
Special Issue of Multidisciplinary Sciences And Advanced Technology

Received: 14 March 2022, Revised: 12 May 2022, Accepted: 20 May 2022, Online: 24 June 2022

DOI: https://dx.doi.org/10.55708/js0106004

Machine-Learning based Decoding of Surface Code Syndromes in
Quantum Error Correction
Debasmita Bhoumik∗,1, Pinaki Sen2, Ritajit Majumdar1, Susmita Sur-Kolay1, Latesh Kumar K J3, Sundaraja Sitharama
Iyengar3

1 Advanced Computing & Microelectronics Unit, Indian Statistical Institute, Kolkata, 700108, India
2 Department of Electrical Engineering, National Institute of Technology, Agartala, India
3 KFSCIS, Florida International University, Miami, Florida, USA
∗ Corresponding author: Debasmita Bhoumik, Indian Statistical Institute, Email : debasmita.ria21@gmail.com

ABSTRACT: Errors in surface code have typically been decoded by Minimum Weight Perfect Matching
(MWPM) based method. Recently, neural-network-based Machine Learning (ML) techniques have been
employed for this purpose, although how an ML decoder will behave in a more realistic asymmetric
noise model has not been studied. In this article we (i) establish a methodology to formulate the surface
code decoding problem as an ML classification problem, and (ii) propose a two-level (low and high)
ML-based decoding scheme, where the first (low) level corrects errors on physical qubits and the second
(high) level corrects any existing logical errors, for various noise models. Our results show that our
proposed decoding method achieves ∼ 10× and ∼ 2× higher values of pseudo-threshold and threshold
respectively, than for those with MWPM. We also empirically establish that usage of more sophisticated
ML models with higher training/testing time, do not provide significant improvement in the decoder
performance.

KEYWORDS Quantum Error Correction, Surface code, Error decoding, Machine learning decoder

1. Introduction

Quantum computers are expected to provide faster and
often more accurate solutions to some of the problems of
interest such as factorization [1], database searching [2],
Hamiltonian simulation [3], finding the lowest energy con-
figuration of molecular systems [4]. Quantum computers
make use of properties such as superposition, entangle-
ment etc., which are not observed in macroscopic world,
to achieve the speedup. A general quantum bit, or qubit,
is mathematically represented as |ψ⟩=α |0⟩+β |1⟩, α, β ∈ C,
|α|2+|β|2=1 [5].

Quantum states are, however, very prone to errors. Be-
ing vectors in Hilbert space, even the slightest unwanted
rotation occurring due to interaction with the environment
introduces error in the quantum system. It was shown by
[6], that any unitary quantum error can be expressed as a
linear combination of the Pauli matrices (I, X, Y , Z) 1. Hence,
if a quantum error correcting code (QECC) can correct the
Pauli errors, then it can also correct any unitary error. The
9-qubit code [6], 7-qubit code [7] and 5-qubit code [8] are
some early QECCs. The 5-qubit code is optimum in the
number of qubits .

The circuit realization of the above-mentioned QECCs
comprise multiple operations involving qubits which are

not adjacent to each other. Operation on two non-adjacent
qubits is both slow and error-prone, due to the multiple
swap operations required. Surface code was introduced
to overcome this drawback, known as the Nearest Neigh-
bour (NN) problem, by placing the qubits in a 2D grid-like
structure [9], and the operations for error correction are
performed only between adjacent qubits. Protocols are
formulated for error recovery, and the efficacy of these pro-
tocols were studied in [10] which is reviewed in a simplied
manner by [11]. An improved decoding algorithm for the
surface code is formulated in [12].

A QECC encodes n > 1 physical qubits into m < n logical
qubits, where the latter are expected to be more secure
under noise. A decoder (which is a classical process), on
the other hand, detects the error present in the logical qubit.
Decoding is followed by another step where the correction
is applied physically and classically (or in some cases noted
logically only [13]). A distance d QECC can correct ⌊ d

2 ⌋

errors on the physical qubits, keeping the logical qubit error
free. However, the logical qubit can become erroneous as
well if more errors occur. This is termed as logical error. The
errors may occur due to interaction with the environment,
or faulty decoding. While the first issue may be tackled with
a QECC having a larger d, the latter can pose a serious threat
towards building error corrected qubits. The performance

1An operator U is unitary operator if U†U = UU† = I, where I is the identity element and U† is the adjoint of U. An operator is hermitian if U = U†.
Note that, hermitian operator is a subset of unitary operator. Pauli matrices are hermitian.

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 21

https://dx.doi.org/10.55708/js0106004
http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

of a decoder for a QECC is assessed by two parameters
[14], namely: (i) pseudo-threshold, which is the probability
of physical error below which error-correction leads to a
lower logical error probability, and (ii) threshold, which is
the probability of physical error beyond which increasing d
leads to higher logical error probability.

Apart from the accuracy of decoding, the time required
is also important. In a fault-tolerant quantum computer, the
qubits are encoded only once at the beginning of the com-
putation, whereas they are decoded several times during
the computation. Therefore, decoding time is critical [5, 15].
The most popular decoding algorithm for surface codes
is Blossom Decoder [16] based on O(N4) time Minimum
Weight Perfect Matching (MWPM) algorithm, N being the
number of qubits. Recently machine learning (ML) has been
used for decoding in linear time [17]. A baseline decoding
algorithms complemented by different kinds of deep neural
decoders was introduced by [18] and applied to analyze
the common fault-tolerant error correction protocols such
as the surface code. The decoding problem is reduced to a
classification problem that a feedforward neural network
can solve, in [19], for small code distances. Reinforcement
Learning based decoders for Fault-Tolerant Quantum Com-
putation were proposed in [20]. It has been observed that
the MWPM based decoder performs satisfactorily when the
error probability of the system is low, as it always tries to
find the minimum number of errors that can generate the
observed syndrome (see Section II below). But occurrence
of error(s) in the system during decoding is ignored, which
the ML based approaches do consider. Therefore, ML based
decoders are expected to perform at least as well as MWPM
based method and in less time.

ML based decoders can tackle errors incorporated due
to faulty decoding upto some extent. This is achieved by
introducing two-level decoding, where the low level is a
traditional decoder (need not be an ML decoder [19]), and
the high level (necessarily ML decoder) predicts any logical
errors that may have resulted during decoding. In [17] the
authors have used ML for both low and high-level decoders.
However, it is unclear whether their noise model considers
errors in a single or multiple steps in the error correction
cycle of surface code (see Fig: 2). Moreover, the perfor-
mance of ML decoders for asymmetric noise (which is a
more realistic noise model [21]), and whether the usage of
more sophisticated ML models can significantly enhance the
performance of the decoder, remains largely unanswered.

This article aims to address these unanswered problems
by using machine learning based low and high level de-
coders for both symmetric and asymmetric noise model.
We want to emphasize here that the primary focus of this
paper is the efficient mapping of the surface code decod-
ing problem to ML classification, showing its decoding
performance, and experimentally verifying whether the
sophistication of the used ML model has any significant
effect on the decoding performance. In this work we are
applying machine learning for quantum error correction,
hence the machine learning tasks are purely classical, not
quantum. In other words, quantum machine learning is not
involved in our approach. As a preliminary research, we
have assumed that only the data qubits may be noisy, but

both the measurement and the stabilizers are noise-free. In
our follow-up work, we will consider noisy data, stabilizer,
as well as non-ideal measurement.

The rest of the paper is organized as follows: we have
summarized our contributions here in Section 2. In Section
3, we have outlined the stabilizer formulation of the surface
code. In Section 4, we have established the formulation of
the decoding problem of a surface code as an ML classifi-
cation problem. In Section 5 we have presented our results
with various error models and our concluding remarks
appear in Section 6. In the Appendix we have provided the
list of the acronyms used in this paper.

2. Summary of the contributions

The main contributions of our work are to:

• design a well-defined step-by-step methodology to
formulate the decoding problem in surface code as an
ML classification problem;

• study the performance of ML based low and high level
decoders, for distance 3, 5 and 7 surface codes, where
error can occur in one or more of the eight steps in
the surface code QECC cycle with equal probability.
We show that our ML based decoder achieves ∼ 10×
higher pseudo-threshold and ∼ 2× higher threshold
as compared with MWPM based decoder.

• establish that our ML-based decoder outperforms the
one based on MWPM for varying degrees of asymme-
try in the noise model as well;

• experimentally show that varying the level of sophis-
tication (i.e., number of layers, nodes in each layer,
etc.) for Feed Forward Neural Network (FFNN) and
Convolutional Neural Network (CNN) does not pro-
vide significant improvement in the performance of
the syndrome decoder;

• show that when distance d is small, and hence the total
number of distinct errors is also small, the ML based
decoder can learn the most probable errors within a
small subset of the training data, which is generated
uniformly at random. Therefore, a small train-test
ratio suffices to obtain a good decoding performance.

• empirically determine the degree of asymmetry of the
noise channel below which an ML decoder trained
using symmetric noise model retains optimal pseudo
threshold. This provides an estimate of re-usability of
a pre-trained ML decoder on a variety of noise model.

3. Stabilizer Formulation of Surface Code

In [22], the author proposed the stabilizer formulation for
error correction. A set of mutually commuting operators
M1, . . . ,Mr, where each Mi ∈ {I, X,Z,Y}⊗n, is said to stabilize
an n-qubit quantum state |ψ⟩ if Mi |ψ⟩=|ψ⟩, ∀ i [22]. An error
E is said to correctable by a QECC, if there exist stabilizers
Me ⊆ {M1, . . . ,Mr}, such that Me (E |ψ⟩) = −E |ψ⟩.

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 22

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

A QECC is called degenerate if there exist errors e1 , e2
such that e1 |ψ⟩=e2 |ψ⟩ where |ψ⟩ is the codeword. It is not
possible to distinguish between such errors in a degenerate
code. Surface code is a degenerate stabilizer code. Surface
code is implemented on a two-dimensional array of physical
qubits. The data qubits (in which the quantum information
is stored) are placed on the vertices, and the faces are the
stabilizers (refer Fig. 1). The qubits associated with the
stabilizers are also called measure qubits. These are of
two types : Measure-Z (M-Z) and Measure-X (M-X). Each
data qubit interacts with four measure qubits — two M-Z
and two M-X, and each measure qubit, in its turn, interacts
with four data qubits (Fig. 1). An M-Z (M-X) qubit forces
its neighboring data qubits a, b, c and d into an eigenstate
of the operator product ZaZbZcZd (XaXbXcXd), where Zi (Xi)
implies Z (X) measurement on qubit i. Pauli-X and Pauli-Z
errors are detected by the Z- and X- stabilizers respectively
(Fig. 1). An X (Z) logical operator is any continuous string
of X (Z) errors that connect the top (left) and bottom (right)
boundaries of the 2D array. The number of measure qubits,
and hence the number of stabilizers, is one less than the
number of data qubits when encoding a single logical qubit
of information. An error-correcting code can correct up to
t errors if its distance d ≥ 2t+1. A distance 3 surface code
consists of 9 data qubits and 8 measure qubits (Fig. 1). Thus
a total of 17 qubits encode a single logical qubit, and hence
the distance 3 surface code is also called SC17.

The circuit representations of the decoding correspond-
ing to a single M-Z qubit and an M-X qubit are shown in
Fig. 2. Since the same measure-qubit is shared by multiple
data qubits, different errors can lead to the same syndrome
in surface code. Hence the mapping from syndrome to error
is not one-to-one, as illustrated in Fig. 3. This often leads
to poor decoding performance by decoders. In fact, if a
decoder misjudges an error e1 for some other error e2, it can
so happen that e1 ⊕ e2 leads to a logical error. Therefore, not
only the presence of physical errors, but also incorrect de-
coding can lead to uncorrectable logical errors as well. The
goal of designing a decoder, thus, is to reduce the probability
of logical error for some physical error probability.

As defined in the Introduction section, the performance
of a decoder is measured in terms of pseudo-threshold
and threshold. With increasing code distance, the pseudo-
threshold for a particular decoder also increases, which
supports the intuition that using larger distance gives better
protection from noise. On the other hand, the threshold
does not change with respect to the distance because a de-
coder for a particular surface code yields a fixed threshold.
The higher are the values of these parameters, the better
is the performance of the decoder. Of these two parame-
ters, the pseudo threshold is lower than the threshold for a
decoder. The reason is that error correction is effective be-
low the pseudo-threshold point, and coding theory asserts
[23] that in this region, increasing the distance of the code
leads to higher suppression of logical errors. Therefore, if
the threshold point is below the pseudo-threshold point it
violates coding theory. Hence, it is more important for a
decoder to have a higher pseudo-threshold than a higher
threshold, since, beyond this error probability, QECC no
longer provides any improvement in suppression of errors.

Let there be n physical qubits in a logical qubit (eg. n=d2

for surface code). A logical error can occur only when at
least d of the n physical qubits are erroneous. Nevertheless,
the presence of d or more physical errors does not neces-
sarily imply the presence of a logical error. If p and pL are
respectively the probability of physical and logical error,
then

pL ≤ Σi pi, for d ≤ i ≤ n

Moreover, incorrect decoding itself can lead to logical
errors. This can happen when the decoder fails to detect
the actual physical errors and thus incorporates more errors
during correction. Once again, not every incorrect decoding
leads to a logical error. Therefore, if pd is the probability of
failure of the decoder, then

pL ≤ Σi pi + f (pd), for d ≤ i ≤ n

where f (pd) is a function of the probability of failure of
the decoder. The function f (pd) may vary with the decoder,
hence the logical error probability may differ, resulting in
different values of pseudo-threshold and threshold.

4. Machine learning based syndrome decoding for surface
code

Machine Learning is a branch of artificial intelligence
where a machine learns without being explicitly pro-
grammed. Depending on the type of training data (la-
beled/unlabeled/combined), the ML algorithm can vary
(supervised/unsupervised/semi-supervised). It has a
plethora of applications domains such as soil properties pre-
diction [24], human pose estimation [25], object recognition
[26], video tracking [27], prediction of the efficacy of online
sale [28] etc. Here, we employ machine learning to decode
error syndrome(s) for quantum error correction.

4.1. Advantages of Machine learning based syndrome decoder

Classical algorithms for decoding, such as Minimum Weight
Perfect Matching (MWPM), may perform poorly in certain
cases. For example, MWPM tries to find a minimum num-
ber of errors that can recreate the error syndrome obtained
without considering the probability of error.

If |ψ⟩1,2,...,n is an n-qubit codeword, and we consider
the error generation on this codeword is a stochastic map
S (p1, p2, . . . , pn), where pi is the probability of error on qubit
i (we can further write pi in terms of the probability of Pauli
errors), then the error state |ψ⟩e=S (p1, p2, . . . , pn)|ψ⟩1,2,...,n.
Now, for a distance d surface code with t types of errors
(t=4 for depolarization, 2 for bit/phase flip), there are td2

possible errors and td2−1 possible syndromes. Therefore,
multiple errors E={e1, e2, . . . , el} lead to the same syndrome,
and detecting a syndrome cannot uniquely specify the type
of error causing it. Since Pauli errors are hermitian, correc-
tion is simply applying the same error once more. If the
choice of error is not perfect, then the system ends up with
(probably) more error than before after the correction step.

MWPM, being a deterministic algorithm, does not con-
sider the Stochastic map. It assumes that the error proba-
bility is low, and always finds the minimum weight error

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 23

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 1: (a) Distance 3 surface code, where the numbered circles (0 - 8) are the physical qubits, white plaquettes are X stabilizers (i.e., M-X qubits
AX0, AX1, AX2, AX3), gray plaquettes are Z stabilizers (i.e., M-Z qubits AZ0, AZ1, AZ2, AZ3); (b) the syndromes are defined in a d × d lattice (d=3), with
physical qubits on the vertices and plaquette stabilizers (measure qubits) as faces: (i) pink (purple) plaquettes indicate stabilizers which check the Z (X)
parity of qubits on the vertices of the plaquettes as shown in (ii), (iii) green circles indicate errors and red circles violated stabilizers (i.e., syndromes [19])

Figure 2: Quantum circuit for a single cycle of surface code. (a) circuit for M-Z qubit, (b) circuit for M-X qubit [14]

emin ∈ E that creates the observed syndrome. On the other
hand, an ML decoder learns the probabilities p1, p2, . . . , pn
from the training phase. Thus, this decoder finds most likely
error eml ∈ E that can cause observed syndrome depending
on the Stochastic Map.

Furthermore, the time complexity of MWPM grows as
O(N4) where N is the number of qubits. Lookup Tables have
been used for decoding as well [29]. While Lookup Table
Decoder is sometimes better than MWPM in performance,
its complexity scales asO(4N) which becomes infeasible even
for moderate values of N. To overcome such drawbacks,
ML techniques have been applied to learn the probability of
error in the system and propose the best possible correction
accordingly with comparatively lower time complexity. For
example, [19] reduced the decoding problem to a classifica-
tion problem that a feed-forward neural network can solve,
for small code distances. A deep neural network based
decoder is proposed by [30] for Stabilizer Codes. There-
fore, supervised learning techniques, such as Feed-forward
neural network (FFNN), Recurrent Neural Network (RNN)
show that these are capable of outperforming the traditional

decoding techniques.
As discussed earlier, surface code is degenerate, i.e., there

exist errors e1 , e2 such that e1 |ψ⟩=e2 |ψ⟩, where |ψ⟩ is the
codeword. This leads to any decoder failing to distinguish
between some errors e1 and e2. Nevertheless, that does not
always lead to a logical error. For example, bit-flip error in
bit 1 and bit 2 are indistinguishable. But error in decoding
these two will not lead to a logical error (Refer Fig. 4 (a)).
On the other hand, it is possible that e1 ⊕ e2 leads to a logical
error, i.e., the decoder may itself incorporate logical errors
while correcting physical errors. For example, bit-flip error
on qubit 4 is indistinguishable from those on qubits 1 and
7 together. But failure to distinguish between these two
bit-flip errors leads to logical error (refer Fig. 4 (b)).

In general, usually the decoder incorporates logical errors
when it fails to distinguish between ⌊(d-1)/2⌋ and ⌈(d+1)/2⌉
errors. Broadly speaking, ML can learn the probability of
error and predict which of those two are more likely. This
makes ML-decoder outperform other traditional decoders.

Since a decoder itself can incorporate logical errors, two
stages of decoders, namely low level followed by high level

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 24

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 3: Example of surface code for d=5, where two errors produce the same syndrome [19]. Pink (Purple) plaquettes indicate stabilizers which check
the Z (X) parity of qubits on the vertices of the plaquette. Green circles are used to indicate errors and red circles to indicate violated stabilizers.

decoder, have been applied where

• Low level decoders search for exact position of errors
at the physical level.

• High level decoders attempt to correct any logical
error incorporated by the correction mechanism of
low level decoders.

4.1.1. Design methodology of our ML based decoder

Artificial neural networks (ANN) are made to emulate the
way human brains learn, and are one of the most widely
used tools in ML. Neural networks consist of one input layer,
one output layer, and one or more hidden layers consisting
of units that transform the input into intermediate values
from which the output layer can find patterns that are too
complex for a human programmer to teach the machine.
The time complexity of training a neural network with N
inputs, M outputs and L hidden layers is O(N ·M · L). In this
paper we are using neural networks as both low-level and
high-level decoder for distance 3, 5, and 7 surface code.

In order to apply ML techniques to surface code decod-
ing, we first map the decoding problem to the classification
problem as follows. Given a set of data points, a classifica-
tion algorithm predicts the class label of each data point.
These techniques are purely classical. Next, we describe in
detail the formulation of a decoder for surface code as a
classification problem.

4.1.2. Mapping Surface Code onto a square lattice

For ease of implementation, we have mapped the surface
code to a square lattice (refer Fig. 5) in this work. This has
been achieved by padding a few dummy nodes (labelled
as 0D in the figure). A distance d surface code is converted
into a (d+1) × (d+1) square lattice which has d2 − 1 stabi-
lizers, when encoding a single logical qubit. Therefore,
2(d+1) dummy nodes are required for this square lattice.
The dummy nodes are basically don’t care nodes, and their
value is always 0 irrespective of the error in the surface code.
The syndrome changes the values of the stabilizers only.

4.1.3. Error injection and syndrome extraction

Once the distance d surface code is transformed to a (d+1) ×
(d+1) square lattice, the next step is to extract the syndrome
for errors. First, we create a training dataset, where in each
data we randomly generate errors on each physical qubit. If
pphys is the probability of error on a physical qubit, the total
probability of error after the 8 steps of surface code cycle
(Fig. 2) is 1 - (1-pphys)8. We have trained the networks with
pphys ranging from 0.0001 to 0.25. One can argue that 0.25 is
an unreasonably high error probability. However, we have
ranged the error probability that far to show an interesting
observation regarding the ML decoder performance (Sec 4).

For generating the training data we have considered bit
flip errors, symmetric and asymmetric depolarizing noise
models. We have not separately considered phase flip er-
rors since they are similar to bit flips and have a rotational
symmetry (i.e., the logical errors of bit flip and phase flip
model are equivalent up to a rotation by π

2).

From the training data (which may or may not contain er-
rors), we generate the syndrome (measured by ancilla qubits
of the surface code) (Fig. 5). The syndrome, in our imple-
mentation, contains both the ancilla and the dummy nodes.
However, the dummy nodes are always 0, whereas the val-
ues of the ancilla changes with different errors. Henceforth,
in terms of implementation only, syndrome for a distance
d surface code will imply (d+1)2 values including ancilla
and dummy nodes. The final training data contains the
syndrome, and its corresponding label is the true set of
errors that have occurred in the system. Note that this
method can lead to multiple labels having the same syn-
drome. This agrees with the fact that surface code does not
have one-to-one mapping from error to syndrome.

Ideally, the dataset to achieve the best decoding perfor-
mance should include all possible error syndromes. But as
the code distance increases, the state space also increases
exponentially. Therefore, we can at most include only a
small percentage of the entire input dataset. The dataset
size that we have used is 100000 from which 70000 is used
for training and the rest for testing purpose.

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 25

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 4: (a) No logical error and (b) Logical error due to mis-classification in low level decoding

4.1.4. Training our ML model

For the low level decoder, we train a neural network where
the input layer is the syndrome and the output layer denotes
the types of errors along with the physical data qubit where
each error has occurred. For a distance d surface code,
the number of input nodes are (d + 1)2 containing d2 - 1
measure qubits and 2(d+1) dummy nodes. For example, if
we consider a distance-3 surface code (SC17), it has 8 ancilla
qubits and 8 dummy nodes. Therefore, in the input layer,
there are 16 nodes (Fig. 5). In the output layer, there are 2
nodes for each data qubit to differentiate among I, X, Y and
Z errors. The size of the hidden layer can be adjusted by
trial-and-error.

We have used two types of neural networks, (i) Feed
Forward Neural Network (FFNN) and (ii) Convolutional
Neural Network (CNN). In our reported results,

(i) FFNN consists of 2 hidden layers having 32 and 16
nodes respectively. For the cost function we have used
the mean squared error rate, and as the activation
function we have used Rectified Linear Unit (ReLU).

(ii) For CNN, the first layer is a 64 dimension convolution
layer where input is a 4 × 4 matrix and the kernel size
is also 4 × 4. Then we flatten it and add two fully
connected layers of dimension 64 and 32. After that
we add the fully connected output layer of dimension
9. For the first 3 layers (convolution, dense, dense) we
have used ReLu as the activation function and for the
output layer we have used sigmoid activation function
since it will be a multi-label classification problem.

These values were adjusted after multiple trial-and-
errors. We later show in the result section that building a

more complex neural network cannot provide any signifi-
cant improvement in the performance of the decoder, but
requires significantly more decoding time. Therefore, we
stick to these parameters.

The high-level decoder simply tries to predict any logical
error that has been incorporated by the low level decoder.
Therefore, its input remains the same as the low-level de-
coder (i.e., the syndrome) whereas it has 4 nodes in the
output, each corresponding to a logical Pauli operator.

First, the network is trained for low-level decoder. After
the low-level decoding is done, the predicted corrections
are applied, and rechecked by using the high-level decoder
whether any logical error has been inserted by the low-level
decoder. The entire workflow is given in Fig. 6.

5. Results

First, we focus on the decoding performance of an ML-based
low-level and the high-level decoder for surface codes of
distances 3, 5, and 7 for both symmetric and asymmetric
depolarizing noise models with varying degrees of asym-
metry. Our model outperforms the performance of the
existing decoders for symmetric noise model. We also show
that although the performance of ML is slightly poorer for
asymmetric noise models than that for the symmetric one,
it still outperforms MWPM. Furthermore, we provide an
empirical study to estimate the minimum train-test-ratio
needed for optimal accuracy to obtain a better estimate of
the minimum number of training data required to obtain
the best (or near best) decoding results with ML decoder.

In the following subsections, we first introduce the noise
model that we have considered, followed by the parameters

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 26

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 5: SC17 to syndrome generation

of our ML decoder. Finally, we show the results of our
decoder and compare its performance with the traditional
MWPM decoder.

5.1. Noise models

Given a quantum state ρ in its density matrix formulation
[5], the evolution of the state in a depolarization noise model
is given as

ρ→(1 − px − py − pz)ρ+pxXρX†+pyYρY†+pZZρZ†

where px, py, pz represent the probability of occurrence
of unwanted Pauli X, Y , and Z error. In symmetric depo-
larization noise model, px =py =pz. Moreover, quantum
channels are often asymmetric or biased, i.e., the probability
of occurrence of Z error is much higher than that of X or Y
error. Furthermore, each error correction cycle in surface
code requires eight steps. We have considered that an error
can occur on one or more of the d2 data qubits in each of
the eight steps, where d is the distance of the surface code.
Therefore, if px + py + pz = p, then the overall probability
of error for each error correction cycle is 1−(1 − p)8 (Refer
Fig. 2). This error model is in accordance with [11]. We
assume noise-free measure qubits (which are almost half
the total number of qubits) and ideal measurements.

5.2. Machine Learning Parameters

For our study, we have trained the ML model with batches of
data, not the entire data set at once. This is often beneficial in
terms of training time as well as memory capacity. We have
used batch size = 10000, epochs = 1000, learning rate = 0.01

(with Stochastic Gradient Descent), and we have reported
the average performance of each batch over 5 instances. This
is repeated for each value of the pphys considered here.

5.2.1. Low and high-level decoder

In Fig. 7, we show the increase in the logical error probability
with physical error probability p, which is the probability
of error per step in the surface code cycle. The results of
MWPM and CNN-based low-level decoder for both sym-
metric and asymmetric noise models are shown. In Tables 1
and 3, we depict the performance of FFNN decoder as well.
In Fig. 7, the blue, yellow, green, and red lines respectively
are the decoder curves which show the probabilities of log-
ical error for symmetric depolarization, bit flip (X), phase
flip (Z), and Y errors. The cyan straight line consists of the
points where the probabilities of physical and logical error
are equal.

The point where the decoder curves and the straight
line intersects, defines the value of pseudo-threshold for the
decoder. As expected, the pseudo threshold improves with
increasing distance of the surface code. Nevertheless, the
threshold value is the probability of physical error beyond
which increasing the distance leads to poorer performance.
Therefore, threshold is independent of the distance and is a
property of the surface code and the noise model only. In
Tables 1 and 3, we show the pseudo-threshold and threshold
of the low and high-level decoders for distance 3, 5 and
7 surface code in symmetric and asymmetric noise mod-
els respectively. Fig. 7 shows the pseudo-thresholds for
MWPM and CNN decoder for a distance 3 surface code us-
ing low-level decoder (LLD) only. From Table 1 we observe

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 27

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

∼ 10× increase in the pseudo threshold for ML-decoders as
compared to MWPM.

Figure 6: Outline of the ML based syndrome decoding for surface code

Fig. 8 shows the thresholds and decoder accuracy for

MWPM and ML-decoders surface codes of distance 3, 5
and 7. Table 3 depicts the threshold values for MWPM and
ML-decoders. From Table 3 we observe ∼ 2× increase in the
threshold for ML-decoders as compared to MWPM.

As already mentioned earlier, this result assumes error-
free stabilizers, and ideal measurements. For a distance d
surface code, there are d2 − 1 stabilizers. Therefore, in our
setting, nearly half of the total qubits in the surface code
structure are considered ideal. We focused more on the
mapping of decoding to Machine Learning in this research.
A separate study is being carried out on the performance
of the ML decoder in the presence of erroneous stabiliz-
ers and measure qubits to determine the threshold and
pseudo-threshold. Our conjecture is that ML decoders will
still outperform MWPM decoder in that scenario, but the
increase in performance will be much lower.

In Fig. 7, we observe that at very low error probability
the accuracy remains good, then it falls drastically. However,
for ML decoders, it again increases beyond a certain physical
error probability (0.15). On the other hand, the logical error
also decreases in most of the cases for both symmetric and
asymmetric ML decoders after more or less that same value
of physical error probability. This is due to the bias in the
back-end working principle of any machine learning model.
When the error probability is low or high, the ML decoder
effectively learns the probability and in most of the cases can
avoid logical errors. But when the error probability is in the
mid range, the ML model gets confused. For example, if in a
training set, out of 12 events with same value of the features,
10 events are certainly in class A, and the rest in B, then
the ML definitely learns it with high accuracy. Similarly, if
those same 10 events are in class B, accuracy will be high.
But the ML is confused when 6 of them are in class A and 6
of them in class B. This is an interesting observation in the
ML-decoder which is absent in MWPM-decoder.

5.3. More sophisticated ML models

A natural question is whether the use of more sophisticated
ML models (e.g, adding more hidden layers, increasing
the number of nodes in each layer, etc.) can improve the
performance of the decoder. We have addressed this issue
as reported below.

In Table 2, Simple FFNN has 1 hidden layer (dense)
whereas Complex FFNN has 5 hidden layers (dense) and
Simple CNN has 1 convolution (64 dimensions) followed by
2 dense layers of dimension 256 and 64 respectively before
the output layer whereas Complex CNN has 3 convolutions
(64 dimensions) layers followed by 4 dense layers of dimen-
sion 512, 256, 128 and 64 respectively before the output layer.
The more sophisticated models naturally require more time
for training and prediction. But from Fig. 9, we see that the
decoder graphs are more or less overlapping for the simple
and complex ML models. Therefore, it can be concluded
that using more sophisticated model does not lead to a better
performance for the decoder. This can be further verified by
the accuracy plots in Fig. 10. Since the more complex models
are performing almost at par with the simpler models for
d=3 and 5 and the complex models are significantly more
time-consuming, we performed the experiments for d = 7

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 28

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 7: Pseudo-threshold and accuracy — MWPM vs ML-based decoder for distance 3 surface code

Figure 8: Threshold and accuracy — MWPM and ML-based decoder for surface code with d = 3, 5, 7

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 29

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Table 1: Pseudo-Threshold of the low and high level decoders for distance 3, 5 and 7 surface code

Noise Model →
Symmetric Asymmetric
pz px py 0.1pz px py 0.01pz px py

Decoder ↓ d→ 3 5 7 3 5 7 3 5 7

MWPM LLD 0.0011 0.0038 0.0075 0.0012 0.0041 0.0072 0.00098 0.0038 0.0067
HLD - - - - - - - - -

Our FFNN LLD 0.012 0.0205 0.0219 0.0109 0.0121 0.0152 0.0120 0.0122 0.0131
HLD 0.0143 0.0234 0.0241 0.0124 0.0164 0.0189 0.0123 0.0165 0.0189

Our CNN LLD 0.0121 0.0211 0.0228 0.0112 0.0125 0.0151 0.0111 0.0121 0.0132
HLD 0.0152 0.0241 0.0247 0.0134 0.0161 0.0192 0.0121 0.0162 0.0195

Table 2: Comparison of training times for different ML models

ML Model d = 3 d = 5
Parameter Training Prediction Parameter Training Prediction

space time (sec) time (sec) space time (sec) time (sec)
FFNN Simple 2258 53.12 2.1 × 10−5 5618 103.18 3.5 × 10−5

Complex 84754 324.9 3.55 × 10−5 88114 394.99 3.72 × 10−5

CNN Simple 165650 785.27 5.27 × 10−5 429874 1852.74 7.4 × 10−5

Complex 240246 1485.69 6.02 × 10−5 504370 4241.58 9.74 × 10−5

Table 3: Comparison of Threshold of the low and high level decoders

Threshold (LLD) Threshold (HLD) Decoder Model Error model
0.0181 N/A MWPM Symmetric
0.0302 0.035 Symmetric
0.0218 0.025 Asymmetric 0.1 ∗ pz = px = py
0.0221 0.0279 Our FFNN Asymmetric 0.07 ∗ pz =px = py
0.0216 0.0257 Asymmetric 0.04 ∗ pz=px= py
0.0213 0.0251 Asymmetric 0.01 ∗ pz =px=py

0.0311 0.034 Symmetric
0.0225 0.026 Asymmetric 0.1 ∗ pz=px =py
0.0229 0.0281 Our CNN Asymmetric 0.07 ∗ pz=px= py
0.0223 0.0258 Asymmetric 0.04 ∗ pz= px= py
0.0212 0.0252 Asymmetric 0.01 ∗ pz= px= py

with only Simple CNN and FFNN models.

5.4. Empirical train-test-ratio for optimal accuracy

In general, the higher the number of training samples, better
is the accuracy of the ML model up to a certain threshold, be-
yond which increasing the number of training samples does
not improve the performance of the model [31]. However,
generation of training data is a humongous task in current
quantum devices since it takes up a significant amount of
device lifetime. Therefore, lower the size of the training
sample required, higher is its usability. But naively reduc-
ing the size of the training set may lead to performance
degradation. We explore this requirement by studying the
minimum train-test-ratio required to obtain the optimal
decoder performance.

Given a distance d code, with t types of errors possible

on each qubit, the total number of distinct error patterns is
td2 . When the probability of error is very low, most of the
test cases will have no error. This observation is reflected
in the curve [Fig 11] with p = 0.001. As p increases, it is
natural that the performance of the decoder will degrade.
However, when d is small, the total number of distinct errors
is also small. Since the training and testing data is gener-
ated uniformly at random, we expect that for a given error
probability p, the most likely error patterns are all exposed
to the ML decoder for a reasonable size of training set.

To test this hypothesis, in Fig. 11 we have varied the
train-test ratio for the simple CNN decoder for a distance
3 surface code. We originally generated 105 error data uni-
formly at random, and varied the train-test ratio starting
from 90:10 and moving up to 10:90, lowering the training
proportion by 10% in each step. The obtained accuracy
for increasing pphys is plotted in Fig. 11. We observe that

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 30

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 9: Logical vs physical error probability for various ML models in d= 3 and 5 surface code

Figure 10: ML model accuracy vs physical error probability for various ML models in d = 3 and 5 surface code

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 31

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

even when we use up ≃ 50 − 60% of the data as test set, the
performance of the decoder remains more or less constant
for a given p. The performance takes a dip downwards
beyond this value. Therefore, we posit that for d = 3 and t
= 4 (depolarizing noise model), this decoder is exposed to
all of the most likely errors within a small fraction of the
training set, which is generated uniformly at random.

Since this is a ML based method, and Fig. 11(a) shows
the mean value only, in Fig. 11(b) we have also plotted the
standard deviation (SD) with a few values of physical error
probability for all the test-ratio as an error bar plot. We
observe that for p=0.001 the accuracy varies between 95.32
to 99.11 (min SD = 0.52, max SD = 1.40). For p = 0.02 the
accuracy varies between 60.54 to 82.94 (min SD = 1.12, max
SD = 2.79) and for p = 0.08 the accuracy varies between 32.51
to 51.92 (min SD = 0.28, max SD = 3.86). With increasing
pphys, the SD also increases. This supports intuition because
as the pphys increases, the decoding performance decreases
due to the capacity of the machine learning model to cor-
rectly classify the errors. Hence, the performance of ML
(which depends on the errors in the dataset), varies more
with higher value of physical error probability (pphys).

Moreover, as d increases, for same p, the set of proba-
ble errors increases exponentially. Therefore, for the same
number of generated error data, we expect that to retain
the same accuracy, a much larger portion of the data will
need to be devoted for training. In our future research, we
shall explore this direction in a more extensive manner and
determine the size of the training sample required to retain
an accuracy ϵ for a given train-test ratio.

5.5. Performance on Training with Symmetric Noise Models and
Testing with Asymmetric Noise Models

As we have discussed, the real life noise models are asym-
metric. But this asymmetry can change and we may not
know the exact level of asymmetry beforehand always. It
would be beneficial if the decoder can be trained once with
symmetric noise dataset and tested with different asymmet-
ric noise datasets. Now we analyze how the performance
of a decoder trained with symmetric noise model behaves
while testing with asymmetric noise model with increase in
asymmetry (∆).

An increase in asymmetry (∆) in the depolarizing error
channel is denoted by px = p/(∆+2), py = p/(∆+2), pz =
p∆/(∆+2), where, p is the value of physical error rate for a
given physical error. For example, ∆ = 10 denotes 0.1∗ pz=px
=py. For symmetric noise model, ∆ = 1 and for asymmetric
noise model, ∆ > 1. We define crossover point to be the
value of ∆ beyond which increasing ∆ leads to lower pseudo-
threshold, when the decoder is trained with symmetric
noise. We say that the channel is weakly asymmetric if ∆ <
cross-over point, strongly asymmetric otherwise. And we
find the crossover point empirically.

As the asymmetry increases in the testing data, step-
wise, we see a decrease in the performance of the decoder,
as inferred from their decreased pseudo-threshold values.
We check for ∆=1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2, 10.

(a) Average accuracy of our low level decoder

(b) Average Accuracy with its standard deviation as error bar of our low
level decoder

Figure 11: Average accuracy (along with its standard deviation) of our low
level decoder vs Test Ratio for different values of pphys in distance 3 surface
code

From Fig. 12 we can say that∆ = 1.3 is the crossover point
as upto this point, the logical error more or less overlaps
with the symmetric noise model (i.e. ∆=1). Hence upto ∆
= 1.3, the channel is weakly asymmetric and above ∆ = 1.3
it is strongly asymmetric. Hence, upto ∆ = 1.3 we can train
the decoder with symmetric noise model and test with the
desired symmetric or asymmetric noise model, as it will
not degrade the performance much. However, beyond this
degree of asymmetry, the model must be trained with the
asymmetric noise model if the optimum pseudo-threshold
is to be obtained.

6. Conclusion

In this paper, we have proposed an ML-decoder to correct
both symmetric and asymmetric depolarizing noise on sur-
face codes. Our decoder has two levels — in the low-level it
tries to accurately predict the error on the qubits, followed
by the high level that tries to detect any logical error that

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 32

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Figure 12: Training with Symmetric Noise Models and Testing with Asym-
metric Noise Models

may have been introduced by the low-level decoder. Both
these decoders have been implemented using neural net-
work (FFNN and CNN) for surface code of distances 3, 5 and
7. Our proposed ML-decoder outperforms MWPM, and
we observe ∼ 2× increase in threshold and ∼ 10× increase
in pseudo threshold. We further show that the decoder
performance is equally good for asymmetric errors as well,
which is more realistic in quantum devices.

We have used ML models with different levels of so-
phistication, (i.e. varying number of hidden layers and
node-density of each layer). Our results show that the mere
increase of complexity in ML model requires an increased
amount of time for decoding but hardly yields any better
performance.

In this work, we have assumed, noise-free measure qubits
and ideal measurements. A future prospect of this research
can be to consider noisy measure qubits and imperfect
measurements.

Data and Code availability

Data from the numerical simulations and the code can be
made available upon reasonable request.

Conflict of Interest The authors declare no conflict of
interest.

References

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer”, SIAM J. Comput., vol. 26,
no. 5, pp. 1484–1509, 1997, doi:10.1137/S0097539795293172.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database
search”, “Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing”, STOC ’96, pp. 212–219, ACM, New York,
NY, USA, 1996, doi:10.1145/237814.237866.

[3] A. M. Childs, N. Wiebe, “Hamiltonian simulation using linear com-
binations of unitary operations”, Quantum Info. Comput., vol. 12, no.
11–12, p. 901–924, 2012.

[4] J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, “The theory
of variational hybrid quantum-classical algorithms”, New Journal of
Physics, vol. 18, no. 2, p. 023023, 2016.

[5] M. A. Nielsen, I. Chuang, Quantum computation and quantum informa-
tion, AAPT, 2002.

[6] P. W. Shor, “Scheme for reducing decoherence in quantum com-
puter memory”, Phys. Rev. A, vol. 52, pp. R2493–R2496, 1995, doi:
10.1103/PhysRevA.52.R2493.

[7] A. M. Steane, “Error correcting codes in quantum theory”, Phys. Rev.
Lett., vol. 77, pp. 793–797, 1996, doi:10.1103/PhysRevLett.77.793.

[8] R. Laflamme, C. Miquel, J. P. Paz, W. H. Zurek, “Perfect quantum
error correcting code”, Phys. Rev. Lett., vol. 77, pp. 198–201, 1996,
doi:10.1103/PhysRevLett.77.198.

[9] S. B. Bravyi, A. Y. Kitaev, “Quantum codes on a lattice with boundary”,
arXiv preprint quant-ph/9811052, 1998.

[10] E. Dennis, A. Kitaev, A. Landahl, J. Preskill, “Topological quantum
memory”, Journal of Mathematical Physics, vol. 43, no. 9, pp. 4452–4505,
2002.

[11] A. G. Fowler, A. M. Stephens, P. Groszkowski, “High-threshold uni-
versal quantum computation on the surface code”, Physical Review A,
vol. 80, no. 5, p. 052312, 2009.

[12] D. S. Wang, A. G. Fowler, L. C. Hollenberg, “Surface code quantum
computing with error rates over 1%”, Physical Review A, vol. 83, no. 2,
p. 020302, 2011.

[13] L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, K. Bertels,
“Pauli frames for quantum computer architectures”, “Proceedings of
the 54th Annual Design Automation Conference 2017”, pp. 1–6, 2017.

[14] A. G. Fowler, A. C. Whiteside, L. C. Hollenberg, “Towards practical
classical processing for the surface code”, Physical review letters, vol.
108, no. 18, p. 180501, 2012.

[15] R. Majumdar, S. Basu, P. Mukhopadhyay, S. Sur-Kolay, “Error trac-
ing in linear and concatenated quantum circuits”, arXiv preprint
arXiv:1612.08044, 2016.

[16] J. Edmonds, “Paths, trees, and flowers”, Canadian Journal of Mathemat-
ics, vol. 17, p. 449–467, 1965, doi:10.4153/CJM-1965-045-4.

[17] S. Varsamopoulos, K. Bertels, C. G. Almudever, “Comparing neural
network based decoders for the surface code”, IEEE Transactions on
Computers, vol. 69, no. 2, pp. 300–311, 2019.

[18] C. Chamberland, P. Ronagh, “Deep neural decoders for near term
fault-tolerant experiments”, Quantum Science and Technology, vol. 3,
no. 4, p. 044002, 2018.

[19] S. Varsamopoulos, B. Criger, K. Bertels, “Decoding small surface codes
with feedforward neural networks”, Quantum Science and Technology,
vol. 3, no. 1, p. 015004, 2017.

[20] R. Sweke, M. S. Kesselring, E. P. van Nieuwenburg, J. Eisert, “Rein-
forcement learning decoders for fault-tolerant quantum computation”,
Machine Learning: Science and Technology, vol. 2, no. 2, p. 025005, 2020.

[21] L. Ioffe, M. Mézard, “Asymmetric quantum error-correcting codes”,
Phys. Rev. A, vol. 75, p. 032345, 2007, doi:10.1103/PhysRevA.75.032345.

[22] D. Gottesman, “Stabilizer codes and quantum error correction”, arXiv
preprint quant-ph/9705052, 1997.

[23] R. Hill, A first course in coding theory, Oxford University Press, 1986.

[24] V. Kumar, J. S. Malhotra, S. Sharma, P. Bhardwaj, “Soil Properties Pre-
diction for Agriculture using Machine Learning Techniques”, Journal
of Engineering Research and Sciences, vol. 1, no. 3, pp. 9–18, 2022.

[25] H.-Y. Tran, T.-M. Bui, T.-L. Pham, V.-H. Le, “An Evaluation of 2D
Human Pose Estimation based on ResNet Back-”, Journal of Engineering
Research and Sciences, vol. 1, no. 3, pp. 59–67, 2022.

[26] M. A. Danlami, A. O. Oluwaseun, M. S. Adam, S. M. Abubakar, E. Ay-
obami, “Cascaded Keypoint Detection and Description for Object
Recognition”, Journal of Engineering Research and Sciences, vol. 1, no. 3,
pp. 164–169, 2022.

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 33

http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

[27] S. K. Pal, D. Bhoumik, D. Bhunia Chakraborty, “Granulated deep
learning and z-numbers in motion detection and object recognition”,
Neural Computing and Applications, vol. 32, no. 21, pp. 16533–16548,
2020.

[28] A. V. Singhania, S. L. Mukherjee, R. Majumdar, A. Mehta, P. Banerjee,
D. Bhoumik, “A machine learning based heuristic to predict the ef-
ficacy of online sale”, “Emerging Technologies in Data Mining and
Information Security”, pp. 439–447, Springer, 2021.

[29] S. Varsamopoulos, K. Bertels, C. G. Almudever, “Designing neu-
ral network based decoders for surface codes”, arXiv preprint
arXiv:1811.12456, 2018.

[30] S. Krastanov, L. Jiang, “Deep neural network probabilistic decoder
for stabilizer codes”, Scientific reports, vol. 7, no. 1, pp. 1–7, 2017.

[31] S. Shalev-Shwartz, S. Ben-David, Understanding machine learning: From
theory to algorithms, Cambridge university press, 2014.

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

Debasmita Bhoumik has received the
B.Sc degree in Computer Science from
Bethune College in 2013. She has re-
ceived the B.Tech degree from the Uni-
versity of Calcutta in 2016 and M.Tech
degree from the University of Calcutta in
2018 in Computer Science and Engineer-
ing. She is currently pursuing her PhD

degree in the "Application of machine learning techniques
in quantum computing" from the Indian Statistical Institute.

Her research interests are in quantum computing, quan-
tum error correction, quantum circuit placement, machine
learning techniques. She is a Gold medalist in her B.Sc from
Bethune College (Calcutta University).

Pinaki Sen is a final year electrical engi-
neering undergraduate at National Insti-
tute of Technology Agartala.

He is interested in Machine Learning
and Quantum Computing. He has expe-
rience of working in Quantum-dot Cel-
lular Automata as well. He has been vol-
unteering as Technical lead of Girlscript,

Agartala and previously volunteered as Vice President of
Robotics Club, NIT Agartala.

Ritajit Majumdar is a PhD scholar at the
Indian Statistical Institute. His research
interests are in Noisy Quantum systems,
and Near term Quantum Algorithm.

He was a Fulbright Nehru Doc-
toral Research Fellow at IBM Quantum,
Thomas J. Watson Research Lab. He
was a former Assistant Professor in the

Department of Computer Science and Engineering, B. P.
Poddar Institute of Management and Technology. He is a
Gold medalist in M.Tech. from Calcutta University and a
recipient of the DST Inspire Fellowship.

Susmita Sur-Kolay is currently a Pro-
fessor at Indian Statistical Institute. She
received the B.Tech. degree in Electron-
ics and Electrical Communications En-
gineering from IIT Kharagpur, and the
Ph.D. degree in Computer Science and
Engineering from Jadavpur University.
From 1980 to 1985, she was a Graduate

Research Assistant in the Laboratory for Computer Science
at Massachusetts Institute of Technology. In 1992, she was a
Postdoctoral Fellow at the University of Nebraska–Lincoln.
From 1993 to 1999, she was a Reader at Jadavpur University.

In 2002, she was a Visiting Faculty Member at Intel
Corporation, USA and in 2012 as Visiting Researcher at
Princeton University. Her current research interests include
EDA for physical design and testing, hardware security,
in-memory computation and synthesis of quantum com-
puters. She was a Distinguished Visitor (India) of the IEEE
Computer Society, an Associate Editor of the IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems and
ACM Transactions on Embedded Computing Systems. She
is a recipient of the President of India Gold Medal, Distin-
guished Alumnus Award of IIT Kharagpur and Women in
Technology Leadership Award of the VLSI Society of India.

Latesh Kumar K J is presently a Visit-
ing Professor at the Knight Foundation
School of Computing and Information
Sciences, Florida International Univer-
sity, Miami, USA. He obtained his Bach-
elors and Masters degrees in Computer
Science and Ph.D in Computer Science
and Engineering from AeU Malaysia.

He has published numerous papers in International
Journals, Conference and Technical articles published by
Springer, IEEE, ACM, Elsevier and IT next, NetApp Tech-
nical Library worldwide. He is a Subject Matter Expert in
Network Security of IT companies. He has received sev-
eral awards including distinguished “Customer Excellency
for Technical Consultancy and Subject Matter Expert" at
Hewlett Packard, and Best International Journal award at
PSRC, Indonesia. He is currently researching and working
in the Discovery Lab, FIU, USA on Security systems and
Predominant work Quantum Key Distribution Techniques.

Sundaraja Sitharama Iyengar is cur-
rently the Distinguished University Pro-
fessor, Ryder Professor of Computer
Science and Director of the School of
Computing and Information Sciences at
Florida International University, Miami.
He has been involved with research and
education in high-performance intelli-

gent systems, Data Science and Machine Learning Algo-
rithms, Sensor Fusion, Data Mining, and Intelligent Systems.
He has received his Ph.D. degree in 1974 from MSU, USA.

He has published more than 600 research papers, has
authored/co-authored and edited 26 books. His h-index is
61 with over 18000 citations. His books are published by
MIT Press, John Wiley and Sons, CRC Press, Prentice Hall,

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 34

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

D. Bhoumik et al., Machine-Learning based Decoding

Springer Verlag, IEEE Computer Society Press, etc. Dr. Iyen-
gar has been a Visiting Professor or Scientist at Oak Ridge
National Laboratory, Jet Propulsion Laboratory, Naval Re-
search Laboratory, and has been awarded the Satish Dhawan
Visiting Chaired Professorship at the Indian Institute of Sci-
ence, the Homi Bhaba Visiting Chaired Professor (IGCAR),
and a professorship at the University of Paris-Sorbonne.

www.jenrs.com Journal of Engineering Research and Sciences, 1(6): 21-35, 2022 35

http://www.jenrs.com

	 Introduction
	Summary of the contributions
	Stabilizer Formulation of Surface Code
	Machine learning based syndrome decoding for surface code
	Advantages of Machine learning based syndrome decoder
	Design methodology of our ML based decoder
	Mapping Surface Code onto a square lattice
	Error injection and syndrome extraction
	Training our ML model

	Results
	Noise models
	Machine Learning Parameters
	Low and high-level decoder

	More sophisticated ML models
	Empirical train-test-ratio for optimal accuracy
	Performance on Training with Symmetric Noise Models and Testing with Asymmetric Noise Models

	Conclusion

