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ABSTRACT: A product’s life cycle hinges on its sales. Product sales are determined by a combination
of market demand, industrial production, logistics, supply chains, labor hours, and countless other
factors. Business-specific questions about sales are often formalized into questions relating to specific
quantities in sales data. Statistical estimation of these quantities of interest is crucial but restricted
availability of empirical data reduces the accuracy of such estimation. For example, under certain
regularity conditions the variance of maximum likelihood estimators cannot be asymptotically lower
than the Cramer-Rao lower bound. The presence of additional information from external sources
therefore allows the improvement of statistical estimation. Two types of additional information are
considered in this work: unbiased and possibly biased. In order to incorporate these two types of
additional information in statistical estimation, this manuscript minimizes mean squared error and
variance. Publicly available Walmart sales data from 45 stores across 2010-2012 is used to illustrate how
these statistical methods can be applied to use additional information for estimating weekly sales. The
holiday effect (sales spikes during holiday weeks) adjusted for overtime trends is estimated with the use
of relevant external information.

KEYWORDS Additional information, Minimum variance, Minimum mean squared error, Statistical
estimation

1. Introduction

Sales data is highly important in a product’s life cycle. Sales
data is the place where the market demand and industrial
supply meet and balance each other to impact inventory
management, logistics, supply chains, and more. There are
many business-specific questions sales data help address.
Typically, these questions are formalized into quantities de-
termined by sales data. Business owners may be interested
in the impact of an advertisement campaign, the effect of a
holiday on sales, or seasonal trends. Since sales data widely
fluctuate, these quantities are considered to be random
variables.

The behaviours of these random quantities (i.e. random
variables) are described by their probability distributions,
estimated with previously collected observations. In [1],
the author uses sales data and considers exponential and
normal models to reduce the Total Operating Cost. In [2],
the authors combine online reviews and historic sales data
to forecast sales. In [3], the authors suggest to maximize
the direct profit based on both maximization of profit and
parameter estimation.

Many of these statistical methods rely on regular
estimators– the estimators which have two finite moments.
This means that the central limit theorem is applicable, and
external information (e.g., averaged sales) known with some
uncertainty (e.g., variance) can be incorporated in the statisti-

cal estimation procedure to improve accuracy. In [4], Tarima
and Pavlov propose a method for incorporating uncertain
external information in statistical estimation. [4] and [5]
postulate the unbiasedness of additional information. This,
for example, means that in different stores the expected sales
are the same. [6] derived asymptotic relative efficiency of
the estimators proposed in [4]. Previously published data
were used in statistical estimation in [7].

It is possible that the external information may estimate
a different quantity, leading to a biased external estimate
of a quantity of interest. To account for such bias, mean
squared error (MSE) is minimized instead in [8, 9]. External
information given in the form of a set of possible values is
used in [10]–[11], MSE is also minimized. In [12], the author
used additional quantile information.

This manuscript shows how external information on
sales can be used under (1) the assumption that the external
information came from an unbiased data source and (2) that
the external data source can be very different to assume
unbiasedness. This manuscript is an updated and extended
version of a proceedings paper [13] where similar statistical
methodology was applied to newsvendor-type problems.
Section 3 presents main mathematical results for combining
empirical and external data summarized by sample means
and their variances. Sections 2 and 4 use these statistical
methods for estimating the adjusted holiday effect using
publicly available weekly sales data for Walmart stores in
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2010-2012. The example was implemented in R [14], see
Appendix for the relevant R code.

Table 1: Parameters and their estimators; E denotes mathematical expecta-
tion.

Quantity Description Example
θ a parameter of inter-

est
an adjusted effect

η an auxiliary parame-
ter

an unadjusted effect

θ̂ an estimator of the
parameter of interest
based on the current
data

an estimator of
the adjusted effect
based on the current
dataset

η̂ an estimator of the
auxiliary parameter
based on the current
dataset

an estimator of the
unadjusted effect
based on the current
dataset

η̃ an estimator of the
auxiliary parameter
based on an external
dataset

an estimator of the
unadjusted effect
based on the exter-
nal dataset

δ bias (δ=Eη̂ − Eη̃) difference between
the adjusted and un-
adjusted effects

δ̂ estimated bias (̂δ=η̂−
η̃)

estimated difference
between the adjusted
and unadjusted ef-
fects

Table 2: Table of regression coefficients for modelling log (weekly sales)
[“store id” = 1]; w is a week, h is a holiday indicator, pS is a previous weekly
sales, and p2S is the sales from two weeks ago.

Variable Estimate Std. Error t-value P-value(
Intercept

) -152.2171 105.9820 -1.4363 0.1533
w 0.0289 0.0053 5.4609 < 0.0001
w2 -0.0014 0.0002 -6.1215 < 0.0001
w3 0.0000 0.0000 6.5850 < 0.0001
h 0.0896 0.0277 3.2409 0.0015

log
(
pS
) 61.3359 11.8651 5.1694 < 0.0001

log
(
pS 2
)

-2.1452 0.4146 -5.1743 < 0.0001
log
(
p2S
) -48.3027 11.8440 -4.0782 0.0001

log
(
p2S 2

)
1.6799 0.4134 4.0636 0.0001

year 0.0373 0.0087 4.2716 < 0.0001

2. Illustrative Example

Walmart weekly sales data for a sample of 45 Walmart stores
over the period of 2010-2012 became available to public via
a Kaggle competition (www.kaggle.com). This dataset was
later used by researchers and data scientists for research
and educational purposes, see [15]–[16].

For illustrative purposes, the dataset is reduced down to
four variables:

• “Store ID”: 1 though 45,

• “Date”: a week of sales (48 weeks in 2010, 52 weeks in
2011 and 43 weeks in 2012)

• “Sales”: total weekly sales, and

• “Holiday”: a holiday indicator.

To illustrate the overtime pattern associated with sales
within this dataset, a linear autoregressive model was fitted
to model weekly sales on a logarithmic scale using the first
store data (“store id” = 1). The model’s table of regression
coefficients is shown in Table 2.
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Figure 1: Log(Weekly sales) (dashed line) and their predicted values using
the regression model shown in Table 2 (“store id = 1”).

Consider the objective of estimating a holiday effect
controlling for the overtime sales pattern. The overtime
sales pattern controls for the yearly linear effect, the cubic
approximation yearly seasonality, and the quadratic approx-
imation of sales within the two previous weeks. The holiday
effect adjusted for this overtime pattern is estimated by
the regression coefficient and is equal to 0.0896 for store
#1. Since the modelling is completed on the logarithmic
scale, the effect on total sales is multiplicative and is equal to
1.0937

(= exp
(
0.0896

)), meaning that controlling for the over-
time trend ≈ 9.4% increase in total sales is anticipated. This
is the adjusted effect, which is different from the unadjusted
holiday effect. The unadjusted effect, in our definition, is a
proportional increase during holiday weeks as compared
to non-holiday weeks. This effect can be estimated by a
simple linear regression model reported in Table 3: the
unadjusted effect is expressed by the regression coefficient
0.0711, leading to an unadjusted increase in sales ≈ 7.4%
(exp
(
0.0711

)=1.0737).

Table 3: Table of regression coefficients for modelling log(weekly sales)
[“store id” = 1]; simple linear regression, unadjusted analysis.

Variable Estimate Std. Error t-value P-value(
Intercept

) 14.2477 0.0079 1802.197 < 0.0001
Holiday 0.0711 0.0299 2.378 0.0187

Let’s assume that a researcher is able to get access to
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nine stores and perform the same adjusted and unadjusted
analyses for each of the stores: see Table 4 for the results.

Table 4: Adjusted and unadjusted regression coefficients of the holiday
effect for the nine stores.

Store ID Adjusted Effect Unadjusted Effect
1 0.0896 0.0711
2 0.0765 0.0775
3 0.0736 0.0838
4 0.0487 0.0674
10 0.0873 0.1020
11 0.0605 0.0653
22 0.0123 0.0437
23 -0.0187 0.0475
24 0.0826 0.0900

The nine observed adjusted holiday effects can be used
to estimate the expected holiday effect (θ) adjusted for the
overtime trend. This effect, θ, is not conditional on a spe-
cific store but averaged across all stores. The estimate of θ,
θ̂=0.0569 and an estimate of its variance is 0.000154.

Suppose that unadjusted holiday effects are also avail-
able for the rest of the stores. The researcher classifies the
stores into two groups. One group of stores aggregates
stores with similar characteristics, and it is expected that
the impact of holidays on sales numbers is the same, see
Table 5. Other stores are different and it is possible that the
holiday effect is different too, See Table 6.

Table 5: Unadjusted regression coefficients of the holiday effect available
for the 25 stores with correlated sales.

Store Unad. Eff. Store Unad. Eff. Store Unad. Eff.
5 0.1196 18 0.0711 29 0.1051
6 0.0705 19 0.0917 31 0.0697
8 0.0690 20 0.0655 32 0.0219
9 0.0759 21 0.0771 34 0.0757
12 0.1144 25 0.0302 35 0.1338
13 0.0490 26 0.0710 39 0.0552
14 0.0465 27 0.0591 40 0.0476
15 0.1150 28 0.1112 41 0.0416

45 0.0556

Table 6: Unadjusted regression coefficients of the holiday effect available
for the 11 stores with uncorrelated sales.

Store Unad. Eff. Store Unad. Eff. Store Unad. Eff.
33 0.0098 17 0.0812 36 -0.0156
42 0.0163 7 0.1728 38 -0.0165
30 -0.0074 16 0.0956 44 -0.0252
43 0.0010 37 -0.0245

Can these two external sources of information be used to
improve estimation accuracy of the the adjusted holiday ef-
fect? The answer is yes, and we will return to this illustrative
example later in Section 4.

3. Methodology

This section presents the main statistical formulas regarding
the use of external information proposed in [4, 5] (variance
minimization), and [8, 17] (MSE minimization) and applies
these methods to Walmart sales data.

3.1. Parameters and their Estimators

Let θ be a parameter of interest. In Section 2, the quantity of
interest is

θ = E
(
log
(
S
)
|w=w, pS =l1, p2S =l2, h=1

)
− E

(
log
(
S
)
|w=w, pS =l1, p2S =l2, h=0

)
, (1)

where the terms are explained in Table 2. An estimator of θ
based on the nine Walmart stores from Table 4 is assumed
to have no bias, E

(̂
θ
)
=θ. Another estimator η̃, known as

external information, estimates η, which can be different
from θ. In Section 2,

η=E
(
log
(
S
)
|h=1
)
− E
(
log
(
S
)
|h=0
) (2)

is the unadjusted holiday effect. Since the data in Table 6
correspond to a different cohort of stores, the unadjusted
holiday effect estimated on data from Table 6 may be a
biased estimate of η (the stores from Table 6 may not be-
long to the population of interest). Additional external
information from Tables 5 and 6 can be converted into a
two-dimensional estimate η̃= (̃η1, η̃2

)= (0.0737, 0.0261
). The

number 0.0737 is an unbiased estimate of η, E
(̃
η1
)=η. Note

that Table 4 can also be used to estimate η, because the
unadjusted holiday effect was also estimated for each of the
nine stores, η̂1=0.0720. The second number in η̃ (̃η2=0.0261

)
is a possibly biased estimate of η, E

(̃
η2
)=η+δ.

Further, we use a “hat” to denote estimators based on
the main dataset and a “tilde” for additional information
quantities.

3.2. Method

To combine external information with the main data, we
use the family of estimators:

θΛ=̂θ+Λ (̂η − η̃) , (3)

whereΛ is an unknown (possibly multidimensional) param-
eter. In (3), η̂ is an estimate based on the main data. Note
that E

(̂
η
)=η, but E

(̃
η
)=η+δ, where δ is a possible bias or a

vector of biases. Section 2 bias has two components and

δ̂ = η̂ − η̃

= (
0.0720, 0.0720

)
−
(
0.0737, 0.0261

)
= (
−0.0017, 0.0459

)
. (4)

Following [8], minimum MSE among θΛ estimators is
reached at

θ0
(
δ
) =̂θ − cov

(̂
θ, δ̂
)

E−1
(̂
δ̂δT
)
δ̂T (5)

and

MS E
(
θ0
)
=cov

(̂
θ
)
− cov

(̂
θ, δ̂
)

E−1
(̂
δ̂δT
)

cov
(̂
δ, θ̂
)
,

where E
(̂
δ̂δT
)
=cov

(̂
η
)+cov

(̃
η
)+δδT and “cov

(
·
)” is a

variance-covariance matrix.
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The special case of δ=0 makes θΛ unbiased. Then,

θ0
(
0
) =̂θ − cov

(̂
θ, δ̂
)

cov−1
(̂
δ
)
δ̂T (6)

achieves minimal variance in θΛ, see [4]; T denotes transpo-
sition. Then

cov
(
θ0
(
0
)) = cov

(̂
θ
)

− cov
(̂
θ, δ̂
)

cov−1
(̂
δ
)

cov
(̂
δ, θ̂
)
. (7)

For a one-dimensional case, the quadratic form in Equation
(7) is

M=cov
(̂
θ, δ̂
)

cov−1
(̂
δ
)

cov
(̂
δ, θ̂
)
≥ 0.

• If θ̂ and δ̂ are uncorrelated, M=0 and θ0 (δ) =̂θ ∀η̃.
• If cov

(̂
θ, δ̂
)
=cov

(̂
θ
)

(η=θ), M=cov
(̂
θ
)
, θ0 (0)=θ and

cov
(
θ0
(
0
))=0.

The estimator θ0 (δ) needs covariances to be applicable
in practice. Plus, δ is also unknown. Dmitriev and his
colleagues [10] used the same family of estimators. They
assumed η̃=η+δ belongs to a pre-determined set of values.

We use the main data to estimate unknown quantities in
θ0
(
δ
):
θ̂0
(
δ
) =̂θ − ĉov

(̂
θ, δ̂
) (

ĉov
(̂
η
)+c̃ov

(̃
η
)+δδT )−1

δ̂T . (8)

3.3. Large sample properties

Let θ and η be scalar quantities. Under certain regularity
conditions

√
n
(̂
θ0
(
δ
)
− θ0
(
δ
))=op

(
1
)
. (9)

Consequently, ∀ fixed δ , 0,
√

n
(
θ0
(
δ
)
− θ
)
=op
(
1
) (10)

and
√

n
(̂
θ0
(
δ
)
− θ
)
=op
(
1
)
. (11)

From (10) and (11)
√

n
(̂
θ0
(
δ
)
− θ0
(
δ
))=op

(
1
)
. (12)

Estimator θ̂0 (δ) still cannot be used in practice because δ
is know known. The use δ̂ leads to

θ̂0
(̂
δ
)
=̂θ − ĉov

(̂
θ, δ̂
) (

ĉov
(̂
η
)+c̃ov

(̃
η
) +̂δ̂δT )−1

δ̂T . (13)

The application of δ̂ instead of δ makes (9) in-
valid: if δ=0,

√
n
(̂
θ0
(̂
δ
)
− θ0
(
0
))=Op

(
1
), which means that

√
n
(̂
θ0
(̂
δ
)
− θ0
(
0
)) does not go to zero, in probability.

Let δ=δ1
√

n, where δ1 ∈
(
−∞,+∞) is a local alternative, n

denote the sample size of the empirical data set available to
the data analyst, and m be the size of the dataset used to ob-
tain additional information. For the analysis of asymptotic
properties we will tie these two sample sizes asymptotically
with n

m → k, where k is a non-negative real number or a
+∞. We assume that the estimators based on empirical and

external data are regular enough so that the law of large
numbers applies:

Kθ,η= lim
n→∞

n · ĉov
(̂
θ, δ̂
)
= lim

n→∞
n · ĉov

(̂
θ, η̂
)
,

Kη,η= lim
n→∞

n · ĉov
(̂
η
)
,

Kθ,θ= lim
n→∞

n · ĉov
(̂
θ
)
,

and
K′η,η= lim

m→∞
m · c̃ov

(̃
η
)

are constants (asymptotic covariances). We will also assume
that a central limit theorem applies so that

ξθ=N
(
0,Kθ,θ

)= lim
n→∞

√
n
(̂
θ − θ
)
,

ξη=N
(
0,Kη,η

)
= lim

n→∞

√
n
(̂
η − η

)
,

ξ′η=N
(
0,K′η,η

)
= lim

m→∞

√
m
(̃
η − η

)
,

and, consequently,

ξδ = lim
n→∞

√
n
(̂
δ − δ

)
= lim

n→∞

√
n
(̂
η − η

)
−
√

k lim
m→∞

√
m
(̃
η − η − δ1

√
m
)

= N
(
δ1,Kη,η+kK′η,η

)
. (14)

The random variable ξδ can be represented as
ξδ=ξη+

√
kξη′ , which shows that ξδ and ξθ can be correlated

because ξθ and ξη are based on the same dataset.
Thus, the asymptotic behaviour of θ̂0

(̂
δ
)

differs from
a normal distribution. Then the non-normal asymptotic
behavior for large samples is

√
n
(̂
θ0
(̂
δ
)
− θ
)
=
√

n
(̂
θ − θ
)

− n · ĉov
(̂
θ, δ̂
) [

n · ĉov
(̂
η
)

+ n · c̃ov
(̃
η
)+n · δ̂̂δT

]−1 √n · δ̂

d
→ ξθ − Kθ,η

(
Kη,η+kK′η,η+ξ2δ

)−1
ξδ. (15)

The above asymptotic behaviour depends on two (de-
pendent) normal random variables ξδ

(
=
√

n
(̂
θ − θ
))

and
ξθ
(
=
√

n · δ̂
)
.

Overall, if δ=0 can be surely assumed, the minimum vari-
ance estimator θ̂0 (0) is to be used, and if some protection
against possible bias (disinformation/misinformation) is
needed then minimum MSE estimation with θ̂0

(̂
δ
)

is a better
choice with the understanding that θ̂0

(̂
δ
)

is inferior to θ̂0 (0)
under δ=0. The large sample distribution of θ̂0

(̂
δ
)

differs
from normal, but is known, see (15). The estimator θ̂0 (δ)
can be used to evaluate the impact of bias on the estimating
procedure.
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3.4. A Monte-Carlo simulation study comparing minimum vari-
ance and minimum MSE estimation

To illustrate large sample properties of minimum variance
and minimum MSE approaches, we have performed a
Monte-Carlo experiment with 500, 000 repetitions. The
statistical model generated two samples: (1) the empirical
sample, which is a sample with 100 paired standard normal
random variables (X1 and Y1) with cor

(
X1,Y1

)=0.9 and (2)
the external sample with 1000 standard normal random
variables (X2). The objective is to estimate the mean of Y ,
which is equal to zero in this example.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2: Histogram and a normal approximation of the distribution of
√

100̂θ0
(
0
), see Section 3.4; 500, 000 Monte-Carlo simulations.

The asymptotic distribution of θ̂ (mean of Y1) is approx-
imately normal, so that

√
100 · θ̂ ∼ N

(
0, 1
) leading to the

width of 95% for
√

100 · θ̂ equal to 3.92
(=2 · 1.96

). The
asymptotic distribution of

√
100 · θ̂0

(
0
) is also approximately

normal with mean =0 and variance =0.266358, see Figure 2.
The distance between 2.5% and 97.5% level quantiles of the
distribution of

√
100 · θ̂0

(
0
) is equal to 2.03227. Wald’s confi-

dence interval (“mean estimate” ±1.96 “standard deviation
of the estimate”) had an almost identical length (=2.023107).

The asymptotic distribution of
√

100 · θ̂0
(̂
δ
)

is not normal
anymore and is shown in Figure 3. The normal approxi-
mation allows us to visually evaluate the departure from
normality. The absence of asymptotic normality, however,
is not really a problem. Since the asymptotic distribution is
known it still can be used for estimation, hypothesis testing,
and for calculating confidence intervals. For example, the
distance between the 2.5% and 97.5% level quantiles of the
distribution of

√
100 · θ̂0

(̂
δ
)

is equal to 3.20191. Wald’s con-
fidence interval has a shorter length (=3.064861) associated
with a less than 95% coverage.

This Monte-Carlo study demonstrates that if a data ana-
lyst is confident that additional information on an auxiliary
variable is unbiased, then additional information should be
incorporated using minimum variance estimation. If, how-
ever, the additional information may be biased, minimum
MSE is a more appropriate method.

−4 −2 0 2 4

0.
0

0.
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0.
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0.
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0.
4

0.
5

0.
6

Figure 3: Histogram and a normal approximation of the distribution of
√

100̂θ0
(̂
δ
)
, see Section 3.4; 500, 000 Monte-Carlo simulations.

4. Illustrative Example

Section 3 shows that the minimum variance estimator θ̂0 (0)
and the minimum MSE estimator θ̂0

(̂
δ
)

are the estimators to
use in practice. In this section, we show how to apply these
formulas to the adjusted holiday effect estimation. R code
for this section is added to Appendix 6.

Suppose, vectors X1 and Y1 contain unadjusted and ad-
justed holiday effects from Table 4, X2 keeps unadjusted
holiday effects of similar stores given in Table 5, and X3
keeps unadjusted holiday effects for other Walmart sores.

The correlation between X1 and Y1 is 84.8% which in-
dicates that external information in X2 and possibly in X3
could be useful for estimating EY=θ .

Using empirical X1 and Y1 data we obtain
θ̂=0.05693, V̂ar

(̂
θ
)
=0.000154, η̂=0.072045, V̂ar

(̂
η
)=0.000040,

Ĉov
(̂
θ, η̂
)
=0.000066 and Ĉor

(̂
θ, η̂
)
=0.847723. Unbiased ad-

ditional information available in X2 is summarized by
η̃1=0.07372 and V̂ar

(̃
η1
)=0.000034. Possibly biased ad-

ditional information available in X3 is summarized by
η̃2=0.026117 and V̂ar

(̃
η2
)=0.000366.
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4.1. Using Unbiased Additional Information

If the additional information is η̃1 and Ṽar
(̃
η1
), then the es-

timator using this unbiased information is θ̂0 (0)=0.058436
and its variance is V̂ar

(̂
θ0
(
0
))=0.000095.

The estimator θ̂0 (0) asymptotically secures the smallest
variance in the class of unbiased estimators θΛ. The es-
timated variance of θ̂0 (0) is 61.3% of variance of θ̂; 38.7%
reduction in variance. The estimated standard deviation
(SD) of θ̂0 (0) is 0.009726

(
=
√

0.000095
)
, the estimated SD

of θ̂ is 0.01242
(
=
√

0.000154
)
. Then, the ratio of the SDs =

0.7830974, which means that the width of the confidence
interval is reduced by 21.7%.

4.2. Using Possibly Biased Additional Information

The value η̃2=0.026117 is possibly a biased estimator of
η. Then, the minimum mean squared error estimator
θ̂0
(̂
δ
)
=0.055718 shows a very small shift from θ̂=0.056930,

but the MSE showed almost no change: 0.000153 and
0.000154. The square roots of these MSEs (RMSEs) are:
0.012349 and 0.01242 for θ̂0

(̂
δ
)

and θ̂, respectively. This
corresponds to just a 0.57% reduction of the RMSE. This
example indicates that the use of additional informa-
tion from X3 has been suppressed by the squared bias:
δ̂2= (̂η − η̃2

)2 = (0.072045 − 0.026117
)2 =0.002109.

Another example of using possibly biased information
is applying minimum MSE estimation to the additional
information η̃1 considered in Section 4.1 under the unbi-
asedness assumption. Then, the new estimator and its MSE
are 0.058381 and 0.000097, respectively.

This new estimator and its MSE are almost identical to
the estimator with the use of unbiased information and
its variance calculated in Section 4.1: the difference is only
observed in the sixth decimal [this is why we kept to six
decimals in this report].

5. Summary

Additional information available from external sources in
the form of estimated statistical quantities [such as means,
regression coefficients, etc.] and their variances can im-
prove statistical inference. This manuscript shows how such
additional information can be incorporated in statistical
estimation. The illustrative example using Walmart sales
data shows how the estimation of an adjusted effect of holi-
day sales can be done with higher accuracy when relevant
additional information is properly used.

A multiple linear regression model with log-transformed
Walmart weekly sales was selected mostly for illustrative
purposes. There are many other statistical models which
can be used for fitting sales data– the chosen regression
model may not be the best one. We have pragmatically used
multiple linear regression with logarithmic transformation
of weekly sales to make linear models applicable for the
Walmart sales data. The statistical theory reported in this
manuscript only needs asymptotic normality of estimators,
and regression coefficients in this linear regression model
certainly satisfy this requirement.

The illustrative example shows that this information can
be available in two forms: unbiased and possibly unbiased.
If additional information deliberately altered (falsified) the
data then the variance minimization may not be appropriate.
In this case, minimization of mean squared error detects that
the additional information is not consistent with the main
dataset, and the effect of additional information is reduced.
If the external information does not contradict the main data,
the minimum variance estimator outperforms the minimum
mean squared error approach, but the protection against
bias is not guaranteed.

What about other approaches? Meta-analysis combines
estimators from multiple data sources (see for example [18]),
which is also our strategy. However, meta-analysis cannot
combine estimates on different quantities. For example, our
main interest is in an adjusted holiday effect, but external
information only provides estimates of an unadjusted holi-
day effect. Meta-analysis would require the same adjusted
holiday effect to be available from multiple data sources.
Our statistical methodology allows us to incorporate esti-
mates of different quantities, as illustrated with the use of
an unadjusted effect available from an external dataset. This
makes our approach distinctly different.

To the best of the authors’ knowledge, there are no
existing frequentist statistical methods for incorporating
uncertain correlated additional information, except for the
MMSE and MVAR considered in this manuscript. There
are, however, several Bayesian statistical methods which
naturally allow the incorporation of uncertain additional
information. Recently, MMSE and MVAR methods along
with three Bayesian methods on the use of external addi-
tional information were applied to the same data, but no
formal comparisons between the methods were completed
[19].

Overall, we encourage data analysts to be open to the
possibility of using additional information when available.
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6. Appendix: R code

> X1
[1] 0.07110327 0.07749012 0.08376658
[4] 0.06740423 0.10202317 0.06534485
[7] 0.04374566 0.04748405 0.09003966
> Y1
[1] 0.08962477 0.07652780 0.07355976
[4] 0.04872447 0.08732017 0.06047420
[7] 0.01231537 -0.01873908 0.08256086
> X2
[1] 0.11962485 0.07054883 0.06895547
[4] 0.07593105 0.11436723 0.04902411
[7] 0.04647529 0.11497511 0.07109170

[10] 0.09170929 0.06551585 0.07711085
[13] 0.03021001 0.07095118 0.05911399
[16] 0.11120773 0.10513213 0.06966771
[19] 0.02192388 0.07565785 0.13377096
[22] 0.05518881 0.04764482 0.04162753
[25] 0.05558277
> X3
[1] 0.009760383 0.016252703 -0.007369093
[4] 0.000954928 0.081232011 0.172753274
[7] 0.095586385 -0.024469670 -0.015618603
[10] -0.016530748 -0.025266635

> (n <- length(X1))
[1] 9
> (m1 <- length(X2))
[1] 25
> (m2 <- length(X3))
[1] 11
> round(mX1 <- mean(X1),6)
[1] 0.072045
> round(vX1 <- var(X1)/n,6)
[1] 0.000040
> round(mY1 <- mean(Y1),6)
[1] 0.056930
> round(vY1 <- var(Y1)/n,6)
[1] 0.000154
> round(corX1Y2 <- cor(X1,Y1),6)
[1] 0.847723
> round(covX1Y2 <- cov(X1,Y1)/n,6)
[1] 0.000066
> round(mX2 <- mean(X2)/m1,6)
[1] 0.07372
> round(vX2 <- var(X2)/m1,6)
[1] 0.000034
> round(mX3 <- mean(X3),6)
[1] 0.026117
> round(vX3 <- var(X3)/m2,6)
[1] 0.000366

> round(mY1 - (covX1Y2) /(vX1+vX2) *
(mX1-mX2),6)
[1] 0.058436
> round(vY1 - (covX1Y2^2)/(vX1+vX2),6)
[1] 0.000095

> round(mY1 - (covX1Y2 /(vX1 + vX3 +
(mX1 - mX3)^2)) * (mX1-mX3),6)
[1] 0.055718
> round(vY1 - (covX1Y2^2 /(vX1 + vX3 +
(mX1 - mX3)^2)),6)
[1] 0.000153

> round(mY1 - (covX1Y2 /(vX1 + vX2 +
(mX1 - mX2)^2)) * (mX1-mX2),6)
[1] 0.058381
> round(vY1 - (covX1Y2^2 /(vX1 + vX2 +
(mX1 - mX2)^2)),6)
[1] 0.000097
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