Special Issue on Multidisciplinary Sciences and Advanced Technology

@5 JENRS

Received: 30 October 2024, Revised: 14 December 2024, Accepted: 15 December 2024, Online: 19 January 2025

DOIL: https:/ /dx.doi.org/10.55708 /js0401001

Enhancing Python Code Embeddings: Fusion of Code2vec with

Large Language Models

Long H. Ngo*®, Jonathan Rivalan
Smile France, Asniéres-sur-Seine, 92600, France

*Corresponding author: Long H. Ngo, Paris, France, Email: long.ngo@smile.fr

ABSTRACT: Automated code comprehension has recently become integral to software development.
Neural networks, widely employed in natural language processing tasks, can capture the semantic
meanings of language by representing it in vector form. Although programming code differs from
natural language, we hypothesize that neural models can learn both the syntactic and semantic attributes
inherent in code. This study presents an innovative approach to improve code representation and
understanding for Python, building upon a previous work (code2vec extended with ASTminer). The
novel method integrates embeddings from Large Language Models (LLMs) with code2vec vectors,
aiming to align both semantic and syntactic information in code representations. We explore various
fusion techniques, including simple concatenation, weighted sum, or attention-based mechanism, to
combine LLM embeddings with code2vec vectors. We explore how semantic information from LLMs
complements the structural information from code2vec, and discuss the potential impact of this synergy
on software development practices. These findings open new directions for more accurate and adaptable
code understanding models, with implications for improving documentation, code search, and overall
software development efficiency.
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Code search

1. Introduction

In recent years, the field of automated code understand-
ing has become increasingly crucial in software develop-
ment. Certain problems in software development, such as
assigning meaningful method names, highlight the need for
concise semantic representations of code snippets. The core
challenge lies in encoding code snippets in a way that cap-
tures semantically relevant information, transferable across
multiple programs, and enables the prediction of properties
like code labeling. This involves two key components: first,
representing the code snippet in a manner that supports
learning across different programs, and second, determin-
ing which parts of the representation are critical for property
prediction and how to prioritize them.

This paper builds upon a previous study in [1] at the
International Conference on Software Engineering and Arti-
ficial Intelligence (SEAI), by addressing its limitations and
introducing novel methodology to improve code represen-
tation and search capabilities. Code representation presents
challenges due to the need to capture both semantic and
syntactic information in a format conducive to machine
learning. The previous study, in [1], used a path-based rep-
resentation technique to address two key tasks in software
development: assigning semantic labels to code snippets
and performing code searches. The path-based method rep-
resents a snippet by extracting paths from its abstract syntax
tree (AST), capturing both the structure and semantics of
the code, as demonstrated in previous research [2]. The first
task focused on automating the prediction of a semantic

label for a given code snippet. This is a challenging task
because it requires learning complex relationships between
the content of a method and a semantic label. Specifically, it
involves condensing numerous expressions and statements
within the method into a single descriptive label, which
demands sophisticated techniques for code representation
and classification [3]. The second task aimed to develop an
efficient and effective search mechanism for locating code
snippets based on query requirements. This is a critical
need for developers, who often need to find and reuse exist-
ing code. Successful code search must be able to match a
query against a large codebase and retrieve relevant code
snippets. Addressing both of these tasks effectively would
significantly enhance software development productivity
and efficiency.

However, the work in [1] also revealed limitations, par-
ticularly in aligning the docstrings with extracted paths from
the input code snippets. It might miss out on high-level
semantic relationships. This challenge highlighted the need
for more sophisticated approaches to code representation.

In this extended version, we present several significant
advancements:

¢ Integration of large language models (LLMs) with
code2vec to create more comprehensive code embed-
dings.

¢ Development of fusion techniques to combine seman-
ticembeddings from LLMs with syntactic vectors from
code2vec.
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* Extensive experimental settings with various fusion
strategies, including concatenation, weighted sum,
and attention-based mechanisms.

By addressing these areas, we aim to push the bound-
aries of code representation, enabling more accurate and
efficient automated understanding of Python code. This
work not only builds upon the previous findings but also
opens new directions for research in the intersection of
natural language processing and programming language
analysis.

The remainder of this paper is structured as follows:
Section 2 reviews related work in code representation and
analysis. Section 3 describes the work where code2vec was
extended with ASTminer. Section 4 describes the present
work, including the adaptation of code2vec for Python and
the proposed fusion techniques. Section 5 discusses the
implications of our findings. Section 6 concludes the paper
with a summary of contributions and directions for future
work.

2. Related works

The field of code representation and analysis has seen
significant advancements in recent years, driven by the ap-
plication of deep learning techniques traditionally used in
natural language processing (NLP). While the conventional
approach in NLP involves treating text as a linear sequence
of tokens processed through neural networks [4, 5], this
method has also been widely adopted for source code rep-
resentation [6, 7, 8, 9, 10]. However, recent research has
highlighted the potential benefits of leveraging the inherent
structure of programming languages. In [11, 12, 13], the au-
thors have demonstrated that structured representations can
significantly enhance performance in various code analysis
tasks.

The ability to predict program properties through learn-
ing from large-scale codebases has been a focus of numerous
studies [6, 8, 9, 12, 14]. This capability opens up a wide
range of applications in software engineering, including
predicting names for program entities [11, 13, 15], code
completion [16, 17], code summarization [6], code genera-
tion [18, 19, 20]. These applications, among others [21, 22],
showcase the potential impact of advanced code representa-
tion techniques on various aspects of software development
and maintenance, with minimal or no semantic analysis.

A significant breakthrough in this field came with the
introduction of code2vec [3]. This innovative approach
uses neural networks to learn distributed representations
of code, addressing one of the most challenging problems
in software engineering. Unlike traditional methods that
rely primarily on static code features, code2vec uses a large
corpus of code snippets to learn representations that cap-
ture the temporal dynamics of code changes. This results in
more accurate and robust code representations.

The code2vec model consists of two main components:
1) An input encoder that converts code snippets into token
sequences. These sequences are then used to train a neural
network to predict the next tokens in the sequence, which is
similar to a large language model. 2) A code vectorizer that
generates continuous-valued vector representations from
the output of the encoder.

These components work together to capture both syn-
tactic and semantic information from the code, utilizing
attention mechanisms to prioritize the most relevant as-
pects of each snippet. The resulting vector representations
have proven effective in various software engineering tasks,
including code completion, bug detection, and program
synthesis. The architecture of the code2vec network is
illustrated in Figure 1.
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Figure 1: Original code2vec architecture. A fully-connected layer combines
embeddings of each path-context. Attention weights are learned and used
to compute a code vector, which predicts the label [3].

In [1], the authors adopted the code2vec neural net-
work architecture [3], which was designed to learn low-
dimensional vector representations, or embeddings, of the
source code. In these vectors, the "meaning" of an entity is
distributed across multiple components, allowing semanti-
cally similar entities to be mapped to nearby vectors. These
embeddings enable efficient modeling of the relationship
between code snippets and their semantic labels in a natural
and efficient manner. Using the inherent structure of the
source code, code2vec aggregated multiple syntactic paths
into a single vector, leading to a more comprehensive and
accurate representation of each code snippet.

The success of code2vec marks a significant departure
from conventional code representation methods and has
paved the way for further research in this area. Our work
builds upon these foundations, extending the application
of code2vec to Python and exploring novel ways to enhance
its performance through integration with large language
models.

3. Extended Code2vec with ASTminer for Python Code
Embeddings

High-level view. In programming, a code snippet plays a
pivotal role as it allows developers to write concise, reusable
pieces of code applicable in different contexts. To better
understand the construction of code snippets, it is essential
to explore the concept of a bag of contexts. Each context
within a code snippet is represented as a vector, referred
to as the context vector. This vector is generated through
a learning process that captures two important features of
the context: (i) its semantic meaning and (ii) the attention
it should receive. By aggregating these context vectors, a
code vector is created, which can then be used for various
downstream tasks.
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3.1. Semantic labeling of code snippets

To extend code2vec for Python programming language,
the ASTminer extractor [2] was employed instead of the
JavaExtractor in the original code2vec [3]. ASTminer is an
open source library that enables the extraction of path-based
representations of codes, as shown in Figure 2. ASTminer
parses the syntax tree of a code snippet to extract paths
that summarize the structural and semantic essence of the
code. Hence, it offers a reusable toolkit designed to sim-
plify the task of modeling source code for machine learning
algorithms, reducing the associated complexity and effort.

astminer
AST Path context L
(nodes, path) <x_s, p, X_t> |

Figure 2: code2vec architecture for Python programming language.
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The AST is essential in representing the syntactic struc-
ture of a program, selectively ignoring details such as punc-
tuation, formatting or specific syntactic forms, while main-
taining each node as a distinct syntactic unit. In the AST,
each node represents a specific syntactic construct, such as
variables, operations, or logical operators. The associated
child nodes correspond to the subordinate elements related
to the parent node. [2]

The ASTminer extractor uses this path-based represen-
tation to capture coding styles and structures, thereby en-
capsulating the logic of the code. The conversion of code
into embeddings occurs in two steps: first, transforming the
code into a vector, followed by combining these vectors with
corresponding attention vectors. This prepares the model
for further training. The architecture, depicted in Figure 3,
mirrors the original code2vec embedding model.

START TOKEN
PATH PATHS Aémv

NS

CONTEXT WEIGHTS ]
END TOKEN ATTENTION d )
CTX,

@ - Weighted Sum
FC() ] - Fully-Connected Layer, -

f - activation function CHANGE‘

- Input / Output
e CHANGES | weihTs (I o ooy FC PREDICTED
~ Attention Mechanism ATTENTION NI (softmax) AUTHOR
CHANGE | — Numerical
Representation

Figure 3: Overview of authorship attribution pipeline, which generates
authorship-based embeddings of method changes. Furthermore, it high-
lights the significance of individual method changes in the authorship
attribution. The method nodes and the corresponding attention weights
are subsequently utilized to create author representation [23].

Following the approach in [23], the embeddings are con-
structed using the code and path tokens, then concatenated,
and converted to a numerical representation using a fully
connected (FC) activation function, as shown in Figure 3.
These vectors are merged into batches where the weights of
individual paths are combined, revealing the importance
of each path. This pipeline is employed for predicting
code titles, following the same principles as authorship
attribution.

Analogous to [3], cross-entropy loss, which calculates
the difference of the predicted distribution g and the “true”

distribution p, is used during training phase. p assigns a
value of 1 to the actual label in the training sample and 0
otherwise. Hence, the cross-entropy loss for a single sample
is equivalent to the negative log-likelihood of the true label,
which can be expressed as follows:

Hpllg =, py-logqy —logqyirue (1)

where y;,,. is the actual label of the sample. The loss is the
negative logarithm of gy;..., the probability that the model
assigns to yiue. AS qyiye tends to 1, the loss approaches zero.
The further gy, goes below 1, the greater the loss becomes.
Thus, minimizing this loss is equivalent to maximizing the
log-likelihood that the model assigns to the true labels y;y.
During training, gradient descent is utilized to iteratively
update the parameters by minimizing the loss function.
The learned parameters are refined using backpropagation.
In other words, the parameters are iteratively adjusted by
taking small steps in the direction that reduces the loss,
thereby optimizing the model.

Based on the study conducted in [3], the network model
can be applied effectively to predict categories for unseen
code. This method involves generating a code vector by
leveraging the weights and parameters learned during the
training phase. The prediction is then made by determining
the closest target label. This predictive model offers signif-
icant potential for improving the accuracy and efficiency
of categorizing software code snippets, supporting tasks
such as software maintenance, bug detection, and code
optimization.

3.2. Code search

This study also builds upon previous works [24, 25, 26]
to design a neural search system that uses joint embeddings
of code snippets and queries. Each type of input (either
code or natural language) is processed using separate en-
coders, trained to map inputs into a shared vector space.
The system is trained to ensure that related code and queries
are embedded closely in this space, enabling efficient search
and retrieval of relevant code snippets. Although there are
more sophisticated models that account for multiple inter-
actions between queries and code, this architecture utilizes
a single vector per query/snippet, simplifying indexing
and search tasks [26]. Figure 4 provides an overview of
the model architecture used for the Python language in the
code search task.

Path

contexts Code vector

from code .
Distance

Query/ Query

Docstring Query vector

Figure 4: Text to code architecture based on code2vec model.

For this task, the extended code2vec model is used to
encode Python code snippets. Queries in the form of doc-
strings are tokenized and passed through a query encoder,
such as the Neural Bag of Words (NBoW) [27], Bidirectional
RNN model [28], 1D Convolutional Neural Network [29],
or Self-Attention [30]. Subsequently, the resulting token
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embeddings are combined into a sequence embedding us-
ing a pooling function, either mean or max pooling, and
an attention-based weighted sum mechanism. The training
process used a collection of N code and docstring pairs, de-
noted by ¢;, d;, alongside the instantiation of a code encoder
E. and a query encoder E,. The objective is to minimize the
following loss function:

1 expEcc,-TEqd,-

—-— log

N i @)

jexpE.c;TE,d;

This loss encourages the inner product between match-
ing code and docstring encodings pairs to be maximized,
while minimizing the inner product between the query d;
and irrelevant code snippets c;. During model evaluation,
Mean Reciprocal Rank (MRR) is used to assess performance
on the validation set. During the testing stage, the Annoy
library!, a high-speed, approximate nearest-neighbor index-
ing and search technique offered by Spotity, is used to index
the entire CodeSearchNet Corpus. The index encompasses
all functions in the corpus, including those without accom-
panying documentation. Annoy helps to achieve efficient
and accurate retrieval [26].

4. Extended work: Code2vec and Embeddings Fusion

In this study, we propose a novel approach for enhancing
the performance of code representation models by leverag-
ing large language models (LLMs), such as Code Llama [31],
Qwen2.5-coder [32], and code2vec for Python language. The
integration of LLMs with traditional code representation
techniques presents a promising way to enhance code un-
derstanding. Our approach combines the semantic richness
of LLM embeddings with the structural insights of syntactic
code2vec vectors. This fusion aims to create a more com-
prehensive and nuanced representation of code snippets.
Figure 5 depicts the architecture of the embeddings fusion
approach adapted with the code2vec model.

i (__code2vec ]
code2vec

snippets

(a) Overview of code2vec and feature fusion approach.

LLM
embeddings

Fused softmax —
embeddings

Fusion layer

attention
weights

- o9 (009

Q) fully-connected
context layer.

prediction
vectors

combined
context vectors

fused
embedding

Code
snippet

(b) Updated code2vec architecture.
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Figure 5: Proposed architecture of code2vec with fused embeddings using
LLMs.

Thttps:/ / github.com/spotify /annoy

We utilize Code Llama - 7B [31], a variant of the Llama
model fine-tuned on code, to generate semantic embeddings.
Code Llama represents the cutting edge of publicly avail-
able large language models (LLMs) for code-related tasks.
It offers the potential to enhance developer workflows by
improving efficiency and speed, while also reducing the
barriers for individuals new to programming. Additionally,
Code Llama could serve as a valuable tool for productivity
and education, assisting programmers in producing more
reliable and well-documented software.

We used the CodeSearchNet corpus for training and
evaluation. This dataset contains about 1.1 million Python
functions, spanning diverse domains and programming
paradigms. Each code snippet is processed through Code
Llama to produce a high-dimensional vector capturing con-
textual and semantic information. Concurrently, we process
the same code snippets through our adapted code2vec
model for Python, which generates vectors representing the
structural and syntactic features of the code.

To achieve this fusion, we explore various techniques to
integrate LLM embeddings and code2vec code vectors into
a single, unified representation. These techniques include:

1. Simple concatenation: A straightforward approach
where Code Llama embeddings and code2vec vec-
tors are simply combined end-to-end. This method
preserves all information but increases dimensionality.

fused_vector llm_embedding; code2vec_vector  (3)

2. Weighted sum: We apply learnable weights to each em-
bedding type before summation, allowing the model
to adjust the importance of semantic versus syntactic
information.

fused_vector w1 = llm_embedding w2 x code2vec_vector (4)

3. Attention-based mechanisms: Inspired by transformer
architectures, we implement a multi-head attention
mechanism. This allows dynamic focus on different
aspects of each embedding based on the specific code
context. On the other hand, it allows the model to dy-
namically weight semantic and syntactic information
based on task relevance, resolving the issue of fixed
representation alignment by enabling the model to
prioritize critical information.

attention_output MultiHeadAttentionllm_embedding, code2vec_vector

fused_vector FeedF orwardattention_out()gﬁ

Each method offers different advantages in terms of bal-
ancing the contribution of each type of embedding to the
final representation. For instance, concatenation allows for
a straightforward integration of both embeddings, while
weighted sum can modulate the influence of each embed-
ding type, and attention-based fusion offers the potential
to dynamically adjust the focus on relevant features during
training and inference. The fused representation is then em-
ployed in both the training and testing phases of code2vec,
with the goal of improving performance on tasks such as
code labeling and code search.
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Figure 6 illustrates examples of two fusion techniques:
concatenation and attention-based fusion. These visualiza-
tions provide insight into how each method integrates the
embeddings and the potential impact on the resultant code
representation.
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learned
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(b) Attention technique.

Figure 6: Examples of 2 feature fusion techniques used in our feature
fusion approach.

5. Discussion

The integration of LLM embeddings with code2vec vec-
tors shows a significant theoretical advancement in code
representation techniques, which offers promising direc-
tions for combining semantic and syntactic information in
code understanding tasks. Here, we discuss the implica-
tions of these findings and their potential impact on the
field of automated code understanding.

Our findings highlight the complementary nature of
LLM embeddings and code2vec vectors, demonstrating
how these two approaches can be combined to enhance
code representation. LLM embeddings capture rich se-
mantic information and contextual nuances of code, while
code2vec vectors excel at representing syntactic structure.
The synergy between these two types of information allows
our model to develop a more comprehensive understanding
of code snippets. The relevance of semantic versus syntactic
information may vary depending on the specific code snip-
pet or task at hand. The multi-head attention mechanism
in our fusion approach allows the model to dynamically
focus on different aspects of the code representation. This
adaptability is particularly valuable for handling various
programming paradigms, coding styles, or specific tasks.

The integration of LLM embeddings, which are pre-
trained on vast amounts of code data, with task-specific
code2vec vectors opens up new possibilities for transfer
learning in code analysis. This approach allows models

to benefit from the broad knowledge captured by LLMs
while still maintaining the ability to fine-tune on specific
tasks or codebases. This transfer learning capability could
be particularly beneficial for organizations with limited la-
beled data or for tackling niche programming languages or
domain-specific coding patterns. It suggests a path towards
more generalizable code understanding models that can
quickly adapt to new contexts.

The fusion of LLM embeddings and code2vec vectors
also increases the computational complexity of the model.
The attention-based fusion, in particular, adds a non-trivial
amount of computation to the process. As we scale this
approach to larger codebases or real-time applications, care-
ful consideration must be given to balancing performance
gains with computational efficiency. Future work could
explore techniques for model compression or distillation to
make this approach more feasible for resource-constrained
environments or large-scale deployments.

The enhanced capabilities in code labeling and search
have the potential to significantly impact software devel-
opment practices. More accurate code labeling could lead
to improved auto-documentation tools, helping maintain
up-to-date and accurate code documentation. Enhanced
code search capabilities could boost developer productivity
by making it easier to find and reuse existing code snippets,
potentially reducing duplication and improving code qual-
ity. Furthermore, these advancements could contribute to
the development of more sophisticated code recommenda-
tion systems, assisting developers in writing more efficient,
readable, and maintainable code.

6. Conclusion

This study has presented a significant extension to the
previous work on code representation using code2vec and
ASTminer for Python. By integrating large language model
(LLM) embeddings with code2vec vectors, we have demon-
strated a novel approach to capturing both semantic and
syntactic information in code representations. While the
current work focuses on architectural design and theoretical
analysis, it lays important groundwork for future research
in automated code understanding.

Our key theoretical contributions include: the develop-
ment of fusion techniques, particularly an attention-based
mechanism, to combine LLM embeddings with code2vec
vectors; insights into the synergistic relationship between
semantic information from LLMs and structural information
from code2vec, and how this synergy can be leveraged in a
novel architecture for better code understanding; theoretical
foundation for improved code understanding models in
future empirical studies.

These advancements address some of the limitations
identified in the previous code2vec work, particularly in
aligning semantic information (such as docstrings) with
structural code representations. The fusion approach we
developed offers a more robust and flexible way to represent
code, adapting to the specific needs of different tasks and
code structures.

Despite the promising aspects, several limitations and
areas for further research remain:

¢ Language specificity: Our current work focuses on
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Python. Further research is needed to assess the gen-
eralizability of this approach to other programming
languages.

¢ Lack of empirical validation: The current study fo-

cuses on theoretical foundations and architectural
design, without experimental results to validate per-
formance claims. Comparative analysis with existing
code representation techniques remains to be con-
ducted.

* Model interpretability: While the attention mecha-

nism provides some insight into the model’s decision-
making process, further work is needed to improve
the interpretability of the fused representations.

¢ Fine-grained code understanding: Future research

could explore how this approach performs on more
fine-grained tasks, such as variable naming or type
inference.

¢ Temporal aspects of code: Investigating how to incor-

porate information about code evolution and version
history into our fused representations could provide
additional valuable insights.

In conclusion, our work on fusing LLM embeddings

with code2vec vectors represents a significant step forward
in the field of automated code understanding. By leverag-
ing both semantic and syntactic information, this approach
opens up new possibilities for more accurate and versatile
code understanding models, with potential far-reaching
implications for software development practices and tools.
As we continue to refine these techniques and explore their
applications, we potentially anticipate a profound impact on
the landscape of software development. Through rigorous
experimental validation and continued refinement, these
theoretical contributions can evolve into practical tools for
improving code comprehension and development efficiency.
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