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ABSTRACT: Biclustering is a non-supervised data mining method used to analyze gene expression 
data by identifying groups of genes that exhibit similar patterns across specific groups of conditions. 
Discovering these co-expressed genes (called biclusters) can aid in understanding gene interactions in 
various biological contexts. Biclustering is characterized by its bi-dimensional nature, grouping both 
genes and conditions in the same bicluster and its overlapping property, allowing genes to belong to 
multiple biclusters. Biclustering algorithms often produce a large number of overlapping biclusters. 
Visualizing these results is not a straightforward task due to the specific characteristics of biclusters. In 
fact, biclustering results visualization is a crucial process to infer patterns from the expression data. In 
this paper, we explore the various techniques for visualizing multiple biclusters simultaneously and 
we evaluate them in order to help biologists to better choose their appropriate visualization techniques. 
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1. Introduction 

Gene expression profiles, generated by advanced high-
throughput technologies like microarrays, are depicted in 
a matrix format where rows correspond to genes, columns 
to experimental conditions and each matrix entry to the 
expression level of a gene under a specific condition. 
Clustering has been the primary technique for analyzing 
such voluminous genomic data, focusing on grouping 
genes (rows) that show similar expression across all 
conditions (columns), as noted by [1]. Traditional 
clustering methods including hierarchical clustering [2] 
and k-means clustering [3] have proven effective in gene 
expression analysis. However, to glean novel insights 
from biological data such as identifying genes associated 
with cancer progression, determining functions of 
unknown genes or developing new treatment approaches, 
it’s essential to perform clustering across both dimensions: 
genes and conditions. Indeed, the field of biclustering or 
co-clustering has emerged as a valuable tool in genomic 
data analysis. This machine learning technique identifies 
groups of biological entities, such as genes, that display 
comparable behaviour under specific conditions. It is first 
used to analyze gene expression data in 2000 by [4]. 
Biclustering differs from traditional clustering in two key 
theoretical aspects: bi-dimensionality which involves 

grouping genes and conditions together and overlap 
which permits genes to be part of multiple biclusters at the 
same time. In [5], the author conducted a comprehensive 
review of various biclustering algorithms, categorizing 
them based on their search methodologies. 

Visualizing biclustering output allows for the 
identification of co-regulated gene clusters and 
experimental conditions with similar gene expression 
profiles. In fact, examining biclustering results visually 
provides a deeper understanding of the underlying 
relationships and trends within the expression data [6]. 
Nevertheless, due to the unique attributes of biclustering 
which are bi-dimensionality and the potential for overlaps, 
the representation of gene expression data often results in 
numerous intersecting biclusters. These are challenging to 
display comprehensively in an informative way in a single 
visual representation. Indeed, encapsulating the results of 
biclustering into a single, coherent visual format is far 
from straightforward. Finding novel insights from vast, 
intricate multi-dimensional datasets necessitates an 
effective synergy of data processing algorithms and the 
power of interactive visualization tools [7-11]. Such a 
blend has been effectively applied to biological datasets, 
exemplified by the biclustering of gene expression data 
[12]. While heatmaps [1] and parallel coordinates 
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[13]remain the go-to methods for visualizing individual 
biclusters[14-16], the real challenge emerges when 
attempting to concurrently visualize multiple biclusters 
on a single screen for bioinformaticians and analysts 
[17],[18]. 

 In this review, we conduct an examination of the 
visualization methods applied to biclustering outcomes 
derived from gene expression data [17]. We focus on 
biclustering results visualization techniques that can show 
more than one bicluster in the same screen. The structure 
of the review is outlined as follows: First, we provide an 
overview of the biclustering concept as it applies to gene 
expression data. Second, we make a survey on the current 
methods available for visualizing several biclusters 
concurrently. Then, we evaluate these methods according 
to a set of predefined criteria. Next, we demonstrate 
practical applications of these methods through various 
tools and discuss the datasets employed for their 
validation. Finally, we offer our conclusion. 

2. Biclustering of gene expression data concept 

We start by giving a definition of the biclustering concept. 
 
2.1. Definition  

A bicluster is a group of genes that exhibit consistent 
patterns of expression across a specific set of conditions. 
These genes have similar expression levels or follow 
identical trends within these conditions [19]. We note that 
biclusters can overlap, meaning that individual genes or 
conditions may be part of multiple biclusters at the same 
time. 
Formally, a bicluster can be defined as follows: Let I={1, 
2, . . . , n} be a set of indices of n genes, J={1, 2, . . . ,m} be a 
set of indices of m conditions and M (I, J) be a data matrix 
associated with I and J. A bicluster associated with the data 
matrix M (I, J) is a couple (I’, J’) such that I’⊆I and J’⊆J. 
The biclustering problem can be formulated as follows: 
Given a data matrix M, construct a group of biclustersBopt 
associated with M such that: 
 

f(𝐵𝐵𝑜𝑜𝑜𝑜𝑜𝑜) =  𝑚𝑚𝑚𝑚𝑚𝑚
𝐵𝐵 ∈𝐵𝐵𝐵𝐵(𝑀𝑀)

𝑓𝑓(𝐵𝐵),                      (1) 

Where f is a function that evaluates the quality, or 
coherence, of a bicluster group and BC(M) represents the 
set of all potential bicluster groups associated with 
M[20][21]. Biclustering is an NP-hard problem [4][22]. In 
fact, NP-hard problems (i.e., non-deterministic 
polynomial time problems) are a class of challenging 
problems that are often considered intractable, meaning 
that there is no known efficient algorithm for solving them 
a priory. The combinatorial nature of the search space and 
the multiple optimization criteria involved make 
biclustering of gene expression data an NP-hard problem. 
2.2. Groups of biclusters 

Bicluster groups can be classified as follows [22]. See 
Figure 1: 
• Particular bicluster (a). 
• Bicluster groups with unique rows and columns (b). 
• Checkerboard bicluster groups without overlap (c). 
• Bicluster groups with unique rows (d). 
• Bicluster groups with unique columns (e). 
• Tree-structured bicluster groups without overlap (f). 
• Non-overlapping bicluster groups without exclusive 

membership (rows or columns) (g). 
• Hierarchical bicluster groups with overlap (h). 
• Randomly placed overlapping group of biclusters (i). 

 
Figure 1: Types of bicluster groups [20] 

We focus our review on how to visualize more than one 
bicluster with overlaps in the same screen (Figure 1(h) and 
Figure 1(i)). 
 
2.3. Biclustering search methods   

Biclustering is a computationally complex problem, 
often classified as NP-hard [4][22]. As a result, heuristic 
approaches are typically employed to find approximate 
solutions. Given the variety of biclustering algorithms 
based on different search strategies, the following 
categorization can be identified [22][23]: 

• Iterative row/column clustering: This approach is a 
straightforward method that involves applying 
clustering algorithms to both the rows and columns of 
the expression matrix and then combining the results 
to identify biclusters. It is also known as two-way 
clustering [24][25] or conjugated clustering [26]. This 
approach inherits the same benefits and drawbacks of 
clustering algorithms. Examples of algorithms that 
follow this approach include ITWC (Interrelated Two-
Way Clustering) [25], CTWC (Coupled Two-Way 
Clustering) [24] and DCC (Double Conjugated 
Clustering) [26]. 

• Divide and conquer: This approach begins with a single 
bicluster encompassing the entire data matrix. It then 
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recursively divides this matrix into two submatrices, 
creating two new biclusters. This process continues 
until a predetermined number of biclusters are 
generated that meet specific criteria. By breaking down 
the problem into smaller subproblems, this approach 
aims to accelerate the search for solutions. While this 
method is known for its speed, it can potentially ignore 
valuable biclusters if they are divided before being 
identified [21]. Examples of algorithms that follow this 
approach include the Hartigan biclustering algorithm 
[27] and Bimax[28]. 

• Greedy iterative search: This approach builds a solution 
incrementally using a specified quality measure. In the 
context of biclustering, at each step, submatrices of the 
data matrix are constructed by adding/removing rows 
or columns to maximize/minimize a particular 
function. This process continues until no further 
modifications can be made to any submatrix [20]. This 
approach shares the same strengths and weaknesses as 
the divide-and-conquer method. While it may make 
suboptimal choices and miss good biclusters, it can be 
very fast [21]. Examples of algorithms that follow this 
approach include CCA [4], OPSM [29], xMOTIFs[30], 
ISA [31], MSSRCC [32], QUBIC [33], COALESCE [34], 
CPB [35] and LAS [36]. 

• Exhaustive bicluster enumeration: This approach 
exhaustively explores all potential bicluster groups to 
identify the optimal solution that maximizes a specific 
evaluation function. Despite the capability of finding 
the best results, this approach is computationally 
expensive (i.e., time consuming). To alleviate this, 
biclustering algorithms often incorporate restrictions 
on the size or number of biclusters or employ pre- and 
post-filtering techniques [28]. Examples of algorithms 
that follow this approach include SAMBA [37], BiBit[38] 
and DeBi[39]. 

• Distribution parameter identification: This approach 
employs a statistical model to estimate distribution 
parameters and generate data by iteratively 
minimizing a specific criterion. Algorithms that follow 
this approach are capable of identifying the optimal 
biclusters, if they exist. However, due to their high 
computational complexity, they are often limited to 
analyzing biclusters with a specific size [21]. Examples 
of algorithms that follow this approach include Plaid 
model [40], Spectral biclustering[41], BBC [42] and 
FABIA [43]. 

Table 1 is a summary of biclustering search methods 
algorithms describing their characteristics. 

Table 1: Evaluation of biclustering search methods 
Biclutering search method Algorithms Advantages Disadvantages 

Iterative row/column 
clustering 

ITWC [25] 
CTWC [24] 
DCC [26] 

Find good results (i.e., 
clusters) 
Very fast 

Sensitivity to noise datasets 
Scalability issues to large 

datasets 

Divide and conquer 
Hartigan algorithm 

[27] 
Bimax[28] 

Very fast Ignore good biclusters 

Greedy iterative search 

CCA [4] 
OPSM [29] 

xMOTIFs[30] 
ISA [31] 

MSSRCC [32] 
QUBIC [33] 

COALESCE [34] 
CPB [35] 
LAS [36] 

Very fast Ignore good biclusters 

Exhaustive bicluster 
enumeration 

SAMBA [37] 
BiBit[38] 
DeBi[39] 

Find best solutions (i.e., 
biclusters) 

Very Slow 
Time consuming 

Distribution parameter 
identification 

Plaid model [40] 
Spectral 

biclustering[41] 
BBC [42] 

FABIA [43] 

Find best solutions (i.e., 
biclusters) 

High complexity 
Time consuming 

Most of these biclustering algorithms already 
mentioned in the previous subsection generated generally 
big size biclusters as a result. In the next section, we 
present the techniques used to visualize biclustering 
results of gene expression data [17]. 

 
3. Review of previous research  

3.1. Heatmaps visualization  
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A heatmap serves as a bi-dimensional graphical 
representation that illustrates data values within a matrix 
structure. For gene expression data, the x-axis is allocated 
for conditions (columns) and the y-axis for genes (rows). 
Each matrix element aij denoting the expression level of the 
ith gene under the jth condition. It is depicted as a colored 
square (pixel) with the color intensity corresponding to a 
predefined scale. Typically, shades of green, red and black 
colors are chosen to align with the standard fluorescent 
dyes used in DNA microarrays: green signifies reduced 
expression or down-regulation, red indicates elevated 
expression or up-regulation and black represents a neutral 
expression level. To visualize a bicluster, its associated 
rows and columns are repositioned, generally to the top-
left corner of the matrix [44]. Visualization techniques such 
as reordering or duplication are employed to display 
multiple biclusters within a single view. An example of 
heatmaps displaying biclusters is depicted in Figure 2. 

 
Figure 2: Heatmap representation of gene expression data (on the left). 

A bicluster at the upper left corner (top right). Two biclusters 
on the diagonal of the matrix (bottom right) [45] 

3.1.1. Reordering techniques   

To simultaneously visualize multiple biclusters, 
reordering is a viable strategy for heatmap representations. 
The literature presents various algorithms for this purpose. 

In [46], the author proposed a heuristic iterative 
method that approaches the visualization of overlapping 
biclusters as an optimization challenge. This method 
introduces a reordering technique that draws parallels 
with the hypergraph vertex ordering dilemma, an extension of 
the classic minimal linear arrangement or graph ordering 
problem. Initially, the heatmap matrix is transformed into 
a hypergraph which is then converted into a weighted 
undirected graph following a starting order that aligns 
with one of three predetermined configurations: a linear 
path, a singular loop or multiple loops. Then, the 
minimum linear arrangement problem (i.e., MinLA) is 
employed on the newly formed graph to discover an 
improved order. Next, the hypergraph is transformed into 

a different graph using the newly determined order. This 
iterative process continues until a satisfactory order is 
achieved or no further enhancements are observed. An 
illustrative example of this algorithm in action is presented 
in Figure 3. 

 
Figure 3: A practical demonstration of the reordering algorithm [46] 

In [47], the algorithm presented aims to optimize the 
layout to enhance the visualization of the largest 
contiguous sections of biclusters from a gene expression 
matrix. Initially, the data is depicted as a binary matrix with 
rows representing genes or conditions and columns 
representing biclusters. The reordering approach is 
independently applied to both rows and columns to 
improve the visual quality of the biclusters. This 
optimization process counts four stages: The first stage 
named simplify eliminates redundant rows to reduce the 
problem’s complexity. The second stage named prearrange 
seeks an optimal starting point for optimization by 
sequentially adding rows to a new order, ensuring each is 
positioned ideally. The third stage named arrange is the 
core of the algorithm where it aims to maximize an 
alignment score using a greedy strategy that repositions 
parts of a bicluster and permutes its constituent elements 
(genes or conditions) for better alignment. The final stage 
named complexity reintroduces the previously excluded 
rows into their new positions, thereby restoring the 
original problem’s scale. An illustration of this technique’s 
workflow is provided in Figure 4. 

 

Figure 4: Different tasks of the proposed technique. Analysis part (on 
the left). Heatmap visualization (on the right) [47] 

3.1.2. Duplication techniques   
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In certain instances within heatmap visualizations, 
reordering techniques can’t display all biclusters 
adequately. It becomes necessary to replicate rows and 
columns to present the biclusters as continuous segments 
within a single heatmap. This duplication strategy has 
been proposed in various studies to enhance the clarity 
and continuity of bicluster representation. 

The algorithm introduced by [48] aims to visualize 
biclusters and their overlaps as continuous regions within 
a single heatmap. Its core concept involves duplicating 
rows and columns to accurately depict overlapping 
biclusters. This approach is influenced by the hypergraph 
superstring challenge which refers to the physical mapping 
of genomes, as investigated by [49]. The algorithm 
presents a technique to limit the duplication of rows and 
columns as much as possible. This technique is executed 
separately on both rows and columns. It employs a data 
structure known as a PQ tree[50] which is helpful to 
arrange all potential columns to be adjacent, duplicating 
them if necessary, to form contiguous biclusters. 
Additionally, it utilizes a sequence of REDUCE operations 
that hierarchically organize the rows, thereby enhancing 
the overall quality of the visualization. An illustrative 
example employing two distinct expression matrices is 
demonstrated in Figure 5. 

 

Figure 5: A number of biclusters were depicted [48]. Red rectangles (on 
the left) and blue rectangles (on the right) 

In [51], the author developed a biclustering layout 
algorithm alongside an interactive visualization interface 
for illustrating multiple biclusters. The initial phase of 
their algorithm involves translating the heatmap into 
grayscale values through linear interpolation, spanning 
from the minimum to the maximum values within the 
data matrix. Next, each bicluster is designated with a 
unique color. When selected, biclusters are highlighted in 
a semi-transparent yellow hue which merges additively in 
areas of overlap, although users retain the option to 
customize their colors. To enable analysts to selectively 
visualize biclusters in an adjacent manner, the algorithm 

incorporates both reordering and duplication strategies 
for rows and/or columns. This interactive feature 
significantly reduces the occurrence of duplicates and 
marginally enhances the method’s scalability. Figure 6 
illustrates varied heatmap visualizations drawn from 
three distinct datasets containing multiple biclusters. 

 

Figure 6:Bicluster results visualization. Each bicluster is depicted by its 
main rectangle (on the left). All biclusters are shown (in the middle). 
Representation with emphasized biclusters (on the right) [51] 

Despite being the most common technique for 
visualizing single biclusters, heatmaps have limitations in 
terms of geometry especially when displaying biclusters 
with high levels of overlap. 
3.2. Parallel coordinates visualization  

Parallel coordinates are employed as a visualization 
method for representing complex, high-dimensional data 
sets. In this technique, each dimension is associated with 
a vertical line and individual data points are connected 
across these lines to form a polyline that reflects their 
multi-dimensional values. This approach has been 
adapted for the visualization of gene expression data as 
well. To depict gene profiles within an m-dimensional 
framework, m parallel and equidistant vertical lines are 
drawn, each symbolizing a different experimental 
condition. The gene profiles are then plotted as polylines 
across these lines, with the position of each point on a line 
corresponding to the gene’s expression level under that 
particular condition. An example of this visualization 
technique, using parallel coordinates, is provided in 
Figure 7. 
 

 
Figure 7: Parallel coordinates visualization. Polylines of significant 
genes highlighted in red [45] 
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In [51], the author implemented a series of 
transformations to their heatmap data representation in 
order to facilitate the simultaneous visualization of 
multiple biclusters using parallel coordinates. In this 
adaptation, the matrix of rows is represented as lines 
within the parallel coordinates framework. The vertical 
axes are positioned to correspond with the columns from 
the heatmap. To depict the conditions associated with a 
bicluster, the method computes the mean vertical location 
of all lines within a bicluster, establishing reference points 
known as centroids. These lines are then adjusted to 
intersect at the centroids. Next, the biclusters are rendered 
in a semi-transparent black hue. The color scheme utilized 
for the heatmap biclusters is replicated in the parallel 
coordinates display. To reduce visual clutter, lines not 
part of the highlighted biclusters can be dimmed by the 
user. An illustration of this parallel coordinates 
visualization for two biclusters is presented in Figure 8. 

 
Figure 8: Two biclusters visualized as heatmaps (on the left) and next 

mapped to the parallel coordinates visualization without centroids (top 
right) then with centroids (bottom right) [51] 

Parallel coordinates are a suitable method for 
visualizing large biclusters or individual biclusters. 
However, the cluttering of polylines due to overlapped 
biclusters can hinder the effectiveness of this technique in 
displaying multiple biclusters in a single view. 

In general, scalability is the primary limitation of these 
methods (i.e., heatmaps and parallel coordinates), 
whether due to the abundance of biclusters or to high 
rates of overlap [45].  

3.3. Bubble map visualization  

In [45] and [52], the author presented an approach that 
involves the depiction of biclusters as circular entities 
named bubbles. The color coding of these bubbles 
corresponds to the sets of biclusters generated through a 
biclustering algorithm, with the capability to display up 
to three sets simultaneously. The intensity of the color, or 
brightness, indicates the uniformity within a bicluster. 
The size of each bubble is determined by the product of 
the number of genes and the number of conditions that 
constitute the bicluster. The placement of each bubble is 
based on a two-dimensional projection derived from 
multidimensional points which are the rows and columns 

that make up the bicluster. While this visualization 
method intuitively represents the arrangement of 
biclusters, the overlapping of bubbles does not precisely 
mirror the actual overlaps between biclusters. Rather, it 
serves as an approximation of their similarity. This 
technique is often employed to complement other 
methods, aiding in the comprehension of the general 
patterns observed in biclustering analyses. An illustration 
of this visualization method is provided in Figure 9. 

 
Figure 9:Bubblemap visualization of the outcomes of three biclustering 
algorithms [19] 

Due to the limitations of heatmaps and parallel 
coordinates in visualizing a large number of biclusters, 
particularly with high levels of overlap [45], more 
advanced visualization approaches have been introduced. 
These approaches combine traditional gene expression 
visualization techniques (such as heatmaps and/or 
parallel coordinates) with set visualization techniques [53] 
like Venn-like diagrams [45], node-link diagrams [54] and 
two-dimensional matrix representations [55][56]. The 
following provides a description of these innovative 
techniques. 

3.4. Venn-like diagrams visualization  

Euler and Venn diagrams stand as some of the earliest 
techniques for illustrating sets and their interconnections. 
These diagrams were conceptualized by the British 
mathematician and philosopher, John Venn in the 18th 
century and have been widely adopted as effective tools 
for teaching concepts of set theory and logical 
relationships in education [57]. Utilizing a proportional-
area model, where the depicted areas correspond to the 
magnitude of a set and its intersections, sets are 
symbolized by enclosed shapes on a plane, typically circles 
and the relationships between sets are demonstrated 
through the overlapping of these shapes. They offer a 
versatile means to represent all conceivable set 
relationships, including intersection, inclusion and 
exclusion, due to the absence of limitations on the 
representation of overlaps. Venn diagrams, which are a 
specialized variant of Euler diagrams, are capable of 
representing every conceivable set intersection, 
regardless of whether they are non-empty or not. 
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In [45], the author described a novel visualization 
method based on Venn diagrams was employed, where 
biclusters are visualized as non-uniform shapes termed as 
hulls and their intersections are indicated by the hulls’ 
overlaps. To represent genes and conditions that are 
unique to a single bicluster or shared among certain 
intersections, symbols known as glyphs are used. Each 
glyph is designed as a pie chart, segmented into sectors 
that represent the count of biclusters associated with the 
genes and conditions. The dimension of a glyph is 
indicative of the size of its respective group. The graphical 
representation is organized using a force-directed algorithm 
where biclusters are illustrated as flexible dynamic 
groups of genes and conditions. Specific genes and 
conditions related to a single bicluster or overlaps 
between a set of biclusters are illustrated through 
heatmaps and/or parallel coordinates which are 
displayed separately under request. While this approach 
effectively identifies a considerable number of biclusters 
with minimal rate of overlaps, its performance may 
degrade when faced with datasets containing a high 
degree of biclusters overlap. Figure 10 shows an 
illustration of this visualization technique. 
 

 
Figure 10: 50 biclusters visualization. Three sets of biclusters and their 

intersections are easily identifiable using the hulls representation 
( groups 1, 2 and 3) [45] 

3.5. Node-link diagrams visualization  

A node-link diagram is a graphical representation, 
either in 2D or 3D consisting of nodes and connecting edges. 
This visualization technique represents various entities as 

nodes, also known as vertices and the connections 
between these entities as edges or links. Typically, nodes 
are symbolized by geometric shapes such as circles while 
the connections are depicted by lines. Creating a clear and 
informative graph requires careful consideration of nodes 
placement and edges routing, particularly when dealing 
with a large number of elements. Force-directed layout is 
commonly employed to address this challenge. 

In [54], the author depicted biclusters and their 
intersections through a node-link graph. Here, biclusters 
form the nodes while the shared genes and conditions 
among them are represented as edges or bands. Each 
bicluster is visualized as a heatmap matrix where rows 
correspond to genes and columns represent conditions. 
Overlaps between biclusters are represented by 
connecting bands that link the corresponding heatmaps at 
the positions of shared genes and conditions. The 
thickness of these bands indicates the degree of overlap, 
with thicker bands signifying more shared elements. The 
graph layout employs a force-directed algorithm where 
biclusters with overlapping elements are drawn closer 
together. When a bicluster is selected, it reveals detailed 
information such as its designation or the identifiers of its 
genes and conditions. This visualization approach is 
highly interactive and straightforward since the design is 
based on the heatmaps visualization. The bands that 
indicate overlap offer the user a detailed view of the 
common genes and conditions found in each pair of 
biclusters. However, this method’s visualization of 
overlaps on a one-to-one basis makes it challenging to 
distinguish multiple bicluster overlaps easily. Moreover, 
the technique’s scalability is limited with an increase in 
overlap levels. In fact, the bands become overly congested, 
making it difficult to gain a comprehensive view of the 
biclustering outcomes. An example of this bicluster 
visualization method is presented in Figure 11. 

 

 

Figure 11: 20 biclusters are depicted. Nodes represent the biclusters 
displayed as heatmaps and edges connect the corresponding heatmaps 

at the positions of shared rows and columns[54] 

3.6. Two-dimensional matrix visualization  

In [55][56], the author proposed a visualization 
method that takes into account the special characteristics 

http://www.jenrs.com/


 H.Aouabed et al., Biclustering Results Visualization of Gene Expression 

www.jenrs.com Journal of Engineering Research and Sciences, 3(10): 55-68, 2024 62 

of biclustering which are overlaps and bi-dimensionality. 
The primary objectives of the method are: 

• Visually represent biclusters of varying sizes and 
degrees of overlap. 

• Maintain both elements (i.e., genes and/or conditions) 
and biclusters information within a single view, 
preventing context loss. 

• Avoid information simplification or duplication. 
While alternative approaches might offer clearer 
visualizations, they often ignore interesting 
information or introduce ambiguities. 

• Provide interactive features that enable diverse 
perspectives and facilitate exploratory analysis.  

• Increase scalability. An effective bicluster 
visualization method should accommodate large 
datasets, numerous biclusters and extensive overlaps 
between biclusters. 

To achieve these objectives, the authors developed a 
visualization technique that lay out the generated 
biclusters as a two-dimensional matrix. Each bicluster is 
represented as a column and overlaps between sets of 
biclusters are depicted as rows. This method combines a 
modified set visualization technique for matrix layout 
with a traditional heatmap approach for visualizing 
individual biclusters and their overlaps as gene 
expression matrices [58][53]. A user interface is 
implemented to query the biclusters intersection matrix 
and visualize matching results. The proposed technique 
is implemented in a web-based interactive visualization 
tool called VisBicluster which supports features like 
sorting, zooming and on-demand details. While 
applicable to any type of overlapping groups, the primary 
focus of this technique is on representing biclusters 
derived from gene expression data. 

This approach emphasizes overlaps, making their 
identification and selection straightforward within the 
defined matrix-based visualization. By avoiding element 
crossings (lines, shapes, etc.), this method minimizes 
visual clutters. VisBicluster’s scalability is remarkable 
since it can efficiently display large numbers of highly 
overlapped biclusters simultaneously. The tool also 
incorporates linking and brushing techniques for 
inspecting selected data subsets from different 
perspectives. Figure 12 illustrates this visualization 
technique. 

 

Figure 12: Plaid model biclustering algorithm [40] result visualization 
for yeast Saccharomyces cerevisiae expression data [56]. Overlaps are 
visualized as a two-dimensional matrix which is clustered by Levenshtein 
distance[59], an algorithm that arranges the most similar bicluster 
overlaps near each other (on the left). Genes and conditions of a set of 
similar selected overlaps are represented as a heatmap (on the right). 

 
4. Critique of visualization methods  

Our evaluation of the surveyed techniques focused on 
three key aspects:  
• Reducing overlaps among biclusters.  
• Maximizing the number of biclusters visualized 

within a single view (i.e., scalability).  
• Ensuring clear visibility of both biclusters and their 

overlapping regions. 
Due to their geometric limitations, heatmaps and 

parallel coordinates often struggle to efficiently visualize 
biclusters, particularly when evaluated against the 
criteria of overlap minimization and scalability [45]. 
Heatmaps, in particular, are typically unbalanced in 
terms of dimensions, with many more genes (around 10[3-

4] rows) than conditions (around 10[1-2] columns) [19]. So, 
replication techniques used to visualize biclusters can 
lead to large matrices when visualizing multiple 
biclusters, making overlap perception difficult and 
limiting scalability. Additionally, the common use of a 
green-black-red color scale in heatmaps can hinder 
human perception of expression levels [7],[19]. 
 

Parallel coordinates often suffer from cluttering due to 
overlapping polylines when visualizing multiple 
biclusters simultaneously. This makes it difficult to 
perceive overlaps and limits scalability. Individual 
biclusters can be easily interpreted due to the human 
brain’s ability to recognize patterns like parallel lines, 
mirror effects and changes in slope [19]. However, 
visualizing several large biclusters with high rates of 
overlap in the same parallel coordinates can be in some 
cases impossible. 

By combining heatmaps and/or parallel coordinates 
with more sophisticated sets visualization techniques like 
Venn diagrams [45], node-link diagrams [54] or two-
dimensional matrix visualization [55][56], we can confirm 
that the scalability and clarity of drawn biclusters are 
improved significantly. Representing biclusters and their 
overlaps as abstract elements such as hulls [45], bands 
between heatmaps [54] or cells in a matrix [56] can 
simplify the visualization. So, focusing on intersections 
between visualized elements (i.e., biclusters) in a global 
overview while providing details (i.e., gene expression 
levels) in a separate view as heatmaps or parallel 
coordinates, will alleviate the representation remarkably. 

Overlap is a key aspect when visualizing biclusters 
and overlap-centered tasks like how many overlaps 
between a specific number of biclusters or what are the 
biclusters involved in a certain overlap, can help analysts 
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to gain insights from visualized complex data. 
Visualization tools that help interpret complex analysis 
results without distorting or losing the original data 
context are crucial for understanding data. In fact, 
VisBicluster offers an overlap-centered solution that aids 
in understanding biclustering results, providing 
scalability for analyzing real gene expression data [55][56]. 

While these three novel visualization methods (i.e., 
BicOverlapper, Furby and VisBicluster) offer high rate of 
scalability, they can still be overwhelmed by a large 
number of biclusters and overlaps. So, in some cases, it 
may be impossible to visualize all biclusters within a 
single view. Table 2 provides a summary of biclustering 
visualization techniques, outlining their key 
characteristics.

Biclustering 
visualization 

technique 

Visualization 
methods 

Dealing with 
overlaps 

Scalability 
Clarity of 

visualization 
Time complexity 

Heatmap in [46] Heatmap 
Reordering of rows 

and columns 
Low Low 

O(|X|2|V |2) +O(|X||V 
|)O(MinLA)* 

 
O(|X|2|V |3) + O(|X||V 

|)O(MinLA)** 
 

O(|X|2|V |2d)+O(|X||V 
|)O(MinLA)*** 

 

Heatmap in [47] Heatmap 
Reordering of rows 

and columns 
Low Low 

O(mα) with α ∈ [1.6, 2]+ 
O(nα) with α ∈ [2.5, 2.7]+ 

Heatmap in [48] Heatmap 
Replication of rows 

and columns 
Low Low O(mn2 + n2log n)# 

Heatmap in [51] Heatmap 
Replication of rows 

and columns 
Low Low _ 

Parallel 
coordinates plots 

[51] 

Parallel 
coordinates 

plots 
Color polylines Low Low _ 

Bubblemap[45] 
and [52] 

circles 
Intersections 

between circles 
Medium High _ 

Venn diagrams 
[45] 

Hulls, pie 
charts, 

Heatmap, 
parallel 

coordinates 

Hulls intersections, 
Glyphs with pie 

chart sectors 
High High O(n3)$ 

Node-link 
diagrams [54] 

Heatmap, 
bands 

Bands between 
rows and columns 

of heatmaps 
High High _ 

Two-dimensional 
matrix 

visualization [55] 
[56] 

Heatmap, 
two-

dimensional 
matrix 

Cells of the two-
dimensional matrix 

High High O(n*m)& 

Where: 
V is the set of vertices and X is the set of hyperedges. 
*If we convert hyperedges into paths or cycles. 
**If we convert each hyperedge into maximum valid cycles. 
***If we convert each hyperedge into d arbitrary valid cycles. 
O(MinLA)is the time complexity of the minimum linear arrangement algorithm. 
+m is the number of biclusters and n is the number of elements.  
#n is the number of biclusters and m is the number of rows and columns in all the biclusters. 
$n isthe number of nodes (genes and conditions). 

Table 2: Evaluation of biclustering visualization techniques 
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5. Tools and datasets 

5.1. Tools 

Several useful tools exist that incorporate many of the 
biclustering visualization methods discussed in this 
review. Table 3 provides a summary of the key features of 
these tools. 

• BiVoc: It is a C++ implementation that incorporates 
two primary programs: one for the layout algorithm 
and another for generating the corresponding 
visualization image. To address the potential issue of 
numerous rows and columns due to replication, a 
user-friendly web interface allows for the selection of 
specific biclusters to display [48]. 

• ExpressionView: It is an R package that incorporates 
the developed ordering method and provides 
interactive visualization of bicluster results as 
heatmaps in a Flash applet format [47].    

• Bicluster Viewer: It offers heatmap and parallel 
coordinates visualizations for representing biclusters 
as contiguous blocks. It also includes a range of 
interactive features [51]. 

• Biclust: It incorporates various biclustering algorithms 
and offers several visualization methods, including 

the Bubbleplot graphical representation that depicts 
biclusters as circles [52]. 

• BicOverlapper: It is a Java package that enables the 
visualization of bicluster sets using Venn-like 
diagrams, the representation of microarray data 
matrices or individual biclusters as heatmaps and/or 
parallel coordinates and the visualization of 
transcription regulatory networks. It also supports the 
integration of these various visualization techniques 
for comprehensive data analysis [45]. 

• Furby: It is a Java implementation of the node-link 
diagram technique for visualizing biclusters[54]. It 
incorporates several features including ordering, 
zooming, adjustable thresholds for different defined 
values, etc. 

• VisBicluster: It is a web application built using 
JavaScript and the D3 library[60]. It enables the 
visualization of biclusters and their potential overlaps 
using the two-dimensional matrix method. Single 
biclusters or overlaps between two or more biclusters 
are depicted by heatmaps in a separate view. The 
software includes various integrated features such as 
ordering, filtering, zooming, etc. Linking and brushing 
between visualization techniques in VisBicluter are 
supported [55][56]. 

 

&n is the number of biclusters and m is the total number of overlaps between biclusters. 

Tool Heatmap 
Parallel 

coordinates 

Other 

visualizations 

Degree of 

interactivity 
accessibility Available at 

BiVoc[48] Yes No _ Medium free 
http://bioinformatics.cs.vt.edu/~m

urali/papers/bivoc 

ExpressionView

[47] 
Yes No _ Medium free http://www.unil.ch/cbg/Expressio

nView 

Bicluster Viewer 

[61] 
Yes Yes _ High commercial http://www.simtech.uni-

stuttgart.de 

Biclust[52] Yes Yes 
Bubbleplot, 

beplot, boxplot 
Low free 

https://cran.r-
project.org/web/packages/biclust/

index.html 

BicOverlapper[4

5] 
Yes Yes 

Venn-like 

diagrams, 

TRN, word 

cloud 

Very high free http://vis.usal.es/bicoverlapper 

Table 3: Characteristics of biclustering visualization tools 
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5.2. Datasets  

Multiple gene expression datasets were employed to 
assess biclustering visualization techniques. Table 4 
provides a list of some of these datasets. 
 

6. Conclusion 

While clustering focuses on identifying groups of 
similar elements within a dataset (gene expression data) 
by applying algorithms on one dimension either rows (i.e. 
genes) or columns (i.e. conditions), biclustering seeks to 
uncover patterns that exist simultaneously across both 
rows and columns. This added complexity (for 
biclustering case) necessitates more advanced 
visualization methods to effectively analyze gene 
expression data. By providing insights into the 
underlying relationships between genes and conditions, 
these visualizations can help bioinformaticians extract 
valuable knowledge. We present in this paper a global 
review that summarizes the most mentioned techniques 
to visualize results of biclustering of gene expression data 
in the literature and we evaluate them. We can mention 
that visualization issues such as scalability and overlaps 
between biclusters can be considered as open directions 
for academicians and researchers. As a possible solution 
to simplify the complexity of visualization of biclustering 
results, we think that the combination between traditional  
visualization techniques like heatmaps or parallel 
coordinates and one of the novel set visualization 
techniques mentioned in the literature [53], can be useful 
[56]. 
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