling of analog signals ([25], [10]), 

such as the postsynaptic potential or the neural membrane 

voltage [26] and spike train decoding ([23], [27], [28], [29], 

[8], [24]). T the typical representation in the latter is a state 

matrix obtained by filtering the discrete spike trains 

generated within the liquid after exposure to a stimulus ([3], 

[13], [30], [27], [10]). The filtering step is typically performed 

by convolution with an exponential kernel due to its 

resemblance to the shape of postsynaptic currents [21]. As a 

result, the spike firings within a liquid composed of N 

neurons are converted into an N-dimensional continuous 

signal [24], and each element of the state matrix stores the 

sampled values of this signal for a given observation 

interval, sampling rate, and neuron in the liquid. This 

representation is in effect a “rate code” (whereas small bin 

sizes can turn the representation into a “coincidence 

detector” [21]). 

Although widely used to represent the liquid states, 

rate-based feature vectors miss a key aspect of the neural 

code: the actual timing of spike emissions, hence neglecting 

phase information ([20], [31], [32]). On the other hand, it is 

now accepted that neural coding cannot be fully understood 

by only examining the rate of spike firing ([33], [18], [34], 

[35], [36], [32], [31]), and that the spike timing also encodes 

information. Hence, the synchrony between spike trains 

may be a cornerstone for understanding neural codes, as 

“temporal codes employ those features of the spiking activity that 

cannot be described by the firing rate.” ([32], p. 530)  

The temporal decoding of liquid states has already been 

suggested before. In [29], the authors underline the potential 

power of the temporal relationships between the spike 

trains in the liquid, while [3] advocates the use of readouts 

that incorporate spike timings, but no study has examined 

the respective efficiency of synchrony-based and rate-based 

approaches. Similarly, SP models that consider the 

synchrony between spike trains in the liquid are rare [18]. 

2.2. Separation Property 

The Separation Property evaluates the amount of “separation 

between the trajectories of internal states” [23] that are triggered 

in the liquid by two different input stimuli. The more 

separation, the easier it is for a readout endowed with the 

approximation property to distinguish between two 

different state trajectories in the liquid. This macroscopic 

property of the liquid can thus contribute to LSM 

classification performance. 

While SP is widely regarded as a crucial predictor of 

performance, there is little consensus on how to measure it. 

The literature reveals different views, including statistical 

methods ([13], [3], [37]), and linear algebra formalisms [14] 

or vector distances between filtered firing rates ([23], [1], 

[37]). For instance, Maass ([23], [1]) expresses SP as the 

Euclidean distance between the filtered state vectors of each 

neuron (Gaussian kernel), Dockendorf [37] uses both the 

Van Rossum [38] metric – which exploits the notion of 

distance between filtered states – and a custom measure 

based on the cross-correlation of spike times, Legenstein 

and Maass [14] link SP to the number of linearly 

independent variables in the state matrix, suggesting that 

the rank of the matrix is a good measure of separation, and 

Goodman and Ventura [3] and Hourdakis and Trahanias 

[13] use statistical methods to measure SP, with the former 

relying on centroids and the latter on Fisher’s Discriminant 

Ratio (FDR). In the following section, we describe our 

synchrony matrix-based approach to liquid state 

representation, the methodology used to investigate the 

ensuing effect on classification performance, and we 

underline the relationship between the Separation property 

and LSM performance. 

3. Classification with temporal liquid state 

representations 

The proposed liquid state representation is based on the 

synchrony level between spike trains during a given time 

window, as quantified by metrics that evaluate the temporal 

similarity between the spike trains emitted by neuron pairs 

in the liquid. Thus, the metrics operate on spike timings 

rather than counts and, as stated in [39], p. 146, “If a spike 

metric leads to a high-fidelity representation, then the temporal 

features that it captures are candidates for neural codes.”  

3.1. Synchrony matrix representation of liquid states 

The synchrony matrix is constructed thanks to the Adaptive 

Spike Distance (ADS) metric ([40], [41], [42], [43], [44], [45]), 

although any other bivariate spike metric may be employed. 

We chose ADS for its sensitivity to spikes coincidence and 

the fact that it does not rely on a time-scale parameter. 

Given two spike trains #1 and #2 of duration T, ADS is 

calculated by averaging their instantaneous “dissimilarity 

profiles”, which measure how coincident the two spike 

trains are at any point in time. We have: 

𝐷𝑠 =
1

𝑇
∫ 𝑆(𝑡)𝑑𝑡

𝑇

𝑡=0
             (1) 

where Ds quantifies the overall dissimilarity between the 

two spike trains over T, and S(t) provides a joint measure of 

their instantaneous dissimilarity profiles at each time t. S(t) 

is defined by: 
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        𝑆(𝑡)  =  
𝑆1(𝑡)𝑥𝐼𝑆𝐼

(2)(𝑡) + 𝑆2(𝑡)𝑥𝐼𝑆𝐼
(1)(𝑡) 

2〈𝑥𝐼𝑆𝐼
(𝑛)(𝑡)〉𝑛

2            (2) 

where x(i)isi(t) stands for the instantaneous interspike interval 

of spike train #i, 〈𝑥𝐼𝑆𝐼
(𝑛)(𝑡)〉𝑛 is the mean interspike interval 

for both spike trains, and S1(t) and S2(t) are given by: 

       𝑆𝑖(𝑡) =  
𝛥𝑡𝑃

(𝑖)(𝑡)𝑥𝐹
(𝑖)(𝑡)+ 𝛥𝑡𝐹

(𝑖)(𝑡)𝑥𝑃
(𝑖)(𝑡)

𝑥𝐼𝑆𝐼
(𝑖)(𝑡)

,    𝑖 = 1,2    (3) 

In the previous equation, for spike train #i, x(i)P(t) and x(i)F(t) 

are the time latency to the closest previous spike and closest 

following spike at time t, respectively, and ΔtP(i) and ΔtF(i) are 

the same latency from one of these spikes to the nearest one 

in the other spike train. For example, ΔtP(1) is defined as: 

𝛥𝑡𝑃
(1)(𝑡)  =  𝑚𝑖𝑛(|𝑡𝑃

(1)(𝑡)  −  𝑡𝑖
(2)|)             (4) 

where 𝑡𝑃
(1)(𝑡) is the time of occurrence of the closest 

previous spike in spike train #1 at time t, and 𝑡𝑖
(2) is the time 

of occurrence of the ith spike in spike train #2. A more 

comprehensive description of ADS with graphical 

illustrations can be found in [46]. Table 1 provides the 

example of a synchrony matrix for a liquid made of 4 

neurons, where d(a, b) evaluates the dissimilarity between 

the spike trains of neurons a and b as with equation (1).  

 Given the symmetry of the synchrony matrix and its 

zero diagonal, the final representation may consist only in 

the lower triangular matrix expressed as a vector. For a 

liquid composed of N neurons, the size E of this vector is: 

𝐸 =  ∑ 𝑛𝑁
𝑛=1  =  

(1+𝑁)𝑁

2
−  𝑁  (5) 

3.2. Composite-state vector 

 Theoretically, rate and synchrony represent 

complementary information, since they encode two aspects 

of the spiking within a liquid (see [39], p.148, for an in vivo 

example). Therefore, taking inspiration from [10], we can 

enhance the representation of liquid states by combining 

filtered rates and synchrony information. Then, the size of 

the features vector extracted from the liquid would increase 

by N. For example, N=8 would lead to a vector of 8 rate 

elements (one for each neuron) and 28 synchrony elements 

(from equation 5). We expect this composite state 

representation to lead to better classification results than by 

only using rate-based or synchrony-based representations. 

A. SP quantification with spike metrics 

Using the hypothesis that the spike trains generated for 

different classes of input signals are significantly dissimilar 

(i.e., distant or unsynchronized), SP expresses the average 

spike train dissimilarities in the liquid. To build this 

synthetic measure out of spike distance metrics, we proceed 

similarly to getting the Fisher’s discriminant ratio (FDR) of 

a 2-class classification problem: 

1) For each stimulus belonging to one of the classes, we 

build the list of corresponding liquid states, composed 

of the spike trains of each neuron in the liquid for the 

duration of the experiment. 

2) we then sample pairs of liquid states by including one 

from one class and one from the other. 

3) we measure the dissimilarity for each sampled pair with 

a distance metric. The separation measure is the mean 

of the obtained results. 

 In this paper, we test cost-based measures (Victor-

Purpura distance ([47], [48]), vector embedding (Van 

Rossum distance [38], Schreiber Similarity [49], Hunter-

Milton Reliability [50]), scale-free measures (Spike 

Synchronization, ISI Distance, Spike Distance [51], [52], [40], 

[41], [42], [43], [44], [45]) and statistical methods (Jolivet 

Coincidence [53]). The methodology for verifying the 

efficiency of these new approaches in described next. 

4. Methodology of Testing 

To test the performance of each model, we aggregate and 

compare the error rates of randomly generated LSMs at 

classifying Poisson-distributed spike trains, using rate-

based, synchrony-based and composite liquid state 

representations. As a corollary, we also quantify how the 

synchrony-based SP measures correlate with the error rate.  

4.1. Experimental setup 

Three hundred random liquids are generated and fed with 

as many jittered versions of two template spike trains. These 

input signals are generated by adding temporal noise 

(“jitter”) to each template. Hence, each spike of the template 

is randomly shifted in time by an amount drawn from a 

uniform distribution with mean 0 and standard deviation 

equal to the desired jitter level. The values used in this paper 

(1 ms, 4 ms, 10 ms) are loosely inspired by [23] who used 4 

ms and 8 ms in their “high jitter” experimental contexts. 

            

Table 1: Example of a synchrony matrix for a 4-neuron LSM. 

Neuron 1 2 3 4 

1 0 d(1,2) d(1,3) d(1,4) 

2 d(2,1) 0 d(2,3) d(2,4) 

3 d(3,1) d(3,2) 0 d(3,4) 

4 d(4,1) d(4,2) d(4,3) 0 
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the original spike train pair, of which 200 are used to train 

the readout and 100 to collect the testing error.  

The spike output from the LSM is recorded, sampled, 

and processed in three different ways to represent the liquid 

states: 

1. Sampling and exponential filtering by convolving the 

spike trains with an exponential kernel of width 0.3 

(rate coding); 

2. Sampling and calculating the synchrony matrix 

(synchrony coding); 

Table 2: Classification experiments and corresponding spike train templates 

Experiment  First spike train before and after filtering Second spike train before and after filtering 

1: Two high-frequency spike trains 

( ƛ1= ƛ2=100) 

  

2: Two low-frequency spike trains 

( ƛ1= ƛ2=20) 

  

3: One high-frequency spike train 

(ƛ1=  100) and one low-frequency  

spike train (ƛ2=20) 
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Aggregating the two previous representations into a 

composite one (composite coding). 

Three different experiments are conducted to evaluate 

the LSM classification performance, each one involving a 

pair of random Poisson distributed spike trains. Table 2 

indicates the ƛ value of each train (taken from [40]) with 

example realizations before and after filtering for rate 

coding. Each experiment considers 300 jittered variations of  

4.2. Neural Microcircuit 

The liquid is organized as a 2x2x2 column (two layers of 2x2 

neural grids), composed of 80% excitatory and 20% 

inhibitory Leaky Integrate and Fire (LIF) neurons as in [54], 

with dynamic synapses. A single input neuron connects to 

the liquid pool, and static synapses are set randomly based 

on the physical distance between pairs of neurons. The 

probability of establishing a connection is as follows [30]: 

  𝑝 = 𝐶𝑒−(
𝐷(𝑎,𝑏)


)

2

   (6) 

 where λ is a connection parameter that controls both the 

average number of connections and the average distance 

between connected neurons [45], D(a, b) is the Euclidean 

distance between two neurons a and b, and C is a scaling 

parameter influenced by the excitatory or inhibitory effect 

of the connected neurons. In this study, λ was set to 2 so that 

any pair of neurons in the liquid column might be 

connected, and C was set to different values taken from 

previous studies ([23], [30]) and based on measures taken 

from cortical brain areas [30]. By default, they are set at 0.3 

(for a connection between a pair of Excitatory-Excitatory 

neurons), 0.2 (Excitatory-Inhibitory), 0.4 (Inhibitory-

Excitatory), and 0.1 (Inhibitory-Inhibitory). All other 

parameters are left untouched. 

 
Figure 2: 2x2x2 neural microcircuit 

The chosen dimensions for the liquid allow for a large 

range of performance levels throughout the tests, 

depending only on the neuron type and connection 

topology of the liquids. We can easily generate drastically 

different liquid configurations, which in turn endow each 

LSM with largely different performance levels. An example 

of a 2x2x2 microcircuit is presented in Figure 2, where the 

neurons shown in cyan are excitatory, and those in magenta 

are inhibitory. The input neuron is the one located at 

position (0,0,0). 

The neural dynamics are set by the following membrane 

voltage equation (from [55] and [56]): 

𝜏𝑚
𝑑𝑉𝑚

𝑑𝑡
= −(𝑉𝑚 − 𝑉𝑟𝑒𝑠𝑡𝑖𝑛𝑔) + 𝑅𝑚(𝐼𝑠𝑦𝑛(𝑡) + 𝐼𝑖𝑛𝑗𝑒𝑐𝑡 + 𝐼𝑛𝑜𝑖𝑠𝑒)  (7) 

where τm represents the membrane time constant, Vm the 

membrane potential, Vresting the resting membrane potential, 

Rm the input resistance, Isyn the current supplied by the 

synapses (also called “post-synaptic current” or PSC), Iinject 

an optional background current and Inoise is a Gaussian 

random variable with mean 0 and a given variance. At time 

t = 0, Vm is set to a default voltage Vinit. During the course of 

the simulation, a spike is emitted if Vm exceeds a threshold 

Vthresh: the membrane potential is then reset to a given voltage 

Vreset and remains at this level for the duration of the absolute 

refractory period Trefract. Table 3 summarizes the values of 

these parameters during simulations. They are the default 

values of the simulation tool (see simulation tool subsection 

below).  

       The amplitude of the postsynaptic current (Isyn) depends 

on previous spike activity, which constitutes a form of short- 

term plasticity (the model is described in [57]). The total 

post-synaptic current going into a neuron j from all the 

neurons i connected to it after a spike is described by the 

following equation: 

𝐼𝑠𝑦𝑛(𝑡) =  ∑ 𝐼𝑖𝑗(𝑡)𝑖      (8) 

where 

𝐼𝑖𝑗(𝑡) =  𝑤𝑖𝑗 . 𝑒𝑥𝑝( 
−𝑡

𝜏𝑠𝑦𝑛
)     (9) 

and Iij(t) is the post-synaptic current flowing from neuron i 

and j; wij is the synaptic strength of the connection, and 𝜏𝑠𝑦𝑛 

is the synaptic time constant.  

      Contrary to static synapses, wij varies with previous 

spike trains for dynamic synapses as follows [57]: 

Table 3: default parameters of the neural membrane model 

Parameter Description Value 

Cm Membrane capacitance 3e-08 F 

Rm Membrane resistance 1e+06  

Vthresh Spike threshold -0.045 V 

Vresting Membrane voltage at rest -0.06 V 

Vinit Initial voltage condition -0.06 V 

Vreset Post-spike voltage -0.06 V 

Trefract Maximum refraction period 0.003 s 

Inoise Standard deviation of added noise 0 A 

Iinject Injected current 0 A 
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𝑤𝑖𝑗 = 𝑊. 𝑟𝑛 . 𝑢𝑛         (10) 

where W is the absolute synaptic efficiency (or weight); rn 

and un quantify the short-term depressing and facilitating 

effects after spike n has been fired. The two variables are 

described by the following two equations [57]: 

𝑟𝑛+1 =  𝑟𝑛(1 − 𝑢𝑛+1). exp (
−𝛿𝑡

𝜏𝑟𝑒𝑐
) + 1 − exp (

−𝛿𝑡

𝜏𝑟𝑒𝑐
)       (11) 

and 

𝑢𝑛+1 =  𝑢𝑛. exp (
−𝛿𝑡

𝜏𝑓𝑎𝑐𝑖𝑙
) + 𝑈(1 − 𝑢𝑛 . 𝑒𝑥𝑝 (

−𝛿𝑡

𝜏𝑓𝑎𝑐𝑖𝑙
))      (12) 

       As indicated in [45], the absolute synaptic weights for a 

given connection are drawn from a gamma distribution 

with mean W and standard deviation (𝑊. 𝑆𝐻𝑊). 𝛿𝑡 is the 

elapsed time between spike n and n+1; 𝜏𝑓𝑎𝑐𝑖𝑙  and 𝜏𝑟𝑒𝑐 are the 

time constants of the facilitating and depressing plasticity 

effects respectively. U is a constant describing the fraction of 

the absolute synaptic efficiency used. The values of these 

parameters are indicated in Table 4. 

2. Sampling, memory and decoding liquid states – The liquid 

states must be sampled in time in order to construct the 

input state vectors to the readout, with the sampling time 

window having an impact on classification performance. 

Although LSMs are known to possess “the capability to hold 

and integrate information from past input segments over several 

hundred ms” ([40], p.8), shorter sampling intervals typically 

provide less spike information. The scarcity of spike 

information in these samples can make classification harder, 

for an increased classification error rate. Thus, the memory 

span capability of LSMs plays a crucial role in providing 

liquid state samples with information from the past, 

effectively enriching them through the temporal integration 

of input stimuli: any state of the liquid will then keep some 

memory of previous states, which allows the readout to be 

memoryless. 

 
Pathological synchrony Over-stratification 

Figure 3. Example of two pathological liquids (from [46]) 

The role of memory in the classification performance of 

LSMs is relatively under-studied, but two extreme spike 

train patterns can emerge from pathological liquids: over-

stratification ([15], [3]) and pathological synchrony [15]. The 

former happens when spikes are not propagated for a long 

enough time, resulting in a lack of memory capacity; the 

latter is the result of infinite feedback loops within the 

neurons, effectively spiking in synchrony and obfuscating 

the “real”, important states. Figure 3 shows an example of 

each case. 

 Another important parameter to consider is Tau, the 

synaptic time constant controlling the time required for the 

postsynaptic response to fade to zero after being injected 

with current. Figure 4 illustrates the examples of an input 

spike train, the postsynaptic response and the resulting 

spike train for three different values of Tau.  

 In this work, Tau is set to 0.25, a value that increased the 

overall performance across all tests and all liquid state 

representations while avoiding temporal stratification and 

pathological synchrony.  The choice of sampling rates (10 

Table 4: Default parameters of the dynamic synapse model 

Parameter Description Value 

W(EE) Mean synaptic weight (Excitatory-Excitatory 

connection) 

30e-9 

W(EI) Mean synaptic weight (Inhibitory-Excitatory 

connection) 

-19e-9 

W(II) Mean synaptic weight (Inhibitory-Inhibitory 

connection) 

-19e-9 

W(IE) Mean synaptic weight (Excitatory-Inhibitory 

connection) 

60e-9 

SHW Multiplier of the standard deviation of synaptic 

weights 

0.7 

U(EE) Synaptic efficacy utilization (Excitatory-Excitatory 

connection) 

0.5 

U(EI) Synaptic efficacy utilization (Inhibitory-Excitatory 

connection) 

0.25 

U(II) Synaptic efficacy utilization (Inhibitory-Inhibitory 

connection) 

0.32 

U(IE) Synaptic efficacy utilization (Excitatory-Inhibitory 

connection) 

0.05 

𝜏𝑟𝑒𝑐(EE) Time constant for depression (Excitatory-Excitatory 

connection) 

1.1 s 

𝜏𝑟𝑒𝑐(EI) Time constant for depression (Inhibitory-Excitatory 

connection) 

0.7 s 

𝜏𝑟𝑒𝑐(II) Time constant for depression (Inhibitory-Inhibitory 

connection) 

0.144 s 

𝜏𝑟𝑒𝑐(IE) Time constant for depression (Excitatory-Inhibitory 

connection) 

0.125 s 

𝜏𝑓𝑎𝑐𝑖𝑙(EE) Time constant for facilitation (Excitatory-Excitatory 

connection) 

0.05 s 

𝜏𝑓𝑎𝑐𝑖𝑙(EI) Time constant for facilitation (Inhibitory-Excitatory 

connection) 

0.02 s 

𝜏𝑓𝑎𝑐𝑖𝑙(II) Time constant for facilitation (Inhibitory-Inhibitory 

connection) 

0.06 s 

𝜏𝑓𝑎𝑐𝑖𝑙(IE) Time constant for facilitation (Excitatory-Inhibitory 

connection) 

1.2 s 
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Hz, 4 Hz and 2 Hz) was inspired by similar values used in 

the literature ([3], [2], [8], [29], [10]). 

4.3. Readout 

A simple linear regression was chosen to avoid the potential 

impact of more advanced techniques such as multi-layer 

perceptrons, Support Vector Machines, etc., which may 

provide hard to interpret results due to their own 

capabilities. Thus, the predicted class value 𝒚̂i  of a feature 

state vector 𝒙𝒊 is given by: 

𝒚̂𝒊 = 𝒎 . 𝒙𝒊 + 𝑏   (13) 

where m, the slope of the separating hyperplane and b, the 

intercept, are estimated using the least squares method. The 

output of this simple readout is passed through a step 

function for binary classification: for a given value n 

returned by the regression, the class y[n] is given by the 

following equation: 

𝑦[𝑛]  =  { −1, 𝑛 <= 0;  1, 𝑛 > 0} (14) 

4.4. Simulation tool 

We use CSIM (Circuit SIMulator, [58]), a neural network 

simulator that can handle LSM models with different 

neuron and synapse models. CSIM is built in C++ for 

performance considerations and provides an easy-to-use 

MATLAB interface. This tool uses the exponential Euler 

method of numerical integration, with a default time step 

for the update of 0.1 ms. A thorough description and a 

comparison to other simulators are provided in [55] and 

[59]. Each stimulus is simulated for 1000ms, and we used 

the default parameter values indicated in Table 3 for the 

neural dynamics (equation 7) and in Table 4 for the synaptic 

dynamics (equations 8 to 12) 

4.5. Aggregate measure of error 

The classification error of each simulation is measured as 

the MAE (Mean Average Error) of the training and testing 

steps (only the testing results are presented herein). The 

aggregate error for all 300 LSMs is the median of the 

individual errors. We chose the median over the mean 

because it mitigates outlier effects due to the large variations 

of performance observed in different LSMs, thus providing 

a “truer” portrait of performance. These measures are 

compared for equality at a 99% confidence level by a 

Wilcoxon rank-sum test for medians (the mean MAEs are 

also recorded and tested for equality using a t-Test for 

validation purposes). The results obtained for the “filtered 

rates” representation serve as a baseline for the other tests. 

In all, 27 experiments are performed, each with a unique 

combination of the following parameters: 

- 3 sample rates (10 Hz, 4 Hz, 2 Hz); 

- 3 levels of jitter (1 ms, 4 ms, 10 ms); 

- 3 stimuli pairs frequency patterns (100-100 Hz, 20-

20 Hz and 100-20 Hz). 

5. Results 

We begin with the efficiency of the temporal coding of 

liquid states and the roles of sampling rate, jitter and 

memory capabilities. Then, we consider the problem of 

larger liquids and finally present the results on the new 

models of SP. 

5.1. Filtered rates vs. Synchrony matrix vs. composite 

representations. 

Figure 5 reports the MAE results for the three types of liquid 

state representations averaged across all 27 experiments and 

sample frequencies. It shows a significantly better 

performance of the composite-state approach over the other 

state representations (36% better than using filtered rates).  

 

Figure 5. Classification performance as a function of liquid state representation. 

Tau = 0.01 
 

Tau = 0.1 Tau = 0.25 

Figure 4. Illustration of the effect of different values of the synaptic time constant on spike trains. 
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The synchrony-matrix state representations ranked 

second behind the composite-state approach on average, 

but the synchrony-only representations performed slightly 

worse than the rate-based ones when the stimuli pairs were 

of different spike emission rates (i.e., 100 Hz and 20 Hz). In 

this case, the difference between the rates of emission led to 

clearly distinct rate-based representations, resulting in 

better performance as seen in Figure 6. 

 
Figure 6. Classification performance as a function of input frequency  type. 

5.2. Impact of the sampling frequency 

Figure 7 shows that higher sampling rates degrade the 

classification performance. This can be explained by the fact 

that less information is then conveyed by each sample, albeit 

temporal resolution is increased.  

 
Figure 7: Classification performance as a function of input sampling rate. 

 
Figure 8. Classification performance for different spike train jitter levels 

5.3. Impact of jitter on performance 

Here also, increased levels of temporal noise decrease 

performance as may be expected. The degradation is 

significant as shown in Figure 8, but it appears to be less 

important than when using different sampling frequencies. 

Even a 10 ms jitter (representing between 10% and 50% of 

the stimulus base frequency) has a limited effect on 

classification error. 

 

B. Effect of a bigger cortical column 

The previous observations remain valid for a 3x3x3 LSM. 

Figure 9 shows the relative performance of each liquid state 

representation and for each of the three pairs of input 

stimuli. Again, the composite-state approach shows a 

significant improvement over the classical and the 

synchrony matrix methods. There are, however, caveats to 

the extensibility of the synchrony matrix approach as 

discussed in the next section. 

 
Figure 9. Median MAE for a 3x3x3 liquid 

5.4. Role of memory 

As expected, the value of Tau had a deep impact on 

performance. The difference between best and worst 

performance across a few sample points corresponding to 

Tau values ranging from 0 to 1.5 can be as high à 22.81% in 

the cast of the composite-state representations (see Table 4). 

It is also clear from Figure 10 that the relationship between 

memory and performance is nonlinear and dependent on 

the type of liquid state representation. 

Table 4: Impact of memory on performance 

 Filtered Rates Synchrony Matrix Composite 

Minimum Error 0.3073 0.3005 0.2309 

Maximum Error 0.3607 0.3560 0.2992 

Variation 14.81% 15.59% 22.81% 

5.5. Separation measures 

We expect a negative correlation between the Separation 

measure and classification error. The magnitude of this 

correlation is an indication of how good a predictor of 

performance SP is. As shown in Figure 11, FDR performs 

best among the “classical” SP measures (Centroids, Ranks, 

Van Rossum distance, Gaussian distance). On the other 

hand, the newly introduced separation measures based on 

spike metrics seem to correlate even more with the 
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classification performance of LSMs. The measures based on 

spike synchronization, ISI-distance (and its adaptive 

variant), adaptive rate-independent spike distance, and 

Schreiber correlation all correlate below the -0.5 mark. 

 
Figure 10. Performance as a function of Tau, the synaptic time constant 

 
Figure 11. Correlation of SP measurement type with performance 

 
Figure 12. Correlation of SP measures with performance for a rate-based 

state representation 

     However, this synthetic chart shown in Figure 11 hides 

the local discrepancies between the different measures, 

since some of them perform significantly better in certain 

situations. For instance, Figure 12 shows that FDR correlates 

generally better with rate-based representations, but Figure 

13 shows the opposite for synchrony-based representations 

(either using a synchrony matrix or a composite-state 

representation).  

 
Figure 13. Correlation of SP measures with performance for synchrony-

based and composite representations 

6. Discussion and future research 

At the core of each LSM study lies a neuron/synapse 

simulator for validation. It is not only a model of 

computation, but also a simplified model of the cortical 

columns found in real-life neural systems. This biological 

inspiration suggests that neuroscientific discoveries 

regarding the understanding of the “neural code” may also 

enhance the computational model. We discuss below our 

findings on rate and temporal coding, the role of SP as a 

performance predictor, and the influence of sampling and 

memory on performance before ending this paper with a 

short review of the results of other comparable studies and 

concluding. 

6.1. Rate and temporal decoding 

The temporal decoding of liquid states can easily match the 

levels of LSM classification performance reached by rate-

decoding approaches, while composite state feature vectors 

go beyond: they allowed to raise the overall performance 

without increasing the LSM dimensionality, even in the 

context of highly noisy inputs. These findings point to the 

critical role of phase information and temporal decoding in 

LSM classification, encouraging more research to explore 

temporal coding and decoding schemes. For instance, more 
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encoding strategies based on phase information or absolute 

spike timings ought to be investigated (see [60] for 

inspiration), as well as more advanced spike rate estimation 

mechanisms (several of them are presented in [61]). With 

regards to performance, this study also found that the liquid 

state sampling frequency (in the light of its relationship to 

memory capabilities) and the topology of connections are 

critical factors, and they could thus become targets of 

optimization for peak performance. But, as the next 

subsection shows, the currently proposed measures of SP do 

not correlate well enough with LSM classification 

performance. 

On the negative side, one major limitation of the 

synchrony matrix representation of liquid states is that the 

matrix grows with liquid size, with a quadratic impact on 

the synchrony vector size (equation 5). For example, for a 

2x2x2 liquid, the number of elements of the feature vector is 

28 as already mentioned, and for a 4x4x4 liquid, this number 

reaches 2080 (from equation 5 with N=64). Large feature 

vectors tend to promote overfitting: for instance, the linear 

regression that we use as a classifier quickly becomes 

overwhelmed with them. Several ideas can be put forward 

to cope with large-size liquids and reduce the 

dimensionality of the feature vectors. They include: 

– Principal Component Analysis of the synchrony 

matrices for dimensionality reduction. 

– Hierarchical construction of liquids: connecting a large 

liquid to gradually smaller ones until a suitably small 

liquid is found. 

– Stochastic sampling of pairs of neurons in the liquid and 

subsequent reconstruction of the synchrony and rate 

information (also suggested in [5]). 

– Temporal filtering and fuzzification: creating aggregate 

spike trains from liquid subregions (for example, we 

filter 2x2x2 regions in a 6x6x6 liquid to create a 3x3x3 

“aggregate” liquid) and applying a form of temporal 

filtering, replacing multiple spikes emitted within a 

certain “fuzzy” timeframe by a single one at the mean of 

the that interval. 

However, although temporal decoding may be a 

promising technique, it does not solve the performance 

variability across liquids. One way to address this problem 

is to determine performance predictors and engineer more 

efficient liquids. 

6.2. Performance predictors and liquid optimization 

The differences between “classical” SP and synchrony-

based measures seem to highlight some complementarity 

between the two approaches. On average, our measure of 

SP roughly explained 50% of the performance of an artificial 

classification experiment (the absolute amount of 

correlation between SP and generalization error was, at best, 

slightly over 0.5). So, a question remains: what is missing 

from SP measures that could explain the missing 50%? Two 

very broad hypotheses can be put forward: 

a) Other performance predictors should be used instead 

of or in conjunction with SP; 

b) Our evaluation of  SP is incomplete or deficient: some 

crucial information may not be captured by statistical 

methods, linear algebra or spike distance metrics. 

While more SP measures (Bray-Curtis [62] and other 

vector distances [63], etc.) should be tested, we think that a 

custom, composite SP measure built out of rate and 

synchrony information should also  be investigated. Indeed, 

synchrony-based or hybrid measures tend to correlate 

better with synchrony-based state representations while 

statistical measures perform better with rate-based 

representations. These results seem to hint that the ideal 

separation measure could be a hybrid of FDR and 

synchrony metrics, exploiting the idea that phase and rate 

information are complementary representations of the same 

spiking activity. 

6.3. Memory and state sampling frequency 

Our results also show that the memory capacity of a liquid 

has an impact on classification performance, particularly 

when using composite-state representations (over 22% gap 

between best and worst performance, significantly higher 

than for rate-based or synchrony-only representations). 

Determining the optimal memory parameters and sampling 

frequency to extract enough information while preserving 

temporal resolution and avoiding pathological memory 

conditions deserves attention. The standard approach to 

divide the time axis into same-duration bins can create two 

problems: a) empty states, b) window boundary issues, 

especially for synchrony calculation (spikes fired just before 

or after the time window boundaries are not accounted for).  

We observed a significant degradation of performance 

when the state sampling frequency was increased 

(illustrated in Figure 7), attributed to the decline of the 

information content of each sample and the increased time 

resolution. The reduction of the width of the sampling time 

window has two consequences: 

a) More state samples required to cover the entire 

simulation , with the compounded sampling error most 

likely increased (i.e., the probability of missing relevant 

spikes at the boundaries of each time window). 
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b)  Lower average number of spikes that can be captured 

in each sample, which in turn augments the impact of 

missed spikes on the total count of spike firings. 

These two combined effects can lead to less reliable feature 

vectors. Low spiking activity also happens during network 

“warm up”, as discussed in [6] and [17].  A solution to these 

problems may be to use interleaved sampling with window 

smoothing as done in automatic voice recognition systems. 

6.4. Related work on LSM performance 

Several authors have explored the question of the 

classification performance of the LSM model and 

highlighted its strengths and limitations in various contexts, 

but there seems to be a relative dearth of results comparable 

to ours, as methodologies and data vary significantly across 

studies. It is also worth noting that we have deliberately left 

out research on readout performance, although works such 

as [64] show that this crucial element of the LSM model can 

also be improved. 

Putting aside the previous caveats, the conclusions we 

draw from this work are very much in line with those of the 

seminal work of Maass and al. [23] who validated the role 

of SP in LSM performance using a globally comparable 

method. In our work, we looked at this problem from the 

angle of liquid state representations, but numerous studies 

have focused on other aspects and suggested techniques to 

increase both the separability and the generalization 

properties of an LSM. The list includes: 

- Optimizing the connection topology and the synaptic 

weights ([65], [19], [13], [17], [18]); 

- Careful selection or mixtures of neuron types ([23], 

[66], [16], [1]); 

- Addition of parallel columns [23]; 

- Construction of hierarchical liquids [16]; 

- Correct choice or composition of liquid state 

representations [10]; 

- Selection of the right memory parameters [3]; 

- Usage of ensemble techniques [5]. 

In addition, the problem of quantifying SP remains open. 

In [62] and [37], the authors indicate that their own custom 

measure of SP outperforms those based on either the 

ubiquitous Gaussian distance or the Van Rossum metric, but 

they did not provide correlation results with actual 

performance. Similarly, compelling evidence of a strong 

correlation between classification performance and SP is 

reported in [14]. The measures proposed by [3], [18] and [13] 

correlate to levels up to 0.79, 0.68 and 0.86 respectively, 

whereas our own results show an average correlation of 

only slightly above the 0.5 mark, a discrepancy than can be 

explained by the differences in the methodologies and 

validation contexts.  

7. Conclusion 

In this paper, we have shown through simulation 

experiments that the temporal decoding of spike trains by 

evaluation of the synchrony between pairs of neurons in the 

liquid can improve the LSM performance for classification 

tasks. We have also shown that the Separation Property, a 

fundamental characteristic of LSMs, can reliably be 

measured by spike metrics.  

While there is a strong consensus in the research 

community that the classification performance of the LSM 

model can be raised, no definitive solution has yet emerged. 

We believe that more research is needed to improve the 

aforementioned approaches and/or combine their strengths 

to improve the LSM core performance in classifying time-

varying input data. We also think that the results presented 

here should be tested and validated on a larger scale. 

Moreover, if the temporal decoding of liquid states 

improves classification performance, its efficiency in a less 

artificial context remains to validate. 
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