
Special Issue on Computing, Engineering and Sciences

Received: 27 December 2022, Revised: 03 March 2023, Accepted: 23 March 2023, Online: 28 April 2023

DOI: https://dx.doi.org/10.55708/js0204001

Graph-based Tool for Bandwidth Estimation, Health Monitoring
and Update Planning in Broadband Networks
Gian Paolo Jesi∗,1, Andrea Odorizzi1, Gianluca Mazzini2

1Network Department, Lepida ScpA, Bologna, 40128, Italy
2Engineering Department, University of Ferrara, Ferrara, 44121, Italy
∗Corresponding author: Gian Paolo Jesi, Lepida ScpA, Via della Liberazione 15, 40128 Bologna, Italy, Email: gianpaolo.jesi@lepida.it

ABSTRACT:
This paper focuses on the genesis and evolution of our specific Company tool. It is aimed to tackle the
problem of verifying the health status and availability of residual bandwidth between any node over the
Lepida ScpA broadband network. In fact, there must be a correspondence between active contractual
obligations signed by local network operators and the physical bandwidth which we allocate. This is
the key factor that must be addressed in the early phases when processing any bandwidth requests
from local customers. Before the introduction of our tool, this verification process has been carried out
almost manually with a substantial cost in terms of time. The adoption of this in-house developed tool
allowed us to substantially shrink of the verification time required and to provide an overview of the
network status. Our tool is grounded on building a graph representation of the network and on well
known graph algorithms.

KEYWORDS Graphs, Network bandwidth, Broadband

1. Introduction

The access to broadband Internet connection for citizens and
companies is considered critical for the social and economi-
cal development of a modern Country. The geographical
diversity of the territory of Italy created a situation in which
a non negligible amount of areas suffer from poor connectiv-
ity. Unfortunately, there are cases in which these areas are
not covered at all. These situations pave the road to what it
is usually called as "digital divide".

Trying to limit and hopefully eliminate this problem is
on top of the National and European Union (EU) agenda. At
a Regional level, our company -Lepida ScpA[1]- is the main
operational instrument regarding the Regional Information
and Communication Technologies (ICT) Plan implementa-
tion. It has been created in 2007 by the Emilia-Romagna
Regional Government (as unique shareholder and founder);
currently, it has several hundreds Public Administrations
(PAs) and Public Entities (PEs) as shareholders, and its
activities are dedicated to them.

In order to accomplish the Plan, Lepida ScpA manages
the strategies of broadband networks and several other ac-
tivities such as: ensures and optimizes the delivery of ICT
services and develops cloud infrastructures. In addition,
it implements and manages innovative solutions for the
modernization of healthcare paths in order to improve the
relationship between citizens and the Regional Health Ser-
vice in accordance with the provisions of EU, National and
Regional Digital Agendas.

One of the core businesses of Lepida ScpA is selling
its fiber optics network bandwidth at fair prices to local

network operators. In turn, network operators sell an In-
ternet connectivity service to their customers. Often, these
operators offer their service to the specific niche of customers

which are located in poorly covered areas or not covered yet.
Knowing how much bandwidth Lepida ScpA can pro-

vide from a particular network location, is just the first
basic step to provide a quality service. When the customer
request cannot be satisfied, it has to be aborted. In this
case, it is required to plan an action in order to update the
infrastructure and to satisfy similar requests in the same
area ad soon as possible.

The band allocation is just one step in a wider and more
sophisticated process that allows our Company to manage,
update and expand the Regional broadband network.

It is important to note that bandwidth checking or mon-
itoring here has nothing to deal with traditional real time
bandwidth consumption monitoring. What really matters
for us, is that when we sell some band to a customer (i.e.,
an operator), the sum of all bands sold must be compatible
with the actual physical network capabilities of the area
where the service is going to be provided.

In the last few years, the process of checking the band
availability over the network had a significant evolution and
lead to the creation of a specific tool having a set of continu-
ously growing capabilities. This tool, Banda Calculus, is a
building block that is going to integrate with several other
tools that are on the way. In this work we are going to show
the evolution of Banda Calculus and we provide the vision
of our end goal in which Banda Calculus will inter operate
with the other company tools which are part of the process.

Banda Calculus started as a data science notebook dealing

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 1

https://dx.doi.org/10.55708/js0204001
http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

with just one network node at a time, but now it is a stan-
dalone web application. Over the years, it become an holistic
instrument capable of providing the bandwidth status of
the whole network and to highlight the less capable parts or
the ones already in a suffering state. The network topology
is another key aspect when dealing with the healthy of
a network. Identifying specific patterns that potentially
lead to issues became one of the available features of Banda
Calculus.

The remainder of this paper is organized as follows. In
Section 2, we briefly review the current state of the art, then
we discuss the specific scenario we tackle in Section 3. After
presenting our algorithms and their implementations in re-
spectively Section 4 and 5, we finally draw our conclusions
in Section 6.

2. State of the Art

Since the kind of monitoring or sanity checks to the net-
work topology are very dependent to our Company’ specific
needs, it is quite hard to make any comparison with existing
tools.

In fact, there are plenty of monitorin] tools [2, 3] and
estimation mechanisms available [4]–[5] on the market and
in the open-source community which are suitable for band-
width monitoring for example. Essentially, the idea behind
these kind of tools is collecting data from network devices
(such as: server hosts, routers or switches), usually via Sim-
ple Network Management Protocol (SNMP). Alerts can be
set when specific parameters go beyond a predefined range.
In particular, more sophisticated tools are not just limited to
present charts in a dashboards, but they can also react to un-
desirable events by exploiting collected data with machine
learning algorithms [6], [7] and making predictions.

However, our aim is different. We already have these
kind of tools for monitoring network resource consump-
tion, such as bandwidth, detecting anomalous behaviors
and/or listening for alarms. Here, as stated in Section 1, we

are not interested in real-time monitoring or consumption of the

bandwidth.
Graph databases, such as Neo4J [8], are an emerging

breed of tools coming from data science aimed to organize
and gather data on complex structures such as graphs.

Neo4j would be ideal to build our network graph and
to check its structural topology. Unfortunately, when an
algorithm has to modify or add new node attributes and
eventually change the structure links, it becomes highly
complicated. Essentially these tools are mostly designed
and optimized for querying complex structures but not for
making modifications on the fly.

Since our needs are very specific and our algorithms are
not just graph queries but complex procedures that shapes
the structure in a specific manner, we decided to build an
in-house, custom solution and to ground it on more general
graph computing libraries and other high-level abstraction
frameworks.

3. The General Problem

Table 1: Types of node elements in Lepida ScpA network. Unfortunately,
for non-Italian speakers, many of their acronym come from their Italian
name.

Acronym Description
PAL Lepida ScpA Access Point (Italian: "Punto di Accesso

Lepida")
AG Aggregator (Italian: "Aggregatore")
PR Radio bridge (Italian: "Ponte Radio")
DC Data center
MIP Final endpoint to the core network

END POINT Union between the DC and MIP node sets

The broadband network is make of several types of nodes
(e.g., PAL, AG, PR, DCand MIP), which are listed in Table 1.
This list in not exhaustive, but just the nodes significant for
this paper are present.

The set of ENDPoints represent our core network, while
the rest is the access part providing end-users up-links. In
the core network we can manage the bandwidth by choosing
between (i) tuning specific Quality of Service (QoS) strate-
gies or (ii) upgrading the backbones. In the access network
instead, where Banda Calculus comes into play, our policy is
to do not allow any overbooking.

When an operator makes a bandwidth request, the re-
quested band has to be booked for a specific network node,
which is usually a PAL or AG node type. The fundamental

role of Banda Calculus is ensuring that the operator band re-

quests are compatible with the current state of network bandwidth

capabilities.
The information that is adopted to build the network

representation as a graph structure is mainly taken from
our Network Management System (NMS). This is where the
information about the whole broadband network infrastruc-
ture is stored. This knowledge is essentially maintained by
human intervention through our NMS web interface. Since
several people are involved in these maintenance activities,
which are mostly manual, this process tends to be error
prone. In this vein, our goal is to exploit Banda Calculus in
order to perform sanity checks and to iron out the majority
of mistakes. In fact, this focus on sanity checks is one of the
latest updates we performed on our tool and we are going
to address this topic in the next chapters. We exploited two
(REST) APIs to ingest network data:

1. single node oriented: data from a single node can be
queried by name1; it returns who are the node’s im-
mediate neighbor, details of each interface and the
(total) current bandwidth reserved by operators. The
former item is a key factor for bandwidth calculation.
Unfortunately, this API has several limitations, such
as: it has no access to PR nodes and it is slow.

2. graph oriented: it is the newest API and it has been
built for the purpose of our tool. This service provides
a representation of the whole network in a JSON for-
mat structure that is in turn converted into a directed
graph object. Essentially, it has the same features of

1This is not a fully qualified DNS name, but follows an ad-hoc, internal naming scheme.

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 2

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

the previous API but non of its limitations. In fact, it
has access to PR nodes and it is much faster, since it
collects all data with a single call.

The fact of only considering a subset of network entities
(see Table 1) leads to the chance of having a disconnected
graph. In practice, this possibility becomes a certainty and
our graph is actually disconnected and scattered in about 30
components. However, the not considered entities are not
very relevant in topological terms. This allows us to have
98% of nodes inside the graph largest component, where
the bandwidth algorithms are run.

MIP1

A

dn

MIP2

dn

up

up

B
30

dn

C
10

dn

D
50

dn

E
10

dn

F

dnup

H
30

dn

G

dnup

up

I

dn

J

dn

up

L

dn

up

P
300

up

up

up up up

K

dn

up

dn

M

dnup up

N

dn up

O

dn up

Figure 1: Network graph from which has been extracted the node L sub-
graph. END POINTs are depicted as a rectangular box, while other nodes
are elliptic boxes. When present, the number inside a node box represents
the allocated, total operator bandwidth.

An simplified example of the particular structures
(graphs) we have to deal with is provided in Figure 1,
where a sub-graph for a target node L is shown. Suppose that
an operator requests to allocate a band amount x over node
L. From the whole graph, we have to extract or isolate the
sub-graph in which node L is located including its neighbors
and their (eventual) sub-trees in a recursive fashion. More
precisely, staring from node L, we add nodes until: (a) a
leaf node is found or (b) an END POINT node is found. We
remind the reader that the ENDPoints set is given by the
union of MIP and DC node sets (see Table 1). In order to
simplify the plot even further, all links speed is set 1 Gbit/s
and it is not shown explicitly.

Since we have a directed graph, each node can have in-
bound and outbound edges which are respectively marked
as down-link or up-link. Each connection between a pair of
nodes it is actually implemented by a pair of edges: an up-
link and a down-link edge. The route direction of up-link
edges is towards an END POINT, while the route direction
of down-links is towards leaf nodes.

Every node is enriched with its current reserved operator
bandwidth (op_band) if it is , 0. Note that current reserved

operator band parameter represents the cumulative amount

of band reserved by any operator on that node. Dotted edges
represents inactive links. This kind of edges usually connects
a node A to one of the MIP nodes available. As depicted
in Figure 1) node A is configured using an active-standby

pattern, where the connection to MIP2 is the standby or
back-up part which is exploited if and only if MIP1 link fails.

Node L sub-graph

MIP1 MIP2

A

up up

B
30

up

H
30

up

C
10

up

D
50

up

E
10

up

P
300

L

up

R
10

M

up

Q

up

F

up

G

up

I

up

J

upup

up

N

up

O

up upup

K

up

S
100

up up

U

up

T
10

up

MIP12 MIP13

up up

Figure 2: Prototypical, but more realistic representation of node L sub-
graph. The gray filled shapes of nodes Q, R, K and S represent a chain

structure where all edges are tagged as up-links. Two distinct pairs of MIP
nodes are shown and are linked to distinct (PAL) nodes (i.e., A and U).
The box on the left encloses node L sub-graph (LG) after the final filtering.
Due to consecutive filtering processes, only up-links are left as they are
exploited by the calculation algorithms.

From Figure 1 it is intuitive to understand that the avail-
able bandwidth from node L have to take into account any
consumption at any node in the sub-graph; in other words,
each node that stem from any down-link sub-tree might
contribute to bandwidth consumption and it must be taken
into account.

The general idea is to manipulate the graph structure
by enriching edges with a parameter (i.e., AvailBand) which
keeps track of the current band availability measured in
Mbit/s.

This annotated graph is suitable to calculate the residual
band between any node ad its END POINT by running any
well known algorithm [9, 10]. The algorithm is going to

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 3

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

calculate the residual band on every edge in the sub-graph
(by definition) and not just over the path between a target
node and its END POINT.

Unfortunately, real world conditions often present more
complex scenarios. Figure 2 shows a prototypical, but re-
alistic representation of a target node (L) sub-graph in our
broadband network.

This sub-graph exhibits two main peculiarities: (i) it has
two chain structures and (ii) two pairs of END POINT nodes.
The former peculiar structure represents an exception to
previous schema in which for any node pair (X,Y) we could
only have one up-link and one down-link edge. Here, both
edges are marked as up-links. This exception often allows
the target node to reach multiple pairs of ENDPoints and
this can complicate the band calculation as several (short-
est) paths per END POINT becomes available. In addition,
the larger the graph, the more challenging becomes its
visualization and understanding.

In order to overcome these issues, we first need to clarify
and impose that data traffic must follow the shortest path
available to the closest END POINT and following the fastest
links when possible. The closest MIP pair for a target node
L is identified by the first steps of the algorithm. In the
sub-graph, the set of nodes (LG) sharing the same closest
MIP with target node L are the ones over which the actual
band calculation is performed. In Figure 2, graph LG is the
portion enclosed in the box.

More formally, we can express the available or resid-
ual band (RB) of node L in its sub-graph (i.e., see the box
enclosed sub-graph shown in Figure 2) as:

RB (L) = min
(
band

(
pathL,ENDPOINT

)) (1)

where the shortest path (path(L,ENDPOINT)) is the smallest
set of edges {ei,i+1, ei+1,i+2, . . . , ei+(n−1),i+n} connecting L to its
END POINT. The band value for each ei, j is the difference
between the edge link physical bandwidth and the (total)
operator band associated with the Xi-th node of the edge:

band
(
ei, j

)
= phyband

(
ei, j

)
− op_band (Xi) (2)

However, in order to address any operator band con-
tribution from any node in the sub graph that may affect
the edges over path(L,ENDPOINT), we must consider all short-
est paths starting from any node in the sub-graph having
op_band , 0. Essentially, in the case depicted by Figure 2,
we have to consider the following set of paths and their
corresponding band contribution over each edge:

D
50
→ A

50
→ MIP1

P
300
→ L

300
→ D

300
→ A

300
→ MIP1

R
10
→ M

10
→ L

10
→ D

10
→ A

10
→ MIP1

H
30
→ B

30
→ A

30
→ MIP1

C
10
→ A

10
→ MIP1

E
10
→ A

10
→ MIP1

By summing all instances of the same edge ei, j in the
above schema (e.g., D

300
→ A + D

10
→ A = 310 Mbit) we ob-

tain the total amount of band consumption over each edge.
Essentially, we can rewrite (2) as:

band
(
ei, j

)
= phyband

(
ei, j

)
−
∑
k∈I

(
ei, j

)
k

(3)

where I represents the set of instances, as visible in the
previous schema, for each individual edge ei, j. In (3), for
any edge ei, j we can actually calculate the (residual) band
over an edge ei, j by subtracting all op_band contributions
from the physical bandwidth available on the edge link.

This approach [11, 12] allows us to calculate the avail-
able band for any target node in our broadband network no
matter the complexity of the corresponding sub-graph.

3.1. Towards an ’holistic’ approach

After being able to estimate the residual operator bandwidth
for a single node in the network, we started to focus our
efforts in extending the calculation to the entire broadband
network. In fact, in order to monitor our network health
from a topological point of view, the fact of being able to
check one node at a time quickly became too limiting.

Since our basic mechanism is capable of calculation the
residual band for (any) node L and since each all sub-graphs
adopted for the computation are not overlapping, extending
the calculus over the whole graph2 sounds straightforward
at least on paper. By adopting this approach, we can provide
a global view of the bandwidth status of the broadband
network and, by knowing which are the zones where band
availability is suffering or barely sufficient, we can plan for
an infrastructure upgrade.

Actually, we can move even forward.
Our tool, while searching paths over the graph struc-

ture can collect many interesting information. In particular,
checking any topological issue is a natural consequence of
visiting/searching over the graph. For example, we realized
that the two following main issues are more common: (i)
a path between two nodes is absent or (ii) a node from
the sub-graph is absent. Especially the latter issue might
stem from a mis-configured link property lying on the NMS
which triggered a node removal from the sub-graph in one
of the filtering phases.

In addition, we can build a timeline or history of the
band allocation for any node and showing its evolution
over time in terms of band allocation and infrastructure
upgrades.

Finally, our goal is to enable the following three new
features or sanity checks into Banda Calculus:

1. extract all critical path. A critical path is a path between
any two nodes A and B where the available band is
lower than a threshold band_tsd. We are interested in
all critical paths according to the currently selected
band threshold (band_tsd).

2. provide human readable information about any topo-
logical issue eventually spotted by the algorithm while
visiting the graph. The fact of having readable informa-
tion is particularly important in order to simplify the

2Here, we consider the largest component of the original network graph.

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 4

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

task of fixing the (NMS) database, since it is carried
out by a group of people.

3. build a time history about operator band for each node
in order to be able to keep track of any change.

4. Algorithms

Our algorithm discussion is split into three distinct parts:
the first one (a) is dedicated to the residual band calculation,
the second one (b) is dedicated to the holistic sanity check
features, while the latter (c) is about the graph visualization
algorithm.

4.1. Bandwidth Algorithm

The basic idea underlying the algorithm in order to calcu-
late the residual band for a single node is to first annotate
the graph with an AvailBand parameter and calculating the
bandwidth, as previously stated in Section 3. The annotation
process requires several filtering steps over the graph which
are aimed to ensure data consistency and normalization.
These steps are summarized as follows:

• consistency check: it guarantees that each record in the
JSON structure coming from the NMS API contains all
parameters which are relevant for the band calculation.
It ensures that their values are in their corresponding
ranges and are not null or NaN. A graph object G is
generated at the end of this step.

• first filtering: from the previous polished graph G it
is extracted a sub-graph S G according top a selected
target node L. The graph S G is identified through a
Breadth-First Search (BFS) over G starting from node L.
The search stops when an END POINT or a leaf node
is found.

• second filtering: S G sub-graph is refined a second time
in order to just select only the relevant edges. More
precisely, only edges with the following characteristics
are kept:

– edge parameter is_active is true
– edge parameter template is not "NA"
– edge parameter dir is "uplink"

During this step, each edge is annotated with an
AvailBand which is initialized to the current edge speed
parameter value.

• third filtering: finally, graph S G is further reduced in
case multiple ENDPoints are present. According to
the chosen target node L, its closest MIP (or MIP pair)
is selected (i.e., MIP_closest) and all nodes sharing
MIP_closest as their closest END POINT are kept in S G.
This third filtering is only applied when the actual
band calculation is triggered.

The requirement to address each allocation contribution
provided by nodes in any graph sub-tree as well as in chain

structures, forces the algorithm to consider all shortest paths
from every node to the MIP and not just from leaf nodes.

Figure 3 shows the calculation algorithm using a pseudo-
code notation. The code does not take into account the
consistency check filter. It is basically split into three parts.
The first one is dedicated to the filtering processes (i.e., lines
1-9).

The second one (i.e., lines 10-14) computes all shortest
paths between every node and the sub-graph ENDPoints.
paths is a map or dictionary structure which collects the path
set for each node. The latter part instead (i.e., lines 15-28)
perform the actual graph visit and updates the AvailBand
field over each visited edge. During the visit, any node
having allocated bandwidth - op_band field > 0 - and being
still unknown, becomes part of the already known nodes in
order to guarantee an exactly once semantic of the algorithm.

4.2. Sanity check algorithm

The sanity checks algorithm, expressed in a pseudo-code
notation, is depicted in Figure 4. The idea is simple and its
actuation is scheduled at regular intervals (i.e., ∆=24 hours).
For each node in the main graph (component) G we call the
main function (get_banda()) which is the one depicted in Fig-
ure 3) which provides specific data structures required for
our application needs. More precisely, it works as follows.
The initialization phase (e.g, lines 1-4) prepares several data
object, such as a set for basic nodes (i.e, no ENDPoints), a
set for collecting topological issues and a database handle
where the band history is actually stored.

The procedure runs until the node set is not empty (e.g.,
line 5). Nodes are pulled from the set one at a time in a (uni-
formly) random order and the residual band is calculated
on the selection (e.g., lines 6,7). The get_banda() function
invocation generates two structures: (a) a banda_path object
holding the path from a target node to its MIP and the
corresponding residual band and (b) a subG object which
represents the target node sub-graph with nodes and edges
enriched. Nodes are annotated with their allocated opera-
tor band, while edges are annotated with their respective
residual band values.

At line 8, nodes belonging to the current target node
sub-graph are removed from the node set since the band
is computed for all nodes in the sub-graph. Any eventual
node band update is propagated on stable storage over the
database (e.g., line 9).

Finally (e.g., lines 11, 12), in case of exception, a handler
manages any arising error. Three kinds of exceptions are
actually trapped, which are the following:

• NoPathException: no path is found between node A
and B, where B is a MIP. This exception may arise
when there is a missing up-link edge between the two
nodes. Actually, it is likely due to a mis-configuration
in the NMS: in fact the edge can be present but it might
have a wrong label, such as configured as ’down-link’
instead of ’up-link’.

• NoNodeFoundException: a target node A or the MIP B is
not found in the graph. The reason for this exception
is likely due to the removal of this node during one

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 5

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

1 G← 1st_filtering()
2 G← 2nd_filtering()
3 nodes← G.nodes()⋂ ENDPoints
4 avail_mips← G.sample()
5 known← SET()
6 if avail_mips.length > 2 then
7 G.filter_closest_mip(target_node)
8 avail_mips← G.sample()
9 end

10 foreach node ∈ nodes do
11 foreach mip ∈ avail_mips do
12 paths[node]← G.dijkstra(node,mip,weight=SPEED)
13 end
14 end
15 foreach node ∈ paths do
16 used_band← 0.0
17 path← paths[node]
18 source← node
19 foreach item ∈ path do
20 cur_band← G[source][item][AVAIL_BAND]
21 if G.nodes[source][OP_BAND] > 0.0 ∧ source < known then
22 used_band← used_band + G.nodes[source][OP_BAND]
23 known← source
24 end
25 G[source][item][AVAIL_BAND]← cur_band - used_band
26 source← item
27 end
28 end

Figure 3: Residual band algorithm pseudo code.

of the filtering processes. Again it is likely due to a
NMS bad configuration: in fact a node might has been
removed from the graph if all its edges are marked as
’down-link’.

• BadLinkException: in this case the system cannot calcu-
late any path since there are no ENDPoints available
in the sub-graph. Here, it is very likely that the sub-
graph MIPis connected through ’inactive’ edges and
this triggered its removal from the graph. Again, the
underlying reason is a badly configured NMS.

4.3. Visualization Algorithm

It is important to note that this algorithm just focuses on
graph visualization and it does not affect the band calcula-
tion in any manner. While the graph objects we manage are
not huge, their size is in a range that poses a challenge when
trying to display them into a graphic interface window. In
fact, it is not unusual to deal with a node whose sub-graph
is about 1000 nodes in size. This especially happens when
radio bridge (i.e., PR) nodes are involved: since all their
edges are marked as uplink, they are likely to join distinct
parts (sub-graphs) of the broadband network by creating
loops that are not filtered out by the standard processing
that is performed.

Even a few hundreds nodes and their edges end up in

chaotic plot when trying to display them. In addition, this
plotting effort is quite useless because it is likely that the
vast majority of the (sub) graph does not participate to the
bandwidth consumption: only the set of nodes having the
same closest MIP as the target node are actually involved.
We remind the reader that the third filtering step is only
applied when the actual band calculation takes place. There-
fore, the sub-graph is not simplified yet. However, even if
the sub-graph would have been simplified at this time, it
might be too large as well to obtain a non chaotic plot.

In any case, when dealing with such oversize sub-graphs
we need to make a decision and choosing what we are really
interested to. It is not a matter to choose or design a new
plotting layout. When a user have to check the residual
band for a target, the goal is to see the situation over the
path that links the target node to its ENDPoints. The more
we move far from this path, the less is the interest and the
value for the information.

The amount of available band along this path is of course
dependent by the eventual contribution coming from any
sub-branch at each path node, but these contributions are
calculated by the previous algorithm (see: 4.1) and affect
the band availability at each edge.

According to what we just stated, the basic idea underly-
ing the visualization algorithm is to first focus on the shortest
path connecting the target node to its closest MIP (i.e., or

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 6

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

1 repeat periodically every ∆ time units % Code executed every ∆=24 hours
2 nodes← G.nodes()⋂ ENDPoints
3 G_errors← ∅
4 history← DB.instance()
5 while nodes , ∅ do
6 node← nodes.sample(1)
7 banda_path, subG← get_banda(G, node)
8 nodes.pop(subG.nodes())
9 history.update(node, banda_path, subG)

10 end
11 on GraphException : ex do
12 G_errors← ⟨ ex.node, ex.info ⟩
13 end
14 end

Figure 4: Algorithm pseudo code for sanity checks calculation.

1 K_MAX ← 50; % Constant: max number of nodes for visualization graph
2 avail_mips← G.getMips()
3 mip← avail_mips[0]
4 path← G.dijkstra(target_node, mip, weight=SPEED)
5 simple_G← G.subgraph(path).copy()
6 foreach item ∈ path and simple_G.size() ≤ K_MAX do
7 if not item.isMIP() then
8 extra_nodes← G.subgraph([G.allNeighbors(item) + item]).copy()
9 simple_g← compose(simple_g, extra_nodes, K_MAX)

10 end
11 end

Figure 5: Banda Calculus Algorithm pseudo code for generating the simplified graph suitable for visualization.

MIP pair), then to expand this "graph-path" by adding the
neighbors of each node belonging to the shortest path. Any
i+1 level of nodes can be added by iterating the last step over
the previous level of added neighbors. As a general rule,
this process can stop when the graph size reaches K_MAX
(e.g., with K_MAX=50).

In such a manner, we can plot what it is really required.

The actual algorithm pseudo code is depicted in Figure
5. The first four lines are in charge to detect the MIP nodes
in the target node sub-graph (e.g., which is G in the code).
Shortest paths are calculated using Dĳkstra algorithm and a
simple_G graph object is generated. This graph just contains
the path items, the original sub-graph MIPs and their arcs.

The simple_G object is enriched by adding all neighbors
for each node member of the shortest path (i.e., see lines
5-10). Any member being a MIP is skipped. The graph size
is limited by the constant K_MAX both in the loop statement
and by the commodity function compose() which actually
merges two graphs together. More precisely, these graphs
are: (i) the simple_G object and (ii) the graph made by the
current loop node (i.e. item) and its neighborhood (i.e., see
line 8). Any node or arc is added just once.

5. Implementation

Banda Calculus is implemented in Python3 language and
through the adoption of other several frameworks for spe-
cific tasks.

Actually, the evolution of Banda Calculus leaded to sev-
eral implementation over time since 2019 [11]. At first, it
was designed as a Jupyter [13] notebook. This choice is
quite common in the data science area and it turned out to
be rewarding for our goal as well.

When started, this work shared many similarities with
data science projects, where data sets have to be understood,
analyzed and verified. For this reason, Jupyter turned out to
be a stand out candidate for prototyping our tool. Usually,
the best practice working with Jupyter involves trying ideas
and distilling a corpus of functions or classes and use them
as basic building blocks, then this process is iterated until
the problem is solved.

By following this practice, we first designed the Banda
Calculus application as a Jupyter notebook by exploiting
exploits the set of modules we distilled. By mixing code
and code and formatted text elements, a notebook can
simplify documentation management. The notebook imple-
mentation helps the user in how to install a Python virtual
environment and the required project dependencies. In

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 7

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

addition, the built-in documentation provides a user with a
step by step explanation of (i) what he is supposed to do in
order to use the tool and (ii) how it works.

Among the several solutions to manage a graph struc-
ture in Python, we selected NetworkX[14] library. The main
reasons is that it is strongly supported by the Open Source
community, it has a wide collection of state-of-the-art grade
graph algorithms, and it is symbol oriented; in other words,
any element identifier of a graph can be a symbol (e.g., a
string or any complex object instead of a numeric id) and
this simplifies data management. Symbolic graph libraries
are not as fast as lower level ones, but the graph we are
working with are in a manageable range (e.g., ∼3550 nodes
and ∼8100 edges).

For visualizing graphs inside a notebook we adopted
frameworks (e.g., Holoviews and Panel) taken from the data
science world. These are high level frameworks suited for
large data-sets.

Figure 6 shows the output of Banda Calculus notebook
application. It performs the following logical activities:

• Graph creation: the application downloads a graph
structure using the API and stores the corresponding
graph object on stable storage labeling the file with
the current date in graphml format. However, if the
current date matches the one of any available graph
file, then this file is loaded instead. When the API fails
for any issue, the most recent available file is loaded.

• Target node selection: through a Graphic User Interface
(GUI) widget the user can select the desired target node
from a drop-down list containing all valid nodes found
in the graph. This choice is recorded and remains set
for the entire notebook.

• Sub-graph initialization and visualization: graph initial-
ization and its visualization are split in two distinct
notebook cells. The output of the latter is depicted
in Figure 6. The first two plots (see Figure 6(a) and
(b)) are respectively dedicated to the visualization of
nodes and edges attributes.

The item color code is the following: target node is
yellow, ENDPoints are green and standard nodes are
blue. The edge color scheme instead is given by a
(linear) color gradient function based on the corre-
sponding speed field: faster edges are towards green,
while slower ones are towards red. Any part of the
sub-graph can be inspected by dragging any element
or zooming. Due to their average length, node names
are only visualized when moving the cursor close to
their shape. By exploiting this visualization the user
can check the current op_band allocation and the edges
speed field.

• Operator band calculation and visualization: the sub-plot
in Figure 6(c) shows the target node sub-graph after
the residual band calculation. As sub-plot (b), this
visualization is edge focused. By inspecting the edge
(i.e.: linking: ’ngn-pa-modigliana-co’→ ’mip-07’) we
can see the AvailBand field annotated with the actual
residual bandwidth. From the GUI it is possible to
follow any path and inspecting the bandwidth at each
hop. In addition, the output cell of the notebook shows
bandwidth information along the path between the
target node and its END POINT:

ngn-pa-modigliana-ai-alpi --[a. band: 700.00 Mbit/s]->
ngn-pa-modigliana-co
ngn-pa-modigliana-co --[a. band: 460.00 Mbit/s]-> mip-07

One of the notebook features we believe is very beneficial
for our goal is the possibility to convert it into a standalone

web application in a straightforward manner.
For example, this would open the road to deploy our

tool in a container and serving users on the one with a
traditional server approach.

Unfortunately, while the notebook app is up to the task of
calculating the residual band and by exploiting the adopted
frameworks it is possible to obtain a working web applica-
tion with zero effort, the GUI offered by the notebook is too
limiting and the documentation provided by the notebook
itself is still too technical for non-tech users. Expanding and
adding more sophisticated features to the notebook app
is likely to became quite challenging. For this reason, we

(a) (b) (c)

Figure 6: Notebook app (sub) graph visualizations. Plots (a) and (b) are respectively dedicated to node and edges. Plot (c) instead shows the graph
residual band allocation after a run of the calculation algorithm. The node color schema is the following: target node is yellow, ENDPoints are green
and standard nodes are blue.

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 8

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

(a) (b)

Figure 7: The Banda tab is where the residual band is calculated for a single, selected target node. When the filtered graph is too large, as depicted in the
left graph plot window (7a), by enabling the Simplify graph widget the graph is reduced and simplified while still retaining the information about the
selected target residual band (7b).

decided to refactor our design and to switch to a different
implementation capable of providing a full web application.

5.1. Web Implementation

Our implementation of the web version of the application
and its ’holistic’ features for network sanity checks is still
grounded on Python3, but the adoption of another frame-
work - Plotly-Dash [15] - is responsible of enabling the web
interface without requiring any knowledge of standard web
technologies (e.g., Javascript or CSS). Surprisingly, we man-
aged to keep Jupyter in our design pipeline since Plotly-Dash
is compatible with it and a single statement is just required
to switch the application from running inside Jupyter to
running standalone.

In other words, our approach of prototyping the basic
functionalities into a Jupyter notebook [13] still holds.

Other frameworks has been adopted and are responsi-
ble for specific tasks such as Cytoscape [16] for rendering
graphs on a web interface.

The new feature of keeping track of node band allocation
over time requires some kind of database storage. Both a
relational or NO-SQL approach are suitable and we decided
to go for the traditional (relational) approach. In particular,
we just adopted a SQL interface provided by the SQLite
package and not a full database system. In fact, at the time
of writing, the amount of stored data does not deserve a
more sophisticated solution. However, this is likely going to
change in the near future in order to improve the robustness
and flexibility of the system. Since the application runs in a

Docker container in our production environment, adding a
database system is straightforward. Two persistent volumes
has been added to the container to preserve data on stable
storage which are respectively dedicated to: (a) database
file and (b) daily graph files.

All sanity checks discussed in Section 3.1 are computed
(once a day) when the application downloads the raw net-
work data from the NMS API and builds an updated graph
structure. Both sanity checks and the download procedure
run inside a background service written in 100% Python
as well. The web app exhibits the same behavior as in the
previous implementation (see Section 5).

Figure 7 shows our tool GUI dedicated to the residual
bandwidth calculation of a specific, single target node. In
fact, note that the GUI has a first tab labeled as: "Banda"
activated. The application GUI has been refreshed to better
integrate the new features related to graph health.

The button labeled "Reload fresh graph" on the web
Graphical User Interface (GUI) manually triggers the load
of the freshest available graph from local storage. This tab
performs the same task as the previous notebook application
with some usability improvements.

After choosing a target node from the drop-down widget
labeled "Choose a target node", the corresponding sub-graph
is rendered in the "Topological graph" widget window. After
applying the filtering process (until the second filter, see
Section 4), the graph is still too large and its rendering
provides little help to the user trying to visually verify the
sub-graph topology. In these cases, enabling the switch
labeled "Simplify graph" substantially simplifies the graph

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 9

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

rendering and allows users to concentrate over the inter-
esting part of the sub-graph. After enabling the switch, by
pressing the Calculate button the bandwidth calculation is
performed and this triggers to effects: (i) the amount of
available bandwidth appears close to the button and (ii) the
simplified graph is rendered on the Bandwidth graph window.
By enabling the simplified rendering before choosing the
target node, it would have also simplified the rendering for
the Topological graph. Here, only the graph on the right is
simplified because the switch has been enabled after the
target node selection.

In graph renderings, all nodes have a rounded shape
except MIP nodes, which are squared and green. Target
nodes instead are yellow and any other node is blue. When
graph simplification is enabled (see ’Simplify graph’ switch
widget in Figure 7), border nodes are rendered in a hexagonal
shape. Border nodes are neighbors of any node being part
of the shortest path starting from the selected target node.
Node size is dynamic and changes according to a linear
function applied to its op_band value.

The edge color meaning varies according to the particu-
lar graph window. In the topological graph widget (i.e. the
left widget), the edge color represents the link speed: faster
links are green, while slower links tends towards red. In
the bandwidth graph widget instead (i.e., the right widget),
the edge color shows the calculated residual band over that
link. Its color scheme is the same as in the previous widget.
Any edge connecting to a MIP node in standby mode is
represented as a black dashed line and labeled by a red
"standby" text on top.

Also in this application version, graph plots are dynamic
and each element can be dragged and zoomed.

In addiiton to the "Banda" tab, this version has been
enriched by three other tabs which respectively correspond
to the graph sanity check features. The new tabs are named as
follows: "Critical Banda", "Topological Issues" and "Banda
Node History". In the following, we are going to focus on
their respective interfaces.

The "Critical Banda" tab interface is shown in Figure 8.
The graph plot shows the topology of a sub-graph which
is the one in which lies the selected edge picked from the
bottom table. The plot edges color shows their status. In
fact, the selected edge is represented in red color as well as
"ngn-pa-ozzano-ai-iaco"→ "mip-13" edge.

The threshold that defines a critical link is towards the
top of the GUI page and it stays visible no matter which tab
is selected (see 7). The threshold (band_tsd) default is set
to 300Mbit/s and can be overridden by editing its widget.
Any edge whose residual band is less than the threshold is
collected into the bottom table.

The table content can exported (in CSV format) through
the "Export" button on the table top left corner.

The next tab is dedicated to topological issues and it is
shown in Figure 9. Here, a table collects any exception error
triggered by search algorithm over the graph (i.e., G_errors
data structure). For each target node triggering an exception
we have a table record with a corresponding "Node" column.
The "Error" column contains all the required information
(such as: node names, device interfaces, template descrip-
tion, . . .) in a human readable form in order to fix the

corresponding issue on the NMS. As in the previous tab, the
table data can be downloaded for offline processing through
the "Export" button.

Figure 10 shows the tab dedicated to node history. A
user, by choosing a target node through the left drop-down
widget, can query the underlying knowledge-base about any
bandwidth allocation change over time. The node selection
triggers the visualization of the corresponding information
by populating the table on the right.

These new features allows to obtain an overview of the
bandwidth status of the whole network graph and they fo-
cus on emphasizing those elements that are likely to deserve
a special attention.

5.2. Banda Calculus API Integration

In order to support and integrate with other Company
services, Banda Calculus implements a basic REST API in
order to allow systems to interact together without human
intervention. The API exposes a single resource via GET
HTTP method. It is just sufficient to specify the target node
symbol name as the only parameter. The back-end system
reply is represented by a JSON structure as follows:

{
’target_node’: <node_name>,
’avail_band’: <band-int>,
’path_to_mip’: [(<node-A>, <node-B>, <band-int>), ..., ()],
’from_graphfile’: <graph_filename.graphml>,
’message’: ’OK’
}

The object contains the target node symbol provided
as parameter and the field avail_band shows the final re-
sult of the banda calculation process towards the closest
MIP. In path_to_MIP field, a list of tuples depicts the exact
path followed by the algorithm and specifies the residual
band for each edge. Other information, such as the specific
graphml file adopted as data source (i.e., from_graphfile)
and a human readable outcome message (i.e., message). The
former field contains the string ’OK’ or an error string in case
of any issue.

6. Discussion and Conclusions

In this paper, we presented the problem we tackled when
dealing with checking residual bandwidth availability in
our Regional broadband network. Our ad-hoc and in house-
developed solution, Banda Calculus, is coming from this
particular need. Since the very beginning, the main benefit
introduced by our tool is the substantial reduction (e.g.,
seconds versus hours) of the time required to calculate the
residual available bandwidth over a specific node. Just this
step turned out to be a game changer in order to provide
our services to customers.

The benefits introduced by Banda Calculus are not lim-
ited to getting faster, streamlined business procedures. In
fact, its evolution over time introduced several features ad-
dressing other needs. It first evolved in terms of (a) usability
by becoming a web application deployed in our Intranet and
in terms of (b) focusing on the whole network instead of a
single node at a time. In particular, the latter avenue of evo-
lution expanded the range of features at our disposal. These

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 10

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

Figure 8: The Critical Banda tab is where paths considered critical from a residual band point of view are shown in a tabular format. By default, all links
are ordered from most critical in a decreasing manner and the band_tsd is set to 300 Mbit/s as depicted in the text widget on top of the page. The
selection of any table row shows triggers the sub-graph rendering in which the edge is located on the top windows for a visual examination. The table
data set can also be exported in CSV format by the Export button.

Figure 9: The Topological Issues tab provides users a comprehensive view of any topological issue in the current graph. The view is implemented as a
table where each row shows the node which triggered some kind of error and a verbose description of the error itself. The table data set can also be
exported in CSV format by the Export button.

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 11

http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

Figure 10: By first choosing a node using the combo-box widget on the left, the Banda Node History tab allows users to visualize the bandwidth availability
for any node of the network over time.

features improve our monitoring and planning capabilities.
We briefly summarize them in the following lines.

By exploiting the health monitoring features, operators
can understand (c) in advance which parts of the (sub)graph
might need un upgrade before it is too late (e.g., unable to
provide any bandwidth). In addition, anything which is
suspected of being a topological graph issue (d) is reported
in a table and it is open to inspection. Also the graph visu-
alization has been fine tuned and we adopted an in-house
developed algorithm (e) that can be triggered when dealing
with large graphs. Finally, in order to integrate Banda Cal-
culus into our company processes and to allow automatic
interactions between systems, we provided an API (f).

Our near future plans are actually focused on integration
in order to automate and integrate as much as possible our
business processes.

References

[1] “LepidaScpA Home Page”, 2022.

[2] “Nagios Monitoring Solutions”, 2022.

[3] “Network monitoring with intuition”, 2022.

[4] V. J. Ribeiro, J. Navrátil, R. H. Riedi, R. Baraniuk, L. Cottrell, “pathchirp:
Efficient available bandwidth estimation for network paths”, 2003.

[5] M. Allman, “Measuring end-to-end bulk transfer capacity”, “Proceed-
ings of the 1st ACM SIGCOMM Workshop on Internet Measurement”,
IMW ’01, p. 139–143, Association for Computing Machinery, New
York, NY, USA, 2001, doi:10.1145/505202.505220.

[6] “Elastic Stack”, 2022.

[7] “Graphana Labs”, 2022.

[8] “NEO4J Graph Data Platform”, 2022.

[9] Y. Dinitz, Dinitz’ Algorithm: The Original Version and Even’s Version,
pp. 218–240, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006,
doi:10.1007/11685654_10.

[10] Y. Boykov, V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision”, “Third
International Workshop on Energy Minimization Methods in Com-
puter Vision and Pattern Recognition”, vol. 23, pp. 1124–1137, 2004.

[11] G. P. Jesi, G. Mazzini, “Banda calculus: a tool for bandwidth estimation
in broadband network infrastructures”, “2020 International Confer-
ence on Software, Telecommunications and Computer Networks (Soft-
COM)”, pp. 1–5, 2020, doi:10.23919/SoftCOM50211.2020.9238312.

[12] G. P. Jesi, A. Odorizzi, G. Mazzini, “Exploit company knowledge
from graphs with banda calculus”, “2021 International Conference on
Software, Telecommunications and Computer Networks (SoftCOM)”,
pp. 1–6, 2021, doi:10.23919/SoftCOM52868.2021.9559101.

[13] “Project Jupyter”, 2022.

[14] “NetworkX - Network Analysis in Python”, 2022.

[15] “Low-Code Data Apps”, 2022.

[16] “Cytoscape - Network Data Integration, Analysis, and Visualization
in a Box”, 2022.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

Gian Paolo Jesi graduated in Computer
Science in 2002 at the University of
Bologna. After a short experience in
an ICT Company, he rejoined his Alma
Mater in late 2003 and he received his
Ph.D. degree in 2007 in the area of large
distributed systems.

His research work focuses on dis-
tributed/complex systems, emergent be-
haviors and cognition. He served as a

Research Associate in several universities in Italy and Eu-
rope until he had the opportunity to join Lepida ScpA in
2018. He is author of more than 25 papers in international
conferences and journals.

Andrea Odorizzi received the B.S. and
MSc. degrees in Electronic Engineering
(summa cum laude) from the University
of Ferrara respectively in 2003 and 2005.
In 2009, he received his Ph.D. from the
same Alma Mater.

His research work focuses on Cryp-
tography, Peer-to-peer multimedia appli-
cations, sensor networks. He served as
PhD fellow in University of Ferrara until

he had the opportunity to join Lepida ScpA in 2008. He is

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 12

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

G.P. Jesi et al., Graph-based Tool for Bandwidth Estimation

author of more than 20 papers in international conferences
and journals.

Gianluca Mazzini graduated in Elec-
tronic Engineering (summa cum laude)
and he received his Ph.D. degree in Elec-
trical Engineering and Computer Science
from the University of Bologna respec-
tively in 1992 and 1996.

In 1996 he joined the University of
Ferrara as an Assistant Professor and in
2002 he held the position of Associate
Professor. His research work carried out

since 1993 is related to: spread spectrum communications;
applications of chaos to telecommunications; architectures
for efficient radio local area networks, cellular and ambient;
routing strategies in mobility sensor networks; capacity
in telecommunications system; peer-to-peer networks; net-
works with multimedia traffic; information security. He is

author or coauthor of more than 250 international publica-
tions in books, journals or conference proceedings. Google
Scholar in November 2012 reports over 4700 citations with
an h factor of 37 and an i10 factor of 58. His teaching
shows more than 50 editions of university courses in 12
different categories. He has been the supervisor of over
140 theses and tutor for 14 Ph.D. students. He has been
co-organizer of two international conferences, guest editor
of the Proceedings of the IEEE, has served as Associate
Editor for IEEE journals for nine years, and has served as
TPC member for more than 40 international conferences.
He has had roles in coordinating over a dozen projects at
an international or national level, including four European
projects. As first researcher in role for TLC in University
of Ferrara, he founded the research group in TLC area and
has established a structured series of collaborations with
other organizations, including: ARCES at the University of
Bologna, IEIIT at the CNR, CNIT. He has been a member of
seven scientific committees and seven boards of directors or
management. He was CEO of Lepida ScpA.

www.jenrs.com Journal of Engineering Research and Sciences, 2(4): 01-13, 2023 13

http://www.jenrs.com

	Introduction
	State of the Art
	The General Problem
	Towards an 'holistic' approach

	Algorithms
	Bandwidth Algorithm
	Sanity check algorithm
	Visualization Algorithm

	Implementation
	Web Implementation
	Banda Calculus API Integration

	Discussion and Conclusions

