
Special Issue on Multidisciplinary Sciences & Advanced Technology

Received: 13 September 2024, Revised: 17 October 2024, Accepted: 18 October 20 24, Online: 04 November 2024

DOI: https://dx.doi.org/1 0.55708/js0311002

Secure Anonymous Acknowledgments in a Delay-Tolerant Network
Edoardo Biagioni
Edoardo Biagioni, University of Hawai’i at Mānoa Department of Information and Computer Sciences, Honolulu, HI 96822, USA
∗Corresponding author: Edoardo Biagioni, 1680 East-West Road, Honolulu HI 96822, USA, +1-808-956-3891 esb@hawaii.edu

ABSTRACT: TCP and many other protocols use acknowledgments to provide reliable transmission
of data over unreliable media. Secure acknowledgments offer a cryptographic guarantee that valid
acknowledgments for a given message can only be issued by the intended receiver. In the context of an
ad-hoc network, anonymous acknowledgments make it hard for an attacker to determine which device
issued a particular acknowledgment. And unlike TCP, the acknowledgments described here work well
even for connectionless communications. This acknowledgment mechanism assumes that message data
is protected by secure encryption. The sender of a data message includes in the encrypted part of the
message a randomly-generated acknowledgment. Only the intended receiver can decrypt the message
and issue the acknowledgment. The acknowledgment is issued by sending it out to its peers, who
will forward it until it reaches the sender of the data being acknowledged. Such randomly-generated
acknowledgments in no way identify senders and receivers, providing a degree of anonymity. This
paper describes the use of such acknowledgments in both ad-hoc networks and Delay-Tolerant Networks.
In such networks every peer participates in forwarding data, including both the routing and the end-host
functionalities of more conventional networks. In a Delay-Tolerant Network, peers may cache messages
and deliver them to other peers at a later time, supporting end-to-end delivery even when peers are only
connected intermittently. Caches have limited size, so peers must selectively remove cached messages
when the cache is full. As an additional aid to selecting messages to be removed from a cache, peers can
remove messages for which they have received a matching ack. This can be done while preserving both
security and anonymity, by including in every message, unencrypted, a message ID computed as the
hash of the message ack sent encrypted with the message. A peer seeing a new ack can then hash it and
discard any cached message whose message ID matches the hash of the ack.

KEYWORDS: Ad-Hoc Networks, Delay-Tolerant Networks, Security, Anonymity, Confidentiality.

1. Introduction

The acknowledgement, commonly abbreviated ack, is
common in networking protocols that seek to provide reli-
able transmissions over an unreliable medium. TCP relies
on acks to confirm receipt of data transmitted on a con-
nection, and also to grant permission to send further data
on that connection. Because of this, acks are an essential
part of TCP data transmission. TCP acks each have a 32-bit
ack number indicating the sequence number of the next
byte of data expected on the connection. In a connection
transmitting data in just one direction, acks flow in the
direction opposite the flow of data.

The expected value of a TCP ack can be computed by
anyone observing the flow of TCP traffic, so attackers may
create and transmit spoofed acks [1].

This paper describes an ack mechanism that provides:

• a guarantee that a message has been delivered, since
only the intended receiver can transmit a valid ack
for the message (Sections 3 and 4). The intended re-
ceiver is securely identified by its ability to decrypt
the message.

• a measure of anonymity, in that the ack message in
no way identifies either the sending or the receiving

device (Section 3). This offers more protection against
traffic analysis compared to protocols where the ack
carries source and destination addresses.

• the ability to reliably and securely delete acked mes-
sages from message caches, even on peers that have
no access to any secret key (Section 3).

• communication to the sender that partial receipt of a
message is sufficient for the receiver (Section 5).

2. Background

2.1. Secure Hashing

A hash function is a function that computes a fixed-
length bitstring, called the hash, from a variable-length
input bitstring. In most applications it is beneficial if the
hash bears no resemblance to the input. Such hashes are
used, for example, in hash tables to evenly distribute the
indices to which keys are assigned.

A secure hash or cryptographic hash [2] is a hash that
is hard to invert, which means that, given a hash, it is hard
to create an input that hashes to that given hash value.
Such hashes have many security applications, and several
hash algorithms have been standardized by government

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 24

https://dx.doi.org/10.55708/js0311002
https://orcid.org/0000-0001-8605-0073
mailto:esb@hawaii.edu
http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

agencies such as the US National Institute of Standards and
Technology (NIST) [3].

In brief, the result of hashing a bitstring with a cryp-
tographic hash is the hash value or digest. As long as the
security of the hash is strong, it would be very hard for an
attacker who has no access to the original message, to create
a bitstring that hashes to the same hash value. In contrast,
anyone with access to the original bitstring can easily hash
it and verify that it indeed matches the hash value that was
received.

The algorithm described in this paper hashes an ac-
knowledgment and sends in the clear the corresponding
hash value, which in this paper is called a message ID. In the
same message as the message ID, the acknowledgment (ack)
is sent encrypted, such that only the intended recipient can
decrypt it.

After the receiver has decrypted an ack, it can broadcast
it. Any peer receiving this decrypted ack can hash it and
verify that the previously seen message ID matches the
acknowledgment. As long as the hash is hard to invert, only
the intended receiver (and the original sender, who also has
access to the unencrypted version of the ack) can broadcast
a valid ack.

This is an algorithm that can be used with any encryption
algorithm and any secure hash function, and in that sense
is very general.

2.2. Delay Tolerant Networks

In an ad-hoc network, every peer communicates wire-
lessly with every other peer in its range. The network is
ad-hoc because its connectivity may change with changing
conditions. Each peer contributes what it can to data for-
warding as well as to creating and receiving data, behaving
as a combination of the roles of host and router in other
networks.

Delay-Tolerant Network (DTN) technologies [4, 5, 6]
support communication among peers that may only occa-
sionally be in communication range of each other. Such
conditions are common among mobile peers that commu-
nicate through an ad-hoc network. The purpose of DTNs
is to deliver data even in the absence of any simultaneous
end-to-end path between sender and receiver.

In the 1970s and 1980s email was often delivered even to
peers that were never directly connected to the Internet [7].
For example, a peer H (Host) would from time to time dial
up another peer G (Gateway) with better connectivity and
which had agreed to cache email to and from H. The con-
nection used a protocol called UUCP (unix-to-unix copy) [8]
to download emails addressed to the users of H, and to
upload emails originated by users of H. H might then in
turn forward emails to other peers that depend on it for
connectivity.

To support this intermittent email delivery, G had to
save messages addressed to users of H and other peers
that connected to H, delivering them on request. G would
likewise save outgoing messages originating from H and
others until G itself could connect to its upstream peer (or
directly to the wider Internet) to deliver these messages.

These techniques allowed email to be delivered even if
neither sender nor receiver were ever directly connected to
the Internet, as long as they were able to connect to someone
else with either an Internet connection, or closer to another
host that was connected to the Internet.

DTNs have similar goals as the old uucp email system,
but delivering general-purpose messages rather than just
email. Intermediate peers in a DTN cache messages and de-
liver them on request. Typically the intermittent connection
is established when one of the peers moves into wireless
range of another peer.

To accomplish this delivery, in a DTN all devices are
peers, so each device must include all the functionality that
in a more conventional network is divided among data
sources, data sinks, and routers.

When a sending and a receiving DTN node both have ac-
cess to the Internet, messages can be delivered directly from
the sender to the receiver. When the sender, the receiver,
or both are not connected to the Internet, they may still be
able to communicate directly with each other over ad-hoc
links. If at any given time there is no path between sender
and receivers, all peers reachable by the sender cache the
message, in case they are able to deliver it later.

As connectivity changes and allows communication
with new nodes, peers can forward their cached messages
to any new peers, with the goal of eventually delivering
each message to its final destination.

In their most extreme form DTNs are only useful for
data that is not delay-sensitive. Delay-sensitive commu-
nications can still occur over ad-hoc networks as long as
the devices have an end-to-end simultaneous path over any
combination of the Internet and ad-hoc networks, whereas
delay-tolerant communications can be supported even with-
out simultaneous end-to-end connectivity.

2.3. A Useful Delay Tolerant Network: AllNet

One useful application of DTNs is delivery of text mes-
sages (chat) among mobile devices. Users carry their mobile
devices even to locations with no or intermittent connectiv-
ity1. It would be desirable for users to be able to commu-
nicate with at least their neighbors even in the absence of
Internet connectivity. Where such connectivity is intermit-
tent, cached messages can be forwarded once connectivity
is available. This way of sending text messages resembles
at a high level the uucp email delivery described above, but
the details are very different, especially the unpredictable
availability of wireless channels compared to the scheduled
uucp connections over telephone modems.

The benefit of a chat application is that data requirements
are moderate, while the usefulness can be very substantial
even in situations where delivery of individual chat mes-
sages is delayed.

Creating and using ad-hoc networks and DTNs for such
applications is the main goal of the AllNet project [9]. AllNet
is designed to work whenever devices can communicate
directly among each other even in the absence of cellular
or Internet service. Available technologies include point-
to-point (infrastructure-less) WiFi and the many variants
of Bluetooth, particularly Bluetooth Low Energy (BLE). All

1The lack of connectivity may be due wilderness adventure, foreign travel, emergency situations, rural areas, or any other reason, such as being
outside of the provider’s coverage.

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 25

http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

of these are available on popular mobile devices, though
in many cases the operating system imposes idiosyncratic
restrictions on their usage.

Since peers that might forward a message also have the
ability to inspect the message, AllNet encrypts the contents
of interpersonal messages to prevent eavesdropping. Com-
munication in AllNet needs to identify neither sender nor
receiver. Messages may carry optional addresses, only used
to improve efficiency of message delivery.

AllNet authenticates users to each other when they are
within direct communication range of each other, or when
they both know a secret string that allows them to authen-
ticate to each other over the Internet. Such an exchange
creates keys that the parties can use at any time thereafter,
with assurance that they really are communicating with
each other.

AllNet provides some anonymity of communication both
with the addresses being optional, and to a lesser extent by
the use of ad-hoc communication. AllNet provides such
anonymity without being vulnerable to DDoS amplification
attacks [10].

The optional nature of addresses in AllNet supports
reasonable tradeoffs between anonymity and performance.
A message with 0 significant bits of address is anonymous,
and so may be delivered to all peers within reach. On the
other hand, intermediate peers that care about performance,
including especially bandwidth and battery life, may be
more willing to forward messages that carry more signifi-
cant bits of destination address than messages with fewer
bits of destination address, since such messages may be
delivered more precisely, ultimately consuming fewer net-
work resources. The sender of a message can then choose
fewer bits of address to give greater anonymity, or more bits
of address to give greater likelihood of message delivery.
This choice may be made dynamically, based for example
on network traffic, assuming that less overall traffic implies
more chances of delivery for anonymous messages.

Ethical Statement: Like every other security feature,
encryption, authentication, and anonymity are intended to
protect some people from other people. Like every other
security feature, anonymity can be used to shield ethical
behavior or unethical behavior. This paper does not attempt
to distinguish such uses. In general, purely technical work
cannot favor ethical over unethical uses of technology.

As is true for many other protocols (including https),
encryption, anonymity, and authentication are likely to en-
courage people to use the technology, and their absence
would likely discourage people from using technologies
such as AllNet. For an ad-hoc network these security prop-
erties are essential since there is no assurance that ad-hoc
peers, who might forward all of one’s messages, will be
friendly.

3. Acknowledgments and Caching in an Ad-Hoc Network

Since DTNs work best with all-to-all delivery of anony-
mous messages, conceptually each peer in a DTN has to
cache all messages. Not only do caches have storage limi-
tations, exchanging cached data with every peer that one
encounters may require substantial spectrum and too much
energy from a limited battery. For all these reasons a peer
that caches messages should be informed when one of its

cached messages has been delivered to its final destination.
AllNet does this by sending a small ack message that con-
firms receipt for each data message that has reached its final
destination.

There are many differences between TCP acks and AllNet
acks:

• an AllNet ack gives evidence that an application, rather
than the transport layer, has received the message. In
TCP, even data that has been acked by the receiv-
ing system may never be delivered if the application
crashes or stops reading the socket.

• attackers cannot spoof AllNet acks, since only the
intended receiver can decrypt the message and issue
the corresponding ack. Technically, the sender of the
message could also issue the ack, but a legitimate
sender by definition is not an attacker.

• in TCP, acks are normal TCP segments that may or may
not carry user data. In AllNet acks are 16-byte (128-bit)
random strings. As long as the acks are randomly
generated, by the birthday paradox the chances of a
collision are small as long as there are substantially
fewer than 264 = 18, 446, 744, 073, 709, 551, 616 acks.

• AllNet acks are anonymous. Nothing in the 16-byte
random string identifies either the sender or the re-
ceiver.

• since an AllNet ack message may carry multiple ack
values, a single ack message can acknowledge data
messages from different conversations at once. A TCP
cumulative ack may acknowledge multiple segments
at once, but all such data segments were sent on the
same connection.

Each AllNet peer receiving an ack message caches the
acks it contains. The peer also hashes the ack, giving the
message ID of the message it is acking. If the message ID
matches any message that this peer has originated, that
message is marked as acknowledged. Also, any matching
data message in the peer’s cache no longer needs to be
cached.

AllNet peers forward ack messages to their ad-hoc peers
and across the Internet. Unlike data messages, acks from
different messages and from the ack cache may be combined
and forwarded together in a single ack message.

When an AllNet peer retransmits a data message for
which it has not received an acknowledgment, it may get
a matching ack from a peer other than the final receiver, if
that peer has cached an ack for that message.

Ack transmission in AllNet is no more efficient as the
delivery of the data message, but acks are much smaller than
most data messages, so any overhead is less, and likewise
the need to evict acks from caches is less – a same-sized
cache can hold many more acks than data messages.

Since acks in most systems (including both TCP and
AllNet) are idempotent, meaning that receiving the same
ack once has the same effect as receiving it multiple times,
duplicate transmission of acks has no consequences beyond
the cost of transmission.

Acks are also less important than data messages. In con-
trast to a dropped data message, the worst possible result of

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 26

http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

a dropped ack is the sender not knowing that the message
has reached its destination and transmitting a duplicate
copy of the message, whereas a dropped data message may
have the potentially much more serious result of failure to
communicate.

4. Technical Details: Secure Acknowledgments

An attacker can easily generate spoofed TCP acks by
observing any part of the connection traffic [1]. As a result
TCP is not secure, and higher layers such as TLS must be
used to provide some assurance of delivery to the intended
party.

AllNet provides by design many of the features provided
by the combination of TCP and TLS, but for connectionless
decentralized ad-hoc networks and DTNs. The security of
these transmissions can only be guaranteed if the intended
receiver of a message is the only system able issue the
corresponding ack.

In AllNet, each receiver holds one or more cryptographic
private keys that it uses to decrypt messages addressed to
itself. As mentioned above, AllNet certifies keys based on
interpersonal interactions among users, whereas TLS relies
on hierarchically issued certificates that are vulnerable to
hackers penetrating the systems that issue certificates [11].

A sender generating a data message for a specific re-
ceiver includes the ack in the plaintext part of the message
before encrypting it, at which point the ack is included in
the encrypted part of the message.

The sender then adds to the unencrypted part of the
data message the cryptographic hash of the ack.2 This hash
is known as the message identifier or message ID. The
message ID, like the ack, is very likely to be unique for each
message.

The entire process is shown in Figure 1.

Figure 1: Relationship between ack and message ID

Every peer can see the message ID, but cannot generate
a valid ack without access to the receiver’s key, so only the
intended receiver 3 can generate a valid ack.

A peer that receives an ack can verify whether it matches
any of its cached messages or any incoming message by
hashing the ack to give the corresponding message ID, then
comparing this message ID computed from the ack to the
message ID which is in the unencrypted part of every cached
or received message.

Since the original sender also has access to the clear-
text ack, the sender could also cancel messages that are
cached, but this feature is unused both currently and in the
foreseeable future.

4.1. Anonymity of Messages and Acknowledgments

Each source and destination address in AllNet messages
is defined by a number of significant bits specified as part
of the message header. A message whose addresses have
no significant bits carries no information about the sender
or intended receiver, and as such every peer on the network
will try to decrypt it, so that any peer able to decrypt a
message is an intended recipient.

The concern with such broadcast messages is the re-
source usage in having all peers forward and attempt to
decrypt every message. The significant bits mechanism
of AllNet addresses allows any number of bits to be spec-
ified, allowing a sender to specify a small number of bits
to reduces the resource usage of the network while still
preserving some anonymity. Senders are incentivized to
provide as many bits of address as will still retain anonymity,
and thereby minimize network resource usage, since packets
with more bits of address are more likely to be delivered.

Just as messages can be anonymous, so acks in AllNet are
also anonymous in that the ack itself carries no information
about the sender and receiver of the ack. In addition, since
any peer in the network might have cached the correspond-
ing message, to the extent possible acks are distributed to
every peer in the network. This universal distribution makes
acks more resistant to traffic analysis than if they were only
delivered back to the originator of the data message.

5. Acknowledgments for Messages Larger than the Maxi-
mum Transmission Unit (MTU)

The secure acks described so far allow for interesting
possibilities when the size of a message is greater than a
network’s Maximum Transmission Unit (MTU), requiring
that the message be sent as a collection of packets instead of
a single message. Such large messages can be used to send
multimedia data such as audio, images, and video.

The Internet Protocol (IP) uses a mechanism called frag-
mentation [13], and this paper uses the same term. The
receiver can reconstruct the larger message once it has
received all of the fragments.

In AllNet, each fragment of a larger message carries two
encrypted acks, one for the message as a whole and the
other for the specific fragment. Correspondingly, the unen-
crypted part of each fragment contains both a message ID
obtained from hashing the message ack, and a fragment ID
(which AllNet calls a packet ID) obtained from hashing the
fragment ack.

A receiver receiving fragments of a larger message may
ack them individually. Once the receiver has received all
the fragments of a message, it then issues the ack for the
entire message. Each peer receiving a message ack can clear
from its cache every fragment it has of the larger message,
even if it is only caching some of the fragments.

2Normally such hashes produce more than 16 bytes of data, so the sender only includes the first 16 bytes of the hash.
3Or anyone who can invert the hash function, which is expected to be challenging for strong cryptographic hash functions such as the SHA-512

hash [12] used by AllNet.

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 27

http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

5.1. Acknowledging Partial Transmission

The combination of message acks and fragment acks
provides some functionality beyond what traditional TCP
segment acks provide. Specifically, if the content can be
delivered without delivering all the fragments, then the
receiver can issue the message ack immediately even with
some fragments still missing.

As one example, email is often sent as both a plain text
version and an html version. If either part of the message is
received in its entirety, that part can be displayed to the user
without having to receive every fragment of the other part,
and the receiver can issue the message ack immediately.

When sending image or video data, the resolution of
the image or video usually does not need to exceed the
resolution of the device. Sending a low-resolution image
first, followed by the high-resolution image, allows a low-
resolution device to immediately send the message ack,
without having to wait for or process the high-resolution
image, and likewise allows the sender to only send the
low-resolution version. The sender can immediately start
sending the high-resolution version if it gets fragment acks
for all the fragments of the low-resolution version, but no
message ack.

For transmission of more general data (beyond videos
and images) there are many schemes for forward error cor-
rection (FEC) that involve sending redundant data. If this
data can be fragmented appropriately so that the message
can be reconstructed even while some fragments are still
missing, then a receiver that sends the message ack as soon
as it is able to reconstruct the message can avoid having the
sender engage in retransmission of any missing fragments.

There are many FEC algorithms. A particularly simple
(and inefficient!) FEC scheme simply transmits each frag-
ment 3 times. A receiver that obtains at least one copy of each
fragment can immediately issue the message ack, providing
reliable transmission without retransmission even in the
case of substantial packet loss or transmission delay. Avoid-
ing retransmission is particularly useful in Delay-Tolerant
Networks.

If synchronous communication is available, the sender
may receive the message ack for such a triply-redundant
transmission before sending all three copies of all of the
fragments, and can immediately stop transmitting the du-
plicate/triplicate information. On the other hand in a DTN,
a receiver may over time receive a random subset of the frag-
ments, and can then deliver the message to its application
and issue the ack as soon as it receives all the fragments
needed to reconstruct a complete message. This message ack
lets other peers remove from their caches even fragments
that the destination has never received.

6. Comparison to TCP Acknowledgments

Section 4 described how AllNet secure acks reliably as-
sure the sender that messages have indeed been received
by the intended recipient 4. This is substantially different
from TCP acks, which can be issued by any attacker that
knows the sequence numbers in use on the connection and
can spoof source IP addresses. A TCP sender has no way to
know that such acks are not from the legitimate intended

receiver.
Assurance that the ack was issued by the intended re-

ceiver is especially valuable in ad-hoc networks and DTNs:
since the network is not organized by an authority, there
is no reason to believe that intermediate peers are benign.
AllNet, as other secure ad-hoc networks, had to be designed
assuming that attackers may control at least some of the
peers that are forwarding messages and acks.

Further differences between AllNet secure acks and TCP
acks follow:

TCP acks carry the sequence number following the last
byte that was received. This makes TCP acks cumulative,
meaning that a single ack can acknowledge many segment’s
worth of data, and that loss of a single ack in a continuing
stream of data transmission is not likely to lead to retrans-
mission. On the other hand, since TCP acks count bytes
rather than messages/packets/segments, and since TCP ack
numbers are 32 bits, an ack in the original TCP can acknowl-
edge up to 232 different bytes, or an ack using the Protection
Against Wrapped Sequences [14] (PAWS) mechanism can
theoretically acknowledge up to 264 different bytes of data.

Unlike TCP acks which count bytes, AllNet secure acks
identify packets, so a single 1,000-byte message requires
only one distinct secure ack in AllNet but consumes 1,000 se-
quence and ack numbers in TCP. This is of interest when we
consider how many outstanding unacknowledged messages
can be handled by each protocol.

The AllNet secure acks are not counters, so cannot be
used as cumulative acks (where one ack potentially ac-
knowledges many, many data packets) as in TCP, but one
single AllNet message ack can acknowledge many different
fragments.

Since there are 2128 possible different randomly selected
AllNet message acks, the birthday paradox tells us that the
chances of collision is extremely low until the number of
acks begins to approach √2128 = 264.

Unlike TCP, these secure acks might collide with acks
from any sender, whereas the TCP connection mechanism
ensures that sequence and ack numbers can only overlap
within a connection. These differences are summarized in
Table 1.

Table 1: Comparison of what TCP and AllNet acks can distinguish.

Protocol Can reliably distinguish
Original TCP 231 bytes in a window

TCP with PAWS 263 bytes in a window
AllNet 264 simultaneous messages

6.1. Performance Analysis

Given a 64-bit sequence number space for TCP and with
reasonable assumptions against delivery of old packets,
TCP is guaranteed not to have sequence or ack collisions as
long as 263 or fewer bytes are transmitted on a connection
within a two-minute Maximum Segment Lifetime (MSL)
period, leading to a maximum bandwidth of over 263 / 120s
= 7 × 1016 bytes/second for each TCP connection.

For the secure acks described in this paper, to stay well
away from the birthday paradox we assume that it would be
desirable to have no more that about 260 unacknowledged

4As long as the recipient’s key and the encryption algorithm have not been compromised.

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 28

http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

messages in the network at any given time. We further as-
sume message sizes of 1,000 bytes and a maximum message
lifetime (as specified by the message expiration option in
AllNet) of about a week or 604,800 seconds. Satisfying these
assumptions limits the entire network to about 260 × 1000 /
604800 = 1015 bytes per second.

For communication across the Internet a message life-
time of a week is excessive. Using the same 2 minutes as for
TCP, the network can support almost 260 × 1000 / 120 = 1019

bytes per second.
While this throughput for the entire network cannot be

directly compared to the TCP per-connection throughput, it
is quite adequate for both the current, largely experimental
AllNet, and for any foreseeable developments. Ad-hoc net-
works are typically small and relatively inefficient [15], and
even in the imaginable future are unlikely to scale to large
sizes and large amounts of traffic. Therefore for the ad-hoc
side of the AllNet communications, even the lower network
throughput derived by assuming a 1-week message lifetime
is very abundant.

Should the capacity of AllNet ever become an issue due
to the limited number of bits in an ack, AllNet could evolve,
as TCP already has, to use more acknowledgments bits.

6.2. Performance Results

As in TCP, AllNet acks are sent unreliably, and can there-
fore be lost. Again as in TCP, the mechanism for requesting
an ack retransmission is to retransmit the original message.

Unlike in TCP, for messages that are retransmitted, any
intermediate host that has cached the ack can resend it im-
mediately, without the original receiver having to respond.
As compared to networks that support TCP and therefore
require continuous end-to-end connectivity, for DTNs this
increases reliability of ack delivery.

Decrypting a message to generate the ack is more time
consuming than the process to generate a TCP ack. TCP
has the additional performance advantage of being imple-
mented in the kernel.

With these caveats, we compared the time to return
an ack in AllNet between two hosts connected at distant
locations across the Internet, with a ping time of 83ms. The
first ack (really, SYN+ACK) from the TCP connection es-
tablishment 3-way handshake took 125ms (measured using
tcpdump). Sending a message to an existing contact with
AllNet between the same two hosts returned the ack in
154ms (measured using AllNet’s trace program). These
are comparable results.

7. Future Work and Conclusions

It is clear from the above analysis that if AllNet ever
becomes as popular as TCP, it will have to be redesigned or
extended for higher performance, just as TCP has been and
likely will be again in the future. Moving from 16-byte acks
to 32-byte acks would address any foreseeable performance
limitation due to ack size.

The secure acks described in this paper provide many
advantages over conventional acks such as used in TCP.
This paper has explored a few, including the guarantee
that the ack can only be issued by a receiver that has the
correct cryptographic key, the ability to use the combination

of message ack and fragment ack to let the sender know
how much of the data the receiver actually needs, and the
use of the acks to securely enable removing acknowledged
messages from peer caches.

Secure acks as described above only work when sent
encrypted. Encryption of data messages is pervasive in
AllNet, so sending an encrypted ack with the encrypted
data of a message requires no additional effort.

Should there be a reason to send the data unencrypted,
the ack itself could still be encrypted, as long as keys are
distributed in such a way that only the intended recipent
can issue the ack.

When encryption is not an option, one could instead
imagine having identical ack generators (for example, some
kind of secure random number generator) based on identical
secret seeds on each pair of sender and receiver, such that
the receiver can generate the same sequence of acks as the
sender. In such a case, the acks do not need to be trans-
mitted at all. Instead, the sender would include a counter
or an identifier for the ack associated with a message, and
the receiver can independently generate the ack and hash
it to compare the locally generated acks to any received
message IDs. The receiver can then issue a valid ack that
can be verified by any peer that is caching messages. While
these acks do acknowledge receipt, they cannot be used by
peers to discard cached messages.

Alternatively, in a scheme somewhat resembling the
Bitcoin blockchain [16], and if anonymity is not a concern, a
receiver could digitally sign a received message ID with a
widely known public key. This scheme requires an infras-
tructure (perhaps a blockchain?) to record and distribute the
public keys, but does not require encryption. Since a shared
blockchain requires a persistent connection to the Internet,
this scheme is more suitable for systems that can rely on
Internet connections than for systems that use ad-hoc and
delay-tolerant communications.

We have explored some of the design space for secure
and anonymous acknowledgments. While this section has
indulged in speculation, the mechanisms in Sections 3 and
4, and in the initial part of Section 5, are fully implemented
and live on the AllNet network.

References

[1] Hastings, McLean, “TCP/IP spoofing fundamentals”, 1996 Interna-
tional Phoenix Conference on Computers and Communications, doi:
10.1109/PCCC.1996.493637

[2] NIST, “Secure Hash Standard (SHS)”, FIPS 180-4, August 2015.

[3] NIST, “SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions”, FIPS 202, August 2015. https://csrc.nist.gov/
pubs/fips/202/final

[4] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets”, SigCOMM, Aug 2003.

[5] Benhamida, Bouabdellah, Challal, “Using delay tolerant network for
the Internet of Things: Opportunities and challenges”, 2017 8th In-
ternational Conference on Information and Communication Systems
(ICICS), 2017, doi: 10.1109/IACS.2017.7921980

[6] Mallorqui, Zaballos, Serra, “A Delay Tolerant Network for
Antarctica”, IEEE Communications Magazine, August 2022, doi:
10.1109/MCOM.007.2200147

[7] Partridge, “The Technical Development of Internet Email”, IEEE An-
nals of the History of Computing, vol. 30, no. 2, April-June 2008, doi:
10.1109/MAHC.2008.32

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 29

https://dx.doi.org/10.1109/PCCC.1996.493637
https://csrc.nist.gov/pubs/fips/202/final
https://csrc.nist.gov/pubs/fips/202/final
https://dx.doi.org/10.1109/IACS.2017.7921980
https://dx.doi.org/10.1109/MCOM.007.2200147
https://dx.doi.org/10.1109/MAHC.2008.32
http://www.jenrs.com

E. Biagioni, Secure Anonymous Acknowledgments in a DTN

[8] Nowitz, “Uucp Implementation Description”, Unix Manual Ver-
sion 7. https://web.archive.org/web/20180221100921/http://a.
papnet.eu/UNIX/v7/files//doc/36_uucpimp.pdf

[9] Biagioni, “Ubiquitous Interpersonal Communication over Ad-Hoc
Networks and the Internet”, 47th Hawaii International Confer-
ence on Systems Sciences), in January 2014, and other papers at
https://alnt.org/

[10] Biagioni, “Preventing UDP Flooding Amplification Attacks with Weak
Authentication”, International Conference on Computing, Network-
ing and Communications (ICNC 2019), February 2019, Honolulu,
Hawaii.

[11] Google Security Blog, “An update on attempted man-in-the-middle
attacks”, August 2011. https://security.googleblog.com/2011/
08/update-on-attempted-man-in-middle.html

[12] Penny Pritzker, “Specifications for the Secure Hash Standard”, U.S.
Federal Information Processing Standards Publication 180-3, October
2008.

[13] Information Sciences Institute, “Internet Protocol”, RFC 791 (section
3.2.1.4), September 1981.

[14] Borman, Braden, Jacobson, Scheffenegger, “TCP Extensions for High
Performance”, RFC 7323, September 2014.

[15] Gupta, Kumar, “The Capacity of Wireless Networks”, IEEE Transac-
tions on Information Theory, vol. 46, March 2000.

[16] Satoshi Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System”,
made public May 24 2009. http://bitcoin.org/bitcoin.pdf

Copyright: This article is an open access article distributed
under the terms and conditions of the Creative Commons At-
tribution (CC BY-SA) license (https://creativecommons.
org/licenses/by-sa/4.0/).

Edoardo Biagioni did his bachelor’s de-
grees at MIT in 1982, diplom at ETH
Zürich in 1985, and PhD degree in com-
puter science at the University of North
Carolina, Chapel Hill, in 1992.

He is currently an associate professor
in Information and Computer Sciences
at the University of Hawai’i at Mānoa,

where his research includes networking and systems. He
has been working on the AllNet project (www.alnt.org)
since 2011.

www.jenrs.com Journal of Engineering Research and Sciences, 3(11): 24-30, 2024 30

https://web.archive.org/web/20180221100921/http://a.papnet.eu/UNIX/v7/files//doc/36_uucpimp.pdf
https://web.archive.org/web/20180221100921/http://a.papnet.eu/UNIX/v7/files//doc/36_uucpimp.pdf
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
https://security.googleblog.com/2011/08/update-on-attempted-man-in-middle.html
http://bitcoin.org/bitcoin.pdf
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.jenrs.com

	Introduction
	Background
	Secure Hashing
	Delay Tolerant Networks
	A Useful Delay Tolerant Network: AllNet

	Acknowledgments and Caching in an Ad-Hoc Network
	Technical Details: Secure Acknowledgments
	Anonymity of Messages and Acknowledgments

	Acknowledgments for Messages Larger than the Maximum Transmission Unit (MTU)
	Acknowledging Partial Transmission

	Comparison to TCP Acknowledgments
	Performance Analysis
	Performance Results

	Future Work and Conclusions

