
 Special Issue on Multidisciplinary Sciences and Advanced Technology

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 1

Received: 30 October, 2024, Revised: 23 November, 2024, Accepted: 23 November, 2024, Online: 19 December, 2024

DOI: https://doi.org/10.55708/js0312001

Exploring Challenges in Software Testing: A Structuration

Theory Perspective

Dr Tefo Gordon Sekgweleo 1 , Dr Phathutshedzo Makovhololo 2
1 Eskom, Department, Research, Testing & Development, Johannesburg, 2095, South Africa

2 Cape Peninsula University of Technology, Informatics, University, Cape Town, 8000, South Africa

E-mails: Ts330ci@gmail.com / phathuts@gmail.com

*Corresponding author: Dr Tefo Gordon Sekgweleo, Lower Germiston Rd, Rosherville, Johannesburg, 2095, 082 533 3484 & Ts330ci@gmail.com

ABSTRACT: Developing software is a huge job, which is why digital product teams rely on the software

development life cycle (SDLC). SDLC is a critical framework for digital product teams, and software testing

is its most vital component. Testing evaluates software components to identify properties of interest, detect

defects, and ensure alignment with requirements. If not optimized, testing can be costly, and its omission or

inadequate execution can lead to software failures, compromising business operations and reputation. This

study explores the challenges of software testing, adopting an interpretivist approach with semi-structured

data collection and analysis guided by Structuration theory's duality of structure. The key findings are: (1)

Software testing is crucial for delivering quality products and services, ensuring that software meets client

requirements and is free from defects. (2) Effective communication and collaboration among agents,

including software testers, developers, and project managers, are vital for successful software testing

outcomes. (3) Power dynamics and decision-making processes significantly impact software testing

outcomes, with project managers' decisions often dominating software testers' work. (4) Adhering to

organizational processes and standards is essential for ensuring quality software delivery, preventing

software testing from being bypassed or done hastily. (5) Legitimization of software testing practices is

necessary for instilling social attachment and control among software testers, recognizing the importance of

their role in delivering quality software. These findings highlight the significance of software testing in

ensuring software quality and business continuity, emphasizing the need for effective communication,

collaboration, and organizational processes to support software testers in their critical role.

KEYWORDS: Structuration Theory, Software testing, Software development, Software implementation, Software

Development Life Cycle (SDLC), Information Systems

1. Introduction

In recent years, software testing has gained prominence

in the software development industry [1]. Organisations

of all sizes rely on software to deliver services and

enhance productivity [2]. SDLC is a widely used

methodology that outlines the stages of software

development, from initiation to implementation [3].

Within SDLC, software testing is a critical phase that

ensures software reliability and adds value to

organisations [4]. A significant portion of software

development budgets is allocated to testing [2]. Software

testing encompasses various technical and non-technical

sections, including specification, design, implementation,

maintenance, and management issues [2]. Testing verifies

that software meets organizational objectives and

identifies errors or failures [5].

However, challenges like time constraints and

regression testing hinder effective software testing [6].

This qualitative study employs structuration theory to

analyze data and identify factors affecting software

testing in organisations. The dynamics between social

structures and human agency play an important role in

shaping the adoption, use, and impact of information

systems within organisations [7] [8]. Structuration Theory

(ST), developed by Anthony Giddens, offers a valuable

lens for examining these dynamics [7]. Despite its

potential, ST has been underutilized in IS research [9] [10].

This study aims to address this gap by applying ST to

explore the interplay between social structures and

http://www.jenrs.com/
https://doi.org/10.55708/js0312001
mailto:Ts330ci@gmail.com
mailto:Ts330ci@gmail.com
https://orcid.org/0000-0002-5216-6892

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 2

human agency in the context of IS implementation [11].

Specifically, this research seeks to understand how social

structures influence human agency and vice versa [12],

and how this interplay affects IS outcomes [13]. By

examining these dynamics, this study contributes to a

deeper understanding of the complex factors that shape

IS success and failure [14]. The paper is organized into

five sections: literature review, research methodology,

data analysis, findings, and conclusion.

2. Literature Review

This section covers existing literature in the following

key areas of the study: (i) software development, (ii)

Software testing, (iii) Software implementation, and (iv)

Structuration theory.

2.1. The role of Software Testing

Software testing plays an essential role in ensuring the

quality, consistency, and security of software products [4].

As software becomes increasingly pervasive in society,

the significance of software testing cannot be overstated

[15]. According to [16], software testing is a critical

process that detects defects and ensures software meets

user requirements. Effective software testing strategies

enable organisations to identify and mitigate potential

risks, reducing the likelihood of software failures and

minimising their impact [17].

Any product that is created must be tested before it can

be released to the general public for use or consumption.

Same applies to any software that is developed by

organisations to carry out their day-to-day duties.

Software testing is the approach that guarantees that

quality products are distributed to consumers, which in

turn uplifts customer satisfaction and trust. The aim of

software testing is to identify defects and issues in the

software development process so that they can be fixed

prior to its release. According to [18], it is vital to test

software as it helps to verify its quality and reliability

particularly in modern software development processes,

where very sophisticated software is continuously

released faster and quicker.

Even though software testing is important, its

activities are usually ignored even by big organisations

when executing significant software projects as they are

often regarded unlikeable, time wasting as well as tedious

when compared to more innovative and fulfilling

activities such as software design or coding [19]. In [18]

defines software testing as “the process of evaluating

software to ensure that it meets its originally specified

requirements and revealing faults and defects that may

affect the code”. It verifies that the software meets the

functional, performance, design as well as the

implementation requirements identified in the functional

requirement specification.

The primary intent of software testing is to guarantee

that software functions as expected, meets user

requirements, and is reliable, maintainable, and secure

[20]. Software testing involves various activities,

including test planning, test case development, test

execution, and test reporting [21]. These activities

guarantees that software is thoroughly vetted and meet

the required standards before deployment [22].

Moreover, software testing is the fundamental

component of the software development lifecycle,

complementing activities such as system analysis, design,

coding, and implementation [23]. Integrating software

testing into the software development process,

organisations can identify and report defects early,

minimizing the overall cost and time needed for software

development [24].

In conclusion, software testing is the important part

of software development, guaranteeing that software

meets the user requirements, are reliable, maintainable,

and secure. By adopting effective software testing

strategies, organisations can mitigate potential risks,

reduce software failures, and release quality software

products that meet the growing needs of society [25].

Lately, organisations, are focusing on software quality,

and they are identifying broad requirements, such as

more software functions, quicker response speed, as well

as reliable and safe operation [26]. Software testing can be

conducted in two main forms, either manually or

automated. According to [27], manual testing can be time

consuming, resource intensive and make testers not to

discover some defects hence there are automation tools in

place to enable both automation and performance

engineers to record and rerun the test cases which could

be tested manually by a software tester. Automated

testing reduces the cost and time for testing software, it

increases testing coverage by executing more test cases

faster and eliminates human errors (humans gets tired

when doing repetitive tasks and make errors) increased

software reliability, user satisfaction and reduces the

amount manual work that needs to be conducted by

software testers. According to [27], tools for automating

software testing enable software testers to consistently

perform testing in less time and can frequently reuse them

to retest the software. Automated testing decreases the

volume of manual work, increases high coverage by

executing additional test cases and reducing human

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 3

errors remarkably when humans are tired after several

repeats [28]. In [29] further alluded that software testing

is not performed only to detect defects but to assist

software developers to notice the mistakes they made,

provide tips on how to resolve those mistakes and also to

ensure that the software performs as specified in the

requirement specification.

2.2. System Development Life Cycle

Software development is a systematic process used to

create software products that meet specific requirements

and enable agents in a social system to achieve particular

goals [25]. Organisations adopt software development

strategies to manage software activities effectively and

ensure alignment with business objectives [30].

According to [24] software development strategy refers to

the approach organisations employ to develop the

software. Software development encompasses various

activities, including system analysis, design, coding, and

testing [31]. Organisations consider the development of

software as crucial for achieving business objectives and

goals [25]. In [16] emphasizes the vital role of software in

social systems, highlighting the need for extensive

research, to understand, enhance, and support in

software development.

2.3. Software Testing

Software testing is a crucial method that ensures

software functions as expected, without defects or issues

[4]. According to [16], software testing evaluates software

quality and identifies areas for improvement. The

primary goal of testing software is to discover defects and

guarantee it meets user requirements [17]. However, it is

essential to take into cognizance both functional and non-

functional requirements during testing. Failure to do so

may negative impact the quality of software [21]. For

instance, the Gauteng online registration system failed to

handle user load, despite functional testing [15]. Software

testing tools enable testers to conduct both functional and

non-functional testing, including performance testing,

which determines software behavior under various

conditions [20]. Automation tools enhance testing

efficiency, reliability, and repeatability, reducing human

error [20]. The ultimate goal of software testing is to

deliver high-quality software, ensuring business

confidence in the tested product [25]. Following testing,

software implementation ensues, aiming to deploy the

software for use.

The importance of software testing in the software

development process cannot be overstated [4]. Software

testing is crucial for ensuring the delivery of high-quality

software products that meet user requirements and are

reliable [17]. According to [16], software testing plays a

vital role in identifying and fixing defects, errors, and

bugs in the software, thereby reducing the likelihood of

software failures and minimizing their impact.

Moreover, software testing helps save time and money

by detecting defects early in the development process [24].

This is supported by [24], who argues that testing is an

essential component of the software development

lifecycle, complementing activities such as system

analysis, design, coding, and implementation.

Furthermore, software testing improves user experience

by ensuring that the software meets user requirements

[25]. It also enhances security by identifying security

vulnerabilities and ensuring that the software is secure

and protected against threats [15].

There are two main common types of software testing

namely, black box and white box. The main of intent of

black box testing is to test the behaviour of the software

whereas white box testing focuses on testing the internal

operation of the software. Black box testing also referred

to as functional testing is a process whereby the software

is tested without the knowledge of the internal workings

of the software [32]. It is a method that enables the test

engineer to design the test cases based on the information

from the specification and does not allow the test engineer

access to source code of the software [33] With black box,

the test engineer is not required to have programming

knowledge.

On the other hand, white box testing also referred to

glass box testing/structural testing is a method that

enables the test engineer/tester to design the test cases

based on the information derived from source code [34].

The tester is required to have programming background

with this type of testing as they are granted access to the

source code. Grey box testing is a third method whereby

the tester has limited knowledge about the internal

workings of the software and has the knowledge of

fundamental aspects of the software [35].

In addition, software testing supports continuous

improvement by providing feedback for refinement and

enhancement of the software [20]. This is critical for

building trust with customers, stakeholders, and users,

enhancing the organization's reputation [22]. In

conclusion, software testing is essential for delivering

high-quality software products that meet user

requirements, are reliable, and provide a positive user

experience [21]. By prioritizing software testing,

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 4

organisations can reduce risks, save time and money, and

build trust with their customers.

2.4. Software Implementation

All software follows a particular lifecycle prior to its

completion, from development to deployment,

irrespective of the methodology employed (agile or

traditional methodology), depending on the requirement

[3]. Software implementation refers to the process of

making software available for operation [1]. The term

implementation is used interchangeably, but in the

context of this study, it means making software

operational. In the SDLC, implementation refers to

applying system requirements, or actual coding [33].

Others describe it as constructing or building software

[21], or making it available for use after development [7].

Software implementation occurs after quality assurance

accompanied by various tests, including user acceptance

testing [22]. Quality assurance is a challenging factor

during implementation [1]. Top management approval is

also crucial for successful implementation, as they must

approve software before it is implemented or changed [7].

Software implementation poses several challenges

that can hinder its success. One of the primary challenges

is ensuring quality assurance, as inadequate testing can

lead to software failures and errors [1]. Additionally,

resistance to change from end-users can also pose a

significant challenge, as they may be reluctant to adopt

new software and processes [7]. Furthermore, the

implementation of software needs substantial resources,

including time, money, and personnel, which can be a

challenge for organisations with limited budgets [33].

Moreover, integrating new software with existing

systems and infrastructure can also be a complex

challenge [23]. In [33], finally, top management approval

and support are crucial for successful implementation,

and lack of commitment from leadership can lead to

implementation failure [22].

In conclusion, software testing and implementation

are critical components of the SDLC. Effective software

testing ensures that software meets user requirements, is

reliable, and provides a positive user experience.

However, software implementation poses several

challenges, including quality assurance, resistance to

change, resource constraints, integration with existing

systems, and top management approval. To overcome

these challenges, organisations must prioritize software

testing and implementation, adopt effective software

development methodologies, and ensure stakeholder

commitment. By doing so, organisations can deliver high-

quality software products that meet user needs and drive

business success.

2.5. Structuration Theory

The selection of an appropriate theory to underpin a

study is critically important because it assists in

determining the outcomes of the study [11]. Structuration

theory (ST) was developed by [8], it is a sociology theory

but has also gained popularity in the information system

(IS) field where it has been borrowed to analyse data [36].

The theory takes a stance that social action cannot be

explained in detail through structure or agency alone, but

it appreciates the actors operating within the context of

rules shaped by social structures but act in a biddable

manner that these structures reinforced. In [37] defines ST

“as the reproduction of social structures through human

actions. Social structures and human actions are viewed

as two aspects of the same whole, instead of seeing

human actions happening outside of the constraints of

social structure”. According to [38] ST puts an emphasis

on agency and structure, their duality within a social

system which implies that the agent/agency entails

technical such as technology and non-technical such as

human entities. The structure is the rules and resource in

structuration. In [39] further states that ST focuses on how

events and social systems are produced and reproduced

over a period of time and space. In [40] alluded that

human agency as well as social structure cannot be

treated as separate ideas but are two ways of regarding

social action and is termed as duality of structure.

Structure is the recurrent patterned arrangements which

influence or limit the choices and opportunities available.

Whilst agency is the capacity of individuals to act

independently and to make their own free choices [36]. ST

is divided into structure, modality and interaction

whereby the modality provides interaction between

structure and interaction [37].

Figure 1: Dimensions of the duality of structure [26]

 Both the social structures as well as the human

actions are treated as two aspects of the same whole

within the duality of structure [8]. In [40] [41] emphasizes

Giddens' claim that social phenomena emantes from both

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 5

social structure and agency, not just one or the other.

Figure 1 illustrates the dimensions of the duality of

structure [8]. In IS research, various theories are used,

including social theories [11]. IS researchers have

borrowed b social theories, such as Actor-Network

Theory (ANT), Activity Theory (AT), and Structuration

Theory (ST) to underpin their studies [8].

This underscores the importance of software testing

in ensuring that developed software meets requirements

and is reliable, maintainable, and secure [4]. The SDLC

comprises a sequence of connected methods from

planning to system testing, ensures consistency and

produces well-developed software [20]. As software

becomes increasingly prevalent in society, the call for

reliable, maintainable, and secure software requirements

continues to grow [15].

3. Research Methodology

Qualitative approach was adopted for this study to

gain an in-depth understanding of software testing in

organisations from the participants' perspective [42].

Qualitative methods, as noted by [43], are subjective in

nature, focusing on beliefs and encounters rather than

statistical figures. A case study was used, which is usually

employed in qualitative research [44]. This design allows

for an in-depth examination of a phenomenon within its

real-life setting [44]. The case study organization, Setlamo

Technologies (a pseudonym), is a public sector

organization operating in South Africa, with a dedicated

software testing team. Semi-structured interviews were

used to collect data, offering flexibility and allowing for

clarifications during the interviews [45]. Therefore, this

approach allows for in-depth examination without

deviating from the research's core focus [46]. Fourteen

participants were interviewed until saturation was

reached [47].

The data was transcribed and analyzed using

Structuration theory as a lens, focusing on the duality of

structure [8]. The vertical approach was adopted, and an

interpretivist approach was employed to analyze the

findings [47]. The interpretive paradigm was used to

subjectively interpret the findings [11].

This study adopted a qualitative case study approach,

utilizing semi-structured interviews, to explore software

testing practices in-depth [44]. This methodology is best

suited for examining complex phenomena, such as

software testing, in real-life settings [42]. Semi-structured

interviews provide flexibility to explore topics in-depth,

allowing participants to share experiences and opinions

in their own words [45]. The case study method enables a

comprehensive understanding of the organization,

including social structures, human agency, and

technology interactions [8]. This approach allows for a

detailed examination of software testing practices,

processes, and contextual factors, making it the most

appropriate methodology for this study [48]. Moreover,

identifying influential factors and potential adopters, as

well as understanding their decision-making processes, is

crucial for a thorough understanding of the subject [49].

4. Data Analysis

For the purpose of data analysis, participants and

organisations were labeled. Fourteen employees from

Setlamo Technologies participated in the research. The

referencing standard is exemplified as ST01, 7:17-20,

indicating organization ST, participant 01, page number

7, and line numbers 17 to 20.

i. Setlamo Technologies: Participants ST01 to ST14

At Setlamo Technologies, agents and structures were

involved in software testing. These agents and structures

were from the IT department. The agents comprised both

technical and non-technical individuals. The structure

entailed the rules and resources utilized in software

testing. All participants shared similar interest for

realizing organisational objectives through software

testing and utilization.

4.1. Structuration Theory

According to [33], Structuration Theory (ST)

encompasses agents (agency) and structures. Agents can

be technical or non-technical, while structures consist of

rules and resources involved in software testing activities

within the organisation. The researchers identified agents

followed by structures.

4.2. Agents (Agency)

Agency refers to an organisation comprising technical

and non-technical agents, where some apply

knowledge/conscious (human) and others lack

knowledge capability [50]. Agency can also be associated

to individuals or group of abilities within a particular

environment. In the case of this study individuals are

those who are involved in the SDLC such as software

developers, software testers and others. They have

particular skills to enable them to perform their duties.

Therefore, these individuals can collaborate and apply

their various skills to deliver a working solution within

the organization (environment). An agent can be

understood as anything with the potential to make a

difference in a social structure [51]. The research

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 6

identified technical agents, including software testing

tools such as Rational Quality Manager and Meter, as well

as SAP, Oracle, and the environment comprising

development, testing, and production. Additionally,

technical agents included the Integrated Financial

Management System (IFMS) and International Software

Testing Qualifications Board (ISTQB) training.

Non-technical agents included software test analysts,

project managers, business analysts, functional support

personnel, software developers, and individuals involved

in software development methodology, either Agile or

traditional. Furthermore, non-technical agents comprised

individuals responsible for software testing standards,

implementation policies, and the change management

committee. Documentation, including functional

requirements, test cases, and test results, as well as the test

lab, were also identified as non-technical agents.

4.3. Structure

The structure refers to the protocol followed to

accomplish the tasks assigned to individuals within the

team. Every individual has to take responsibility to

delivering their tasks on scheduled time. Continuous

reporting is necessary especial when an individual is

struggling to perform what is assigned to them. These

enables others to chip in and assist so that the project can

be delivered on a promised time. Agents utilize structures

to create and recreate social activities [34]. In the context

of Structuration Theory, structure refers to rules and

resources. Rules comprise regulations and policies

guiding software testing activities, including the change

management process and implementation policy.

Resources encompass material and non-material objects

used to carry out actions In this research, resources

included software test analysts, project managers,

business analysts, functional support personnel, software

developers, software development methodology,

software testing standards, implementation policies,

change management committee, documentation

(functional requirement, test cases, test results, test plan),

and test lab [52].

4.4. Duality of Structure

4.4.1. Signification

Organisations develop or enhance existing software to

render services, sell products, and conduct day-to-day

activities. This software must be rigorously tested prior to

implementation to eliminate defects. Failure to do so may

result in losing existing clients and failing to attract

potential clients. One participant emphasized that

"Testers uncover and eliminate things that we designers and

analysts have overlooked when we were planning" (ST_06,

17:647-648). Software testing ensures business continuity

and quality, as highlighted by a functional support

personnel: "We want to deliver a quality and functional

software that meets the user requirements" (ST_11, 27:1041).

Interpretive Scheme (Stock of Knowledge)

It was vital for other employees within the

organization to understand the significance of software

testing. However, employees from other departments

perceived software testing as a waste of time and a delay

in implementation. This lack of understanding developed

a negative perception towards software testing. One

participant noted that "People who are not involved in

software testing think that software testing is not important"

(ST_01, 06:215). Consequently, only the software testing

team comprehended the value of software testing, as

stated by a software tester: "Maybe do some roadshow and

explain to them what exactly testing entails in order for them to

get a broader picture of what testing is" (ST_03, 08:312-313).

Even a software developer expressed uncertainty

about the role of software testing: "I do have an idea but I

don't really know what they do...let's say after unit testing I

know that we hand over the software to them...they already have

some test cases, test scripts or whatever...mostly they will be

verifying characters and send the results to me" (ST_13,

29:1142-1144). This lack of understanding created

animosity between non-technical agents (project team

members).

4.4.2. Communication

Effective communication was crucial among project

team members to deliver quality software. Both

functional and non-functional requirements were

communicated through the functional requirements

specifications. Verbal communication among team

members and updates to the functional requirement

specification ensured clarity. A software tester

emphasized that "Others felt that by verifying software we

are judging that they did not do their work properly...especially

when a tester logs a defect against the developer...they will

argue with you and even fight with you verbally" (ST_03, 08-

09:316-319).

Software testers relied on the functional requirement

specifications to verify the validity of the developed

software. The developed software needed to correspond

with the specified documents to deliver quality software.

Therefore, within this organization, requirements were

communicated through documentation, such as business

requirements, functional specifications, and technical

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 7

requirement specifications: "All the user requirements are

documented, and the user requirement specification is signed off

prior to development" (ST_05, 12:472-473).

4.4.3. Power

Solid decisions needed to be made regarding software

development, testing, and implementation. The change

management committee held the power to decide

whether software development was necessary. They

relied on testing results from the software testing team to

decide whether software was ready for implementation.

A functional support personnel stated that "We have a

change management department where they actually decide

whether the change is needed or not" (ST_07, 18:674-675).

Other employees within the organization exercised

their power to influence project prioritization. This power

was influenced by the position (facility) individuals

occupied within the organization, such as the CIO. When

the CIO committed to a project, it dominated other

projects and received high priority. A test analyst noted

that "The CIO committed to that project, and they drilled down

to the testing team, and the project was really regarded as

important, and it had to undergo testing" (ST_08, 21:797-799).

4.4.4. Facility

The change management committee exercised power

over the agency (software development team) based on

the facility (authority) granted to them by the

organization. They made decisions about what needed to

be developed, tested, and implemented. Consequently,

they relied on software testing results to decide whether

software was implemented or not: "We have a change

management department where they actually decide whether

the change is needed or not" (ST_07, 18:674-675).

On the other hand, project managers had the tendency

to decide on behalf of the software testing team. As a

result, project managers dominated other teams, such as

the software testing team, by imposing timelines without

consulting the team. A software tester noted that

"Unrealistic schedules from the project team...because if the

project is not scheduled properly, it puts testing under

pressure...for example, testing could be allocated three months

for conducting all the testing, which makes it difficult for the

testing team to meet timelines" (ST_08, 20:781-783).

4.4.5. Sanction

The organisation had processes in place that needed to

be followed to implement software. However, instances

occurred where these processes were bypassed by some

employees, becoming a norm for many projects.

Consequently, many software failures occurred in

production. A participant stated that "Processes are not

followed at all, and management is doing nothing about the

situation" (ST_05, 14:545).

According to the organisation's regulations, software

should be developed, tested, and then implemented. This

regulation should be the norm for the agency (software

development team). However, the change management

committee needed testing results to decide whether to

implement software.

4.4.6. Norm

Adhering to standards, procedures, and policies

became a norm for employees within the organization.

However, instances occurred where project managers

prepared project schedules and made estimations

without consulting the testing team. Also, project

managers promised to deliver software to business within

a particular duration that was not agreed upon with the

software testing team. As a result, the software testing

team was pressed to complete testing within a short

period, leading to working overtime and even coming in

on weekends to finish their work. Such working

conditions negatively impacted software quality, as a

tired software tester was more likely to make mistakes.

The relationship between software testers and

software developers was strained due to logged defects.

Software developers felt that software testers were not

recognizing their hard work. Some software was

implemented without being tested and was tested in

production because scheduled timelines were not met.

The test manager asserted that "Quality will be impacted,

and as a result, you are likely to produce production issues when

you deploy any application or system that didn't follow a proper

process" (ST_14, 34:1317-1318).

As a result, it became a norm not to follow proper

processes when testing software within the organization.

Therefore, it was management's responsibility to enforce

standards, procedures, and policies. The software testing

team complained to their test manager, who alerted

management about processes not being followed by other

members of the software development team. However,

nothing seemed to be changing. Thus, one software test

analyst angrily stated that "Processes are not followed at all,

and management is doing nothing about the situation" (ST_05,

14:545).

It was vital for employees to follow organizational

processes to deliver quality software. Consequently,

Setlamo Technologies' clients would be satisfied with

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 8

what was delivered to them. One participant stressed that

"It is important to make sure that processes are followed because,

in that case, testing will not be bypassed" (ST_04, 11:427-428).

4.4.7. Legitimation

Irrespective of either right or wrong, a norm is

legitimized. Thus, it is important to do things properly

within the organization. If nothing is done about it, then

the organization would fail to achieve its goals, and the

client would be unhappy with the quality of software

delivered. Therefore, some agents in the organization

legitimize software testing practices by accepting it as the

norm. These agents understood that once software is

developed, it needs to be tested to ensure it meets client

requirements. A software tester noted that "Testing is a

crucial part of the software development life cycle...you cannot

just develop and implement without testing" (ST_02, 07:263-

264). This legitimation of software testing practices is

essential for the organization to deliver quality software

to its clients. However, some agents within the

organization did not legitimize software testing practices,

leading to software testing being bypassed or not being

done properly.

4.4.8. Domination

The power dynamics within the organization led to

domination by some agents over others. Project managers

dominated software testers by imposing timelines

without consulting them. This domination led to software

testing being done hastily, resulting in poor quality

software being delivered to clients. A software tester

stated that "Project managers promise to deliver software to

the business within a particular duration that was not agreed

upon with the testing team" (ST_08, 20:781-783).

4.4.9. Signification

Software testing signified quality software delivery to

clients. It ensured that software met client requirements

and was free from defects [28]. A software tester

emphasized that "Testing ensures that the software meets the

requirements...it ensures that the software is functional and

works as expected" (ST_06, 17:647-648). However, some

agents within the organization did not signify software

testing, leading to poor quality software being delivered

to clients.

4.5. Software Testing in the SDLC: A Structuration Theory

Perspective

At Setlamo Technologies, software testing is a critical

component of the Software Development Life Cycle

(SDLC). Our research identified agents (technical and

non-technical) and structures (rules and resources)

involved in software testing [29]. Technical agents

included testing tools and methodologies, while non-

technical agents comprised project managers, business

analysts, and software developers.

4.6. Current SDLC Market Trends:

• Agile methodologies emphasize collaboration and

communication among agents.

• DevOps practices integrate testing into the

development process.

• Continuous Testing and Continuous

Integration/Continuous Deployment (CI/CD)

pipelines automate testing processes.

• Artificial Intelligence (AI) and Machine Learning (ML)

enhance testing efficiency and effectiveness.

Agile methods vary in their ways, but they share a

common aim which is to enable their teams swiftly

respond to change [53]. In [54] stated that when

modifications are expensive to adjust to later in the project,

the capability to respond quicker to modification

minimizes the project risks and their budgets [55]. In [56]

alluded that while agile methods are efficient, huge, and

complex software products often needs methodical

discipline with the obligatory process to guarantee

success. On the other hand, DevOps was introduced

around 2007 and 2008 after software development

communities realized the fatal dysfunction within the

software development landscape. There was a disconnect

between those who develop the software and those who

implement and maintain the software. According to [62]

often in the software deployment, employees who are

involved in the development of software are not

necessarily the ones who are involved in the

implementation, hence the disconnect is encountered.

DevOps approach assists in delivering value faster and

uninterruptedly, minimizing challenges because of

miscommunication between team members as well as

fast-tracking problem resolution [57]. In [58]] alluded that

DevOps is an organisational shift which substitute

distributed siloed groups executing tasks separately with

cross-functional teams which work on continuous

operational feature deliveries. In simple terms DevOps is

a culture shift which provides collaboration amongst

development, quality assurance and operations. [59]

highlighted that while continuous integration (CI)

combines work-in-progress numerous times a day,

continuous deployment (CD) focuses on to possible

release values to consumers faster and capably by

employing automation as much as possible. Artificial

Intelligence (AI) and Machine Learning (ML) are not just

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 9

a buzzword in the digital era but the best way of doing

things. Gone are those times of doing things in a

traditional manner. AI makes provision for countless

improved results on a bigger scale and more complex

neural networks, packed with many layers deep learning

and much progress can be ascribed to bigger data sets and

large-scale learning/training on graphic processing unit

[60] Computers are taught to emulate humans through

performing complex tasks which used to be historically

performed by humans such as reasoning, making decisions

or solving problems. Whilst ML which is a subset of AI

which is used to learn from large data sets. It enables

computers to learn from data without being explicitly

programmed [61]. DL on the other hand enables

computers to learn complex concepts through creating

them out of simpler ones [62]. It uses neural networks to

process data like humans.

Our research highlights the importance of software

testing in the SDLC, emphasizing the need for effective

communication, collaboration, and process adherence. As

the SDLC market continues to evolve, organisations must

prioritize software testing to deliver high-quality

products and services. By embracing current trends and

best practices, organisations can optimize their software

testing processes and stay competitive in the market.

5. Findings

Poor management and lack of process compliance

were significant factors contributing to poor quality

software at Setlamo Technologies. The organisation's

failure to enforce processes, policies, standards, and

procedures led to software testing being treated as an

afterthought, resulting in poor quality software. This lack

of emphasis on software testing also led to a culture of

neglect, where software testing was seen as a mere

formality rather than a critical aspect of software

development.

The software testing team faced unrealistic timelines,

and their concerns were ignored by management, leading

to frustration and high turnover rates. This highlights the

need for management to prioritize software testing and

provide adequate resources and support to the testing

team. Non-compliance to processes was a norm, with

some employees bypassing the change management

committee and implementing software without testing.

This lack of compliance led to poor quality software,

reputational damage, and loss of customers. It also

suggests a lack of accountability and a culture of siloed

work, where individuals prioritize their own goals over

the organization's overall objectives.

Furthermore, a lack of software testing knowledge

among employees contributed to the undervaluing of

software testing, leading to frustration among software

testers and a high turnover rate. This highlights the need

for training and education programs to ensure that all

employees understand the importance and benefits of

software testing. Furthermore, a lack of software testing

knowledge among employees contributed to the

undervaluing of software testing, leading to frustration

among software testers and a high turnover rate. This

highlights the need for training and education programs

to ensure that all employees understand the importance

and benefits of software testing.

The disconnect between project stakeholders,

including project managers, software developers, and

testers, also hindered effective software development and

testing. This suggests a need for improved

communication, collaboration, and integration among

stakeholders to ensure that software development and

testing are aligned with organizational goals.

To address these issues, management must enforce

processes, policies, standards, and procedures, and

ensure that all employees understand the value of

software testing. Additionally, stakeholders must work

collaboratively to deliver good quality software, and

management must address non-compliance and

knowledge gaps to prevent poor quality software. This

may involve implementing quality control measures,

providing training and education programs, and

fostering a culture of collaboration and accountability.

Figure 1: Factors affecting the quality of software at Setlamo Technologies

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 10

6. Summary

In summary, the study reveals significant challenges

in software testing practices at Setlamo Technologies,

including:

6.1. Poor Management and Lack of Adherence to Processes,

Policies, and Standards

Poor management and lack of adherence to

established processes, policies, and standards were

significant contributors to the software quality issues at

Mmuso Technologies. The absence of effective leadership

and clear goals led to a lack of direction and focus among

team members. Furthermore, the failure to enforce

processes, policies, and standards resulted in a culture of

non-compliance, where employees bypassed established

procedures, leading to inconsistent and poor-quality

software development.

6.2. Non-Compliance to Processes, Leading to Untested

Software Implementation

Non-compliance to processes led to untested software

implementation, which significantly impacted software

quality. The lack of adherence to established processes

resulted in software being implemented without proper

testing, leading to errors, bugs, and defects. This not only

affected the software's performance but also

compromised its reliability and security. The failure to

follow established testing processes led to a lack of

confidence in the software's quality, ultimately affecting

customer satisfaction.

6.3. Poor Quality Software, Resulting from Inadequate

Testing and Lack of Cooperation among Stakeholders

Poor quality software was a direct result of inadequate

testing and lack of cooperation among stakeholders.

Insufficient testing led to undetected errors, bugs, and

defects, while the lack of cooperation among stakeholders

hindered effective communication, collaboration, and

coordination. This resulted in software that failed to meet

customer requirements, was unreliable, and lacked

security. The absence of a collaborative environment led

to a lack of accountability, further exacerbating software

quality issues.

6.4. Lack of Software Testing Knowledge among Employees,

Leading to Frustration and Undervaluation of Testing

The lack of software testing knowledge among

employees led to frustration and undervaluation of

testing. Employees without proper training and

understanding of testing principles and methodologies

struggled to effectively test software, leading to

inadequate testing and poor software quality. The

undervaluation of testing resulted in a lack of resources,

support, and recognition for testing efforts, further

demotivating employees and perpetuating software

quality issues.

6.5. Disconnect Between Project Stakeholders, Causing

Process Non-Compliance and Poor Software Quality

The disconnect between project stakeholders led to

process non-compliance and poor software quality. Poor

communication, collaboration, and coordination among

stakeholders resulted in a lack of understanding of project

requirements, leading to non-compliance with

established processes. This, in turn, led to poor software

quality, as stakeholders worked in silos, prioritizing

individual goals over project objectives. The absence of a

unified approach led to a lack of accountability, further

exacerbating software quality issues. These challenges

lead to reputational damage, customer loss, and

decreased trust in the organization. To address these

issues, the organization must:

1. Enforce processes, policies, and standards.

2. Educate employees on software testing's value.

3. Foster cooperation and communication among

stakeholders.

4. Address knowledge gaps and provide training.

5. Encourage a culture of quality and testing.

By addressing these challenges, Setlamo Technologies can

improve software quality, increase customer satisfaction,

and maintain a competitive edge in the industry.

6.6. Key Findings:

Software testing is crucial for delivering quality

products and services, ensuring that software meets client

requirements and is free from defects.

1. Effective communication and collaboration among

agents, including software testers, developers, and

project managers, are vital for successful software

testing outcomes.

2. Power dynamics and decision-making processes

significantly impact software testing outcomes, with

project managers' decisions often dominating

software testers' work.

3. Adhering to organizational processes and standards is

essential for ensuring quality software delivery,

preventing software testing from being bypassed or

done hastily.

4. Legitimization of software testing practices is

necessary for instilling a sense of belonging and

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 11

control among software testers, recognizing the

importance of their role in delivering quality software.

Recommendations

1. Establish clear communication channels and

collaboration frameworks to facilitate effective

interaction among agents involved in software testing.

2. Empower software testers by involving them in

decision-making processes and providing autonomy

in their work to ensure quality software delivery.

3. Develop and enforce organizational processes and

standards that prioritize software testing, preventing

domination by project managers' decisions.

4. Provide training and resources to software testers to

enhance their skills and knowledge, legitimizing their

role in delivering quality software.

5. Conduct regular assessments and evaluations to

identify areas for improvement in software testing

practices, ensuring continuous quality improvement.

7. Conclusion

In conclusion, this study highlights the critical role of

software testing in delivering quality products and

services, emphasizing the need for effective

communication, collaboration, and empowerment of

software testers. The findings underscore the impact of

power dynamics and decision-making processes on

software testing outcomes, stressing the importance of

adhering to organizational processes and standards. By

implementing the recommended measures, organisations

can legitimize software testing practices, foster a sense of

belonging and control among software testers, and

ultimately ensure the delivery of high-quality software

that meets client requirements. Moreover, this study

demonstrates that addressing the challenges in software

testing practices can have far-reaching benefits, including:

• Enhanced software development life cycle

• Improved customer satisfaction

• Increased trust and reputation

• Better decision-making processes

• Empowered software testers

• Competitive edge in the industry

By prioritizing software testing and addressing the

identified challenges, organisations can unlock these

benefits and deliver high-quality software products and

services that meet the evolving needs of their clients.

Ultimately, this study contributes to the growing body of

knowledge on software testing practices, emphasizing the

need for a collaborative, empowered, and process-driven

approach to software testing.

Acknowledgement

We extend our heartfelt appreciation to ESKOM South

Africa, Department of Research, for their generous

sponsorship, which has enabled us to publish this paper.

We are deeply grateful for their recognition of the

significance of research and its contribution to the existing

body of knowledge. Their support and understanding are

truly valued, and we express our sincere thanks.

Reffrence

[1] T. Bryant, Software Development: A Practitioner's Approach,

Routledge, 2017.

[2] R. Tuteja and S. K. Dubey, Software Testing: Concepts and

Operations, PHI Learning, 2012.

[3] J. P. Kotter, "Leading Change," Harvard Business Review Press,

2012.

[4] G. J. Myers, "The Art of Software Testing," John Wiley & Sons,

2011.

[5] M. Oluigbo, L. Erasmus, and R. Snyman, "An Exploratory

Study of Software Testing Practices in South Africa," South

African Computer Journal,, vol. 29, no. 1, 1-15, 2017.

[6] J. Cameron and P. Green, Software Testing: A Guide to the

TMap Approach, Pearson Education,, 2015.

[7] A. Giddens, Central Problems in Social Theory: Action,

Structure, and Contradiction in Social Analysis, University of

California Press, 1979.

[8] W. J. Orlikowski, "The Duality of Technology: Rethinking the

Concept of Technology in Organizations", Organization

Science," vol. 3, 398-427, 1992.

[9] C. Jones, "Software Project Management Practices: Failure to

Apply Project Management Principles," 2011.

[10] M. Pozzebon, "The Influence of a Quality Management System

on the Software Development Process," Journal of Systems and

Software, 2004.

[11] H. K. Klein, M. D. Myers, "A Set of Principles for Conducting

and Evaluating Interpretive Field Studies in Information

Systems," MIS Quarterly, 2011.

[12] W. H. Sewell, "A Theory of Structure: Duality, Agency, and

Transformation," American Journal of Sociology, vol. 98, no. 1, pp.

1-29 , 1992.

[13] W. J. Orlikowski, "Using Technology and Constituting

Structures: A Practice Lens for Studying Technology in

Organizations. Organization Science”," Organization Science,

vol. 11, 404-428, 2000.

[14] G. Walsham, "Interpreting Information Systems in

Organizations," John Wiley & Sons, 1993.

[15] I. I. IEEE29119-1:2018, "Software and Systems Engineering —

Software Testing — Part 1: Concepts and Definitions,"

International Organization for Standardization, 2018.

[16] E. Dustin., "Automated Software Testing: A Guide for Software

Project Managers," Charles River Media, 2017.

[17] C. Kaner, Lessons Learned in Software Testing: A Context-

Driven Approach, John Wiley & Sons, 2013.

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 12

[18] T. Fulcini et al., "A review on tools, mechanics, benefits, and

challenges of gamified software testing," ACM Computing

Surveys, vol. 55, no. 14s, 1-37, 2023.

[19] D. Deak et al., "The Impact of Agile Methods on Software

Project Management," International Journal of Information

Technology Project Management, 2016.

[20] IEEE, "IEEE Standard for Software and System Test

Documentation (IEEE Std 829-2019)," IEEE Computer Society,

2019.

[21] P. E. Black, "Managing Software Projects. In Encyclopedia of

Software Engineering," CRC Press , 359-373, 2008.

[22] ITIL, ITIL Foundation: ITIL 4 Edition, AXELOS, 2019.

[23] I. Sommerville, Software Engineering, Pearson, 2016.

[24] R. S. Pressman, "Software Engineering: A Practitioner's

Approach," McGraw-Hill, vol. 2, 41-42., 2010.

[25] K. Laudon, J. P. Laudon, Management Information Systems:

Managing the Digital Firm, Pearson, 2015.

[26] Y. Zhao et al., "Software Quality Requirements in the Context

of Digital Transformation," International Journal of Software

Engineering and Knowledge Engineering, 2021.

[27] T. Sekgweleo, T. Iyamu, "Software testing: some influencing

factors in a South African organisation," Journal of Contemporary

Management, vol. 17, no. 1, 86-107, 2020.

[28] O. Ibitomi et al., "Automation of Software Testing: A Systematic

Review," Journal of Software Engineering and Applications, vol. 17,

no. 1, 1-22, 2021.

[29] T. Sekgweleo, "Disjoint between development and deployment

of software," (Masters dissertation, Tshwane University of

Technology, 2011).

[30] G. Bansal, "Software Development Strategy, In Encyclopedia of

Software Engineering," Taylor & Francis, 1-10, 2008.

[31] G. Ghosh, "Software Development: Principles, Methodologies,

Tools, and Techniques," CRC Press, 2017.

[32] T. G. Sekgweleo, "A decision support system framework for

testing and evaluating software in organisations," (Doctoral

dissertation, Cape Peninsula University of Technology, 2018).

[33] K. Avison, G. Fitzgerald, Information Systems Development:

Methodologies, Techniques and Tools, Pearson, 2015.

[34] S. Nidhra, J. Dondeti, P. Katikar and S. Tekkali, "Implementing

the concept of refactoring in software development," In 2012

CSI Sixth International Conference on Software Engineering

(CONSEG), 1-8, 2012.

[35] M.E. Khan, F. Khan, "A comparative study of white box, black

box and grey box testing techniques," International Journal of

Advanced Computer Science and Applications, vol. 3, no. 6, 1-141,

2012.

[36] T. Sekgweleo et al., "Structuration Theory: A Review of the

Literature," Journal of Sociology and Social Anthropology, vol. 8,

no. 2, 147-164, 2017.

[37] T.G. Sekgweleo, M. Makovhololo, "Structuration Theory: A

Framework for Understanding Software Testing," Journal of

Software Engineering and Applications,, vol. 16, no. 1, 1-15, 2023.

[38] T. Iyamu, D. Roode, "The use of structuration theory and actor

network theory for analysis: Case study of a financial

institution in South Africa," Social influences on information and

communication technology innovations, IGI Global, 1-19, 2012.

[39] L. Ma, Knowing and teaching elementary mathematics:

Teachers' understanding of fundamental mathematics in China

and the United States, Routledge, 2010.

[40] B. P. Lamsal, "Production, health aspects and potential food

uses of dairy prebiotic galactooligosaccharides," Journal of the

Science of Food and Agriculture , vol. 9, no. 10, 2020-2028, 2012.

[41] W. H. Sewell. Jr, "A theory of structure: Duality, agency, and

transformation," American journal of sociology, vol. 98, no. 1, 1-29,

1992.

[42] J. W. Creswell, "Research Design: Qualitative, Quantitative, and

Mixed Methods Approaches," Sage Publications, 2014.

[43] M. Q. Patton, "Qualitative Research and Evaluation Methods,"

Sage Publications, 2002.

[44] L. Rademaker, "Qualitative Research from Start to Finish: A

Book Review," Qualitative Research, vol. 16, no. 5, 1425-1428,

2011.

[45] S. Kvale, "Interviews: Learning the craft of qualitative research

interviewing," Sage, 2009.

[46] P. Nemutanzhela, T. Iyamu, "A framework for enhancing the

information systems innovation: using competitive

intelligence," Electronic Journal of Information Systems Evaluation,

vol. 14, no. 2, 242-253, 2011.

[47] J. Low, "A pragmatic definition of the concept of theoretical

saturation," Sociological focus, vol. 52, no. 2, pp. 131-139, 2019.

[48] G. Walsham, "Decentralization of IS in developing countries:

power to the people?," Journal of Information Technology, vol. 8,

no. 2, 74-81, 1993.

[49] P. Makovholo et al., "Diffusion of innovation theory for

information technology decision making in organisational

strategy," Journal of Contemporary Management, vol. 14, no. 1,

461-481, 2017.

[50] Y. Sarason et al.,, "Entrepreneurship as the nexus of individual

and opportunity: A structuration view," Journal of business

venturing, vol. 21, no. 3, 286-305., 2006.

[51] M. Peillon, "The Constitution of Society, Outline of the Theory

of Structuration," Oxford University Press, vol. 1, no. 3, 261-263,

1985.

[52] N. Barqawi, "Software service innovation: an action research

into release cycle management," 2014.

[53] M. Coram, S. Bohner, "The impact of agile methods on software

project management," In 12th IEEE International Conference and

Workshops on the Engineering of Computer-Based Systems

(ECBS'05), 363-370, 2005.

[54] F. Paetsch et al., "Requirements engineering and agile software

development," 2003.

[55] K. Beck, eXtreme Programming Explained, Addison-Wesley,

2000.

[56] T. Sekgweleo, T. Iyamu, "Empirically Examined the Disjoint in

Software Deployment: A Case of Telecommunication,"

International Journal of Actor-Network Theory and Technological

Innovation, vol. 4, no. 3, 36-50, 2012.

[57] M. Virmani, "Understanding DevOps & bridging the gap from

continuous integration to continuous delivery," 2015.

http://www.jenrs.com/

 T. G. Sekgweleo., Exploring Challenges in Software Testing

www.jenrs.com Journal of Engineering Research and Sciences, 3(12): 01-13, 2024 13

[58] M. Standar, "Continuous architecture in a large distributed

agile organization: A case study at Ericsson," IEEE Explore, vol.

33, no. 3, 1-104, 2017.

[59] R. T. Yarlagadda, "Understanding DevOps & bridging the gap

from continuous integration to continuous delivery,"

International Journal of Emerging Technologies and Innovative

Research, 2349-5162, 2018.

[60] R. Feldt et al., "Ways of applying artificial intelligence in

software engineering," 2018.

[61] B. Mahesh, "Machine learning algorithms-a review,"

International Journal of Science and Research (IJSR, vol. 9, no. 1,

381-386, 2020.

[62] M. R. Minar, J. Naher, "Recent advances in deep learning: An

overview," arXiv preprint arXiv:1807.08169, 1-31, 2018.

Copyright: This article is an open access article

distributed under the terms and conditions of the

Creative Commons Attribution (CC BY-SA) license

(https://creativecommons.org/licenses/by-sa/4.0/).

Dr Tefo Gordon Sekgweleo has

done his master’s degree from

Tshwane University of Technology

in 2012. He completed his PhD

degree from Cape Peninsula

University of Technology in 2018. He

started his career as a software

developer, he moved to software testing as a software

automation engineer. He became a software testing

manager, I have 36 publications, and currently working

as a research manager for digitalization.

 Dr Phathutshedzo Makovhololo is a

distinguished IT professional and

scholar with 18 years of experience in

leadership and senior management

roles. Holding a PhD in Informatics, she

possesses expertise in IT governance,

policy management, business analysis,

and project management. With a strong ability to bridge

the gap between technology and business strategy, Dr.

Makovhololo has a proven track record of effective

leadership, lecturing, and research. Her notable strengths

include visionary leadership, excellent communication,

and strategic thinking, complemented by a strong

research and analytical skillset.

http://www.jenrs.com/
https://creativecommons.org/licenses/by-sa/4.0/

