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ABSTRACT: The sole focus of current occupant behavior research on environmental and contextual 
factors (i.e., physical attributes) in buildings is a missed opportunity. Psychological, physiological, 
social, time, and random factors also influence building occupants. In this pilot study (𝑛𝑛 = 10), the 
authors used Interaction Geography to capture human movements across space and time in a Virtual 
Reality (VR) museum to dissect building occupant behavior. Results indicated that study majors (i.e., 
psychological) and personal connections (i.e., social) with the space affected how participants explored 
and spent time in the VR museum.  
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1. Introduction  

 Building occupant behaviors are the direct indicators 
of how well the built environment (e.g., interior spaces) 
promotes human physical and psychological well-being. 
The current approach to comprehending said behaviors 
focuses on occupant assessments of the physical design or 
subjective ratings of indoor environmental quality (IEQ) 
factors such as acoustics, cleanliness, and furnishings [1]. 
Occupancy evaluations exemplify this approach by asking 
occupants to rate their satisfaction with IEQ factors on 
survey-based Likert-scale items (e.g., 1 = dissatisfied; 7 = 
satisfied) [2]. This approach may seem like an objective 
way to measure IEQ; however, the following problems 
cloud the resulting data. First, retrospective data collection 
relies on occupants’ memories of a space. Subjects might 
mis-remember or fail to recall their experience with the 
building [3]. Therefore, their ratings of IEQ factors are 
inadequate and incomplete reflections of their real-time 
experiences which dictate their behaviors in the building. 
Second, the tendency to reduce cognitive load means that 
occupants frequently select the middle choice of complex 
multiple-choice questions [4].   

 These biases challenge researchers who study the built 
environment to develop more comprehensive methods for 
assessing occupants' behaviors. One exemplary method is 
implementing agent-based simulation (ABS), autonomous 
computational agents interacting with one another and 
their surroundings [5], to predict occupant behaviors in 

buildings. ABS is most effective in modeling behavioral 
patterns in hypothesized scenarios to schedule working 
shifts, regulate energy usage, evacuate for emergencies, 
and so on [6–8]. One caveat of using ABS in the built 
environment is that the computational system disregards 
the complexities underlying occupant behaviors (e.g., age, 
gender, and psychological state) [6]. This argument also 
applies to sensor-based and GPS-enabled data collection, 
with a heavy emphasis on the physical characteristics of 
the building, not the psychological aspects of occupants 
[9], [10].  

 Interaction geography, a novel approach to describing, 
representing, and interpreting human interactions with 
their environments across space and time [11], offers one 
solution to these challenges. Current implementations of 
interaction geography in the built environment include 
assessing occupant travel patterns in a museum [12] and 
in teacher-student-interactions in the classroom [13], [14]. 
Such implementations are limited, yet growing interest in 
interaction geography is evident through multiple studies 
focusing on the movements of building occupants [15–17]. 
However, tracking movements is an intensive and time-
consuming data collection process that uses wearable 
sensors or camera recordings [12], [17].  

 This paper presents a time-and-cost efficient approach 
to exploring building occupant behavior via movements 
using Virtual Reality (VR) technology. In a pilot study, the 
authors analyzed the movements of 10 participants in a 
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virtual museum to examine the extent to which interaction 
geography further the current understandings of building 
occupant behavior with the research question:  

“What insights can Interaction Geography offer to the 
understanding of participant behavior in a VR museum?” 

The authors, thus, explored movement patterns (obtained 
via Interaction Geography) to identify how participants 
interacted with a building setting via real-time data. 

2. Literature Review 

2.1. Building Occupant Behavior Research 

 Building occupant behavior is under the influences of 
environmental, contextual, psychological, physiological, 
social, time, and random factors (Figure 1) [18]. Lighting, 
temperature, and indoor air are environmental factors. 
Building features such as orientation and construction are 
contextual; gender, age, and occupation are psychological; 
individual perceptions of temperature are physiological, 
cultural groups and organizational regulations are social 
factors [19]. Time-related events (e.g., working shifts) and 
random movements are influential as well [20]. Studies on 
building occupant behavior focus on environmental and 
contextual factors due to their quantifiable nature. For 
instance, researchers operationalize environmental factors 
as Indoor Environmental Quality (IEQ) variables that are 
measurable using satisfaction surveys (e.g., pre-and post-
occupancy evaluations) and real-time devices (e.g., light 
meters, sensors) [21].  

 
Figure 1: Factors that Influence Building Occupant Behavior 

 In the typical approach of post-occupancy evaluation 
(POE), occupants will complete a survey nine to twelve 
months after moving into a building. The two components 
that make up POE include (i) subjective perceptions (i.e., 
comfort and satisfaction) and (ii) physical measurements 
(i.e., building features) [9]. Both components contain IEQ 
variables such as temperature, light, noise, privacy, view, 
decoration, cleanliness, and so on. Occupants use Likert 
ratings to indicate their subjective perceptions of IEQ 
variables and their impacts. For example, the Building Use 
Studies (BUS) survey includes 7-point rating scales (e.g., 
uncomfortable to comfortable) for 11 IEQ variables (e.g., 
thermal, acoustic, appearance) [22]. Among IEQ variables, 
noise, air quality, light, and thermal are most influential to 
building occupants [1], [23]. 

 Regarding physical measurements, devices like meters 
and sensors help researchers estimate how IEQ variables 
might influence building occupants over time. Energy and 
water consumption plus IEQ variables such as thermal, 
lighting, air quality, and acoustics make up most of this 
component [10]. Electricity usage (e.g., applicant loads), 
window, fan, and air conditioning operation are occupant 
behaviors of interest within residential and commercial 
buildings; these studies dominate the corresponding 
literature [19]. In [18], the authors discussed the current 
state of building occupant behavior through the following 
environmental and contextual factors (i.e., IEQ variables): 
window, lighting, shading, and air conditioning (AC). The 
focus on this subset of factors/variables is reasonable as 
professionals (e.g., engineers, architects, designers) and 
stakeholders (e.g., managers, owners) are concerned with 
the social and financial costs of energy consumption and 
life cycle of buildings. The authors in [24] also projected a 
decline in energy purchasing power of $11,258,2019 by 
2099, implying that low-income populations would suffer 
from the inability to consume energy in response to 
climate change (i.e., global warming). According to the 
authors in [25], residential buildings that withstand a wide 
temperature fluctuation (e.g., from – 20°C to + 30°C) are 
costly, especially with a deficit in Gross Domestic Product 
(e.g., – 2% in 2017) due to global warming. Said costs 
explain why environmental and contextual factors (i.e., 
IEQ variables) predominate the current state of building 
occupant behavior research (Figure 1).  

 Viewing building occupant behavior as stochastic (i.e., 
random) with the variants between occupants that evolve 
over time represents a research paradigm shift [15]. Recent 
additions to POE include visual records, data of building 
structure/service/system, window sensors, GPS-tracked 
mobility, and so on [10]. In [6] the authors utilized an 
agent-based simulation (ABS) model and sensor-based 
data to predict probabilities of window operation in 
commercial buildings. This model reduces stochastic 
uncertainties by cross-referencing multiple IEQ variables 
like temperature, air, and humidity, in a single behavior: 
opening a window. However, the ABS model did not take 
into account the complex occupant interactions in real-
world settings and the underlying psychological factors.  

2.2. Interaction Geography 

 Interaction Geography is the comprehensive analysis 
of audiovisual data of interactions via sociocultural and 
social lenses [11]. Originating from interaction analysis in 
Computer Supported Collaborative Learning (CSCL), this 
approach converts and presents selective subsets of verbal 
and physical behaviors into transcripts so researchers can 
comprehend social events from insider perspectives [26]. 
The transcript is not merely a record of audiovisual data 
but a portrait that captures the emotions, behaviors, and 
potential intentions of people who engage in a social event 
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[27]. Transcripts are vital to interaction analysis, but their 
production techniques have evolved little over the years. 
Language-processing software such as Microsoft Word is 
typically used to produce transcripts that include 
conversations and gestures or multimodal transcription 
[28]. Through the “presentation of text,” researchers 
preserve data integrity by not correcting “particulars” or 
“tiny things” that might reveal the sociocultural 
backgrounds or underlying thoughts of the event in 
participants [27], [29].   

 
Figure 2: Mondrian Transcription and IGS Interfaces [12] 

 However, language-based transcription is inadequate 
to represent the intrinsic complexity of social behaviors. 
Interaction Geography combines qualitative analysis with 
time geography (i.e., time-space coordination of human 
behaviors in social events) to analyze audiovisual data 
[30], [31]. In [11], the author offered a cutting-edge method 
for Interaction Geography with two key components 
(Figure 2). First, via Mondrian Transcription web-based 
software, the author extracted and encoded participant 
movements and conversations over space and time from 
audiovisual data. This process resulted in a spreadsheet 
containing the pixel positions and movement transcripts 
of participants. Mondrian Transcription is among the 
earliest tools that transcribe movements and conversations 
(i.e., pixel positions and timed verbal exchanges). Second 
is Interaction Geography Slicer (IGS), a tool that syncs 
transcripts of movements and conversations with specific 

time frames in audiovisual data. IGS, therefore, enables 
exploratory analyses and dynamic visualizations of 
Mondrian transcription [26].  

 One application of Interaction Geography in buildings 
was to study museum visitor traveling patterns [12] and 
classroom interactions of teachers and students [13]. In 
[12], the authors analyzed 22 case studies with 72 hours of 
audio and video recordings of museum visitors to 
determine their movements, interactions, and technology 
use. The data illustrated how “visitors' personal and social 
history, prior knowledge, and relationship to one another” 
influenced their choice of navigation and experience in a 
museum setting. In [13], the authors analyzed audiovisual 
excerpts of teacher-student interactions in two classrooms. 
Results indicated that the teachers developed repetitive 
circulation patterns around projector and tables. Their 
travel patterns also fluctuated during classroom hours, 
depending on the changes in instructional content. The 
findings raised concerns regarding how teachers should 
monitor their classroom movements and interactions to 
ensure effective teaching. Interaction Geography, thus, is 
helpful for the stochastic paradigm in building occupant 
behavior research as it reveals the randomness underlies 
occupants’ behavior across space and time. 

3. Methodology 

 In this paper, the authors proposed a novel application 
of Interaction Geography in building occupant behavior 
research using Virtual Reality (VR). Like the authors in 
[12], we also chose a museum setting to explore occupant 
behaviors across time and space. VR technology enabled a 
time- and cost-efficient simulation of a museum and 
therefore was fundamental for piloting occupant behavior 
study in the chosen setting. 

 
Figure 3: The VR Museum [32] as Seen in a Meta Quest 2 Headset 

3.1. VR Museum Session 

 This pilot study utilized a public VR museum (Figure 
3) from the Matterport website (https://matterport.com/) 
[32]. Participants (𝑛𝑛 = 10) each attended a VR session, 
which included 10 minutes of training and 20 minutes (or 
more) of exploring the VR museum. Using Meta Quest 2 
headsets, the authors recorded VR sessions (in video and 
audio) as participants explored the virtual building space. 

http://www.jenrs.com/
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Using the hand controllers, participants moved through 
the space by pointing at the white circles on the floor. The 
participants, however, could not interact with the artifacts 
(e.g., statues) and spatial elements (e.g., door) in the virtual 
museum as they are only 360-degree photographs. 

3.2. Interaction Geography Transcription 

 Mondrian Transcription (https://www.benrydal.com/
software/mondrian-transcription) [12] helped transcribe 
recorded movements and interactions into pixel positions 
on a scale diagram that illustrates space arrangements in a 
building (i.e., a floor plan). The museum floor plan and the 
audiovisual recordings of the VR sessions were uploaded 
to Mondrian Transcription’s web-based interface (Figure 
4) for manual tracing. Both files were then visible next to 
each other on a computer screen. By hovering the mouse 
cursor over the floor plan, the authors displayed a path 
that followed the participants' movements as shown in the 
recording. The authors accurately traced the time-specific 
movements using the keyboard to play, rewind, and pause 
the recording. Analysis results included a traced floorplan 
demonstrating a two-dimensional (2-D) movement path 
and a spreadsheet logging every step of the participant in 
the space with x- and y-coordinates. The authors repeated 
this process with all recordings. 

 
Figure 4: Mondrian Transcription’s Web-based Interface with Manual 

Tracing of Participant’s Movements 

 IGS (https://www.benrydal.com/software/igs) [12] was 
another process the authors used to visualize the traced 
movement paths of participants over time. We uploaded 
Mondrian Transcription transcripts (i.e., the spreadsheets 
with x- and y-coordinates) and the corresponding VR 
recordings to this web-based interface. IGS synchronized 
all movements and conversations of each participant 
following a timeline that equaled the length of each 
recording. This process resulted in an animated floor plan 
illustrating the 2-D movement path over a corresponding 
three-dimensional (3-D) conversation timeline. Hovering 
the cursor on top of the animated floor plan allowed the 
authors to rewind and analyze participant movements 
and conversations at a specific point in time.  

4. Results 

 Participants (𝑛𝑛 = 10) in this pilot study were all college 
students in the 18 – 34 age group, with 67 % female and 33 

% male. This was a convenient sample of volunteers who 
dedicated their time to participate in this study without 
compensation. Table 1 summarizes the demographics and 
logistics of all participants. 

Table 1: Demographics and Logistics of Participants 

ID No. Time in VR Use VR Major 
P_1 12 minutes Monthly Design 
P_2 15 minutes Yearly Design 
P_3 20 minutes Never Design 
P_4 28 minutes Never Non-design 
P_5 17 minutes Never Non-design 
P_6 14 minutes Never Non-design 
P_7 14 minutes Never Non-design 
P_8 12 minutes Never Non-design 
P_9 30 minutes Never Design 
P_10 12 minutes Monthly Design 

  

 
Figure 5: Floor plan of the VR museum with the Traced Movements 

Across Time and Space of a Participant 

4.1. Participant Behavior in a Virtual Space 

Most participants (70%) had minimal prior exposure to 
VR technology, and the average time they spent exploring 
the virtual museum was around 17 minutes. Participants 
all completed the VR session from start to finish. The floor 
plan (Figure 5) indicates the entrance (i.e., the upper red 
arrow) and the exit (i.e., the lower red arrow), with 
representations of objects (i.e., artifacts), display cases, and 
furniture in the VR museum. Although the white circles 
predetermined the VR museum navigation, participants 
were free to skip circles, come back, and stay for a certain 
amount of time at specific points. Such behaviors reflected 
how participants behaved in the VR museum regarding 
the space arrangement (e.g., whether display cases with 
the artifacts captured participant attention as planned by 
the interior designer). Figure 5 below illustrates the fourth 
participant's (P_4) movements across space and time. 
P_4’s travel path is depicted on the museum floor plan, 
and the adjacent timeline displays the periods they spent 
in each area of the space throughout their recording. For 
28 minutes, P_4 (a non-design major) traveled across the 
VR museum yet entirely skipped the central exhibition 
with multiple display cases and artifacts. This observation 
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is one of the behavior discrepancies among participants. 
The section below summarizes notable findings from the 
movements across space and time of all participants in this 
pilot study. Instead of discussing the movements across 
space and time of each participant, the authors stacked the 
travel paths of those with the same background (i.e., 
design vs. non-design) together for a better comparison. 

4.2. Movement Density and Personal Background  

 The authors analyzed all the transcripts and organized 
them into two categories based on movement density: 
design and non-design major participants. To give a 
comprehensive view of the results, the authors overlaid 
the traced paths of participants together on the floor plan 
for each category. Figure 6 depicts the paths of five 
participants who major in design (P_1, P_2, P_3, P_9, and 
P_10). 

 
Figure 6: Overlays of Movements Across Time and Space of Design 

Participants 

• Design-major participants had intense movement 
density; as shown in Figure 6, these participants spent 
more time at the entrance and exit (as shown in 
multiple traced points). They also returned to specific 
spots (as their paths overlapped several times). None 
of them skipped the central exhibition, and all 
followed the intended design of the floor plan.  

• P_2 discovered the door that led directly to the central 
exhibition while exploring the lower part of the central 
exhibition. P_2 then crossed the door to a hallway 
previously visited and went back to the central 
exhibition to complete the upper part (the orange path 
in Figure 6). Notably, P_2 indicated only yearly use of 
VR, which is less prior experience than P_1 and P_10 
indicated. The other participants all navigated from 
the entrance toward the long hallway leading to the 
central exhibition and ended at the exit.  

• The synchronized timeline on the right of Figure 6 also 
reveals time durations spent throughout the VR 
museum. P_1 and P_3, for example, spent more time 
exploring at the beginning (about one-fourth and one-
half of their time, respectively) but later skimmed 
through the space. Meanwhile, P_2, P_9, and P_10 

divided their time more evenly across the VR 
museum.   

Figure 7 illustrates the paths of five participants who 
were in non-design majors (P_4., P_5, P_6, P_7, and P_8). 
Their behavior showed some differences compared to 
their design counterparts. 

 
Figure 7: Overlays of Movements Across Time and Space of Non-

design Participants 

• The movement density was less condensed for non-
design participants. Figure 7 shows that non-design 
participants spent equal time throughout the VR 
museum (i.e., as shown in the straightforward and 
less-overlapped paths). P_4, as a notable case, even 
skipped the central exhibition altogether (Figure 5). 
Especially, no participant ever noticed the door 
connecting the hallway and the central exhibition. 

• The traced paths also differed from one participant to 
another. For instance, P_4 had the most 
straightforward path that started at the entrance and 
flowed through the hallway to the exit. P_5, on the 
contrary, explored the VR museum twice using the 
same path. P_6 repeatedly visited the upper left 
curved display in the hallway, the left upper corner 
display cases in the central exhibition, and three 
display cases at the end of the museum (as shown in 
the overlaps in the green traced path). P_7 showed a 
similar travel path to those of the design participants 
(i.e., following the intended navigation of the floor 
plan) yet visited each spot only once. P_8 revisited the 
first half of the VR museum yet skimmed through the 
last half. This participant also explored the central 
exhibition counterclockwise, thus, differing from the 
rest. It’s worth noting that all non-design participants 
had never used VR technology before.  

• The synchronized timeline on the right of Figure 7 also 
reveals time durations spent in the VR museum. P_4 
and P_5, for instance, spent more time exploring at the 
beginning (about one-half of their time) and moved 
faster at the end. P_6, P_7, and P_8 divided their time 
into small durations evenly spanned over the 
exploration.  

5. Conclusion 

Participants all finished the VR museum with an 
average time of 17 minutes from start to finish, except P_4, 
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who skipped the central exhibition. Prior experience in 
VR technology, therefore, was not an influential factor in 
participant behavior. Similar to the authors in [12], this 
pilot study also found that “personal history” and “prior 
knowledge” (i.e., design vs. non-design majors) affected 
how participants navigated and experienced the virtual 
museum.  

First, design-major participants explored the space 
more thoroughly than their non-design counterparts. 
They also spent extended time at the entrance and exit, 
where there were artifacts, signs, and display cases; 
revisited specific spots; and examined the central 
exhibition equally as the hallway. P_2 even found the 
door leading directly to the central exhibition, possibly 
due to their design knowledge (i.e., the psychological 
factor of occupation) which helped them navigate and 
engage with the space more effectively. The non-design 
participants paid less attention to the space, as evidenced 
by their behavior: for example, they did not go back to 
check artifacts and display cases along the paths, and P_4 
skipped the central exhibition altogether. Said behaviors 
raise concerns about whether all occupants perceived 
space design intentions equally.  

Second, either design or non-design participants 
explored the VR museum at their own pace. Some spent 
more time in the beginning and rushed at the end; others 
spent equal time periods in the whole space. This 
observation shows an underlying social factor relating to 
personal interests and connection to certain artifacts or 
display cases. The degree of personal interest one has 
with the space might affect their behaviors [12].  

One limitation of this pilot study is that each 
participant explored the VR museum independently, 
which does not account for social interactions between 
them. Moreover, the VR museum is a 360-degree-
captured environment or a compilation of multiple 2-D 
images of a real space. Participants could not interact with 
artifacts, display cases, and furniture. Future research will 
use an interactive VR environment so that participants 
can interact with the objects in their surroundings. The 
authors hope to gain further insights into occupant 
behavior via Interaction Geography and more 
sophisticated VR technology. 
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