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ABSTRACT: This is the extended version of a paper presented at CISP-BMEI 2023.
After a general introduction kernels are described by showing how they arise from considerations
concerning elementary geometrical properties. They appear as generalizations of the scalarproduct
that in turn is the algebraic version of length and angle. By introducing the Reproducing Kernel
Hilbert Space it is shown how operations in a high dimensional feature space can be performed without
explicitly using an embedding function (the "kernel trick"). The general section of the paper lists
some kernels and sophisticated kernel clustering algorithms. Thus the continuing popularity of the
k-means algorithm is probably due to its simplicity. This explains why an elegant version of a k-means
iterative algorithm originally established by Duda is treated. This was extended to a kernel algorithm
by the author. However, its performance still heavily depended on the initialization. In this paper
previous results on the original k-means algorithm are transferred to the kernel version thus removing
these setbacks. Moreover the algorithm is slightly modified to allow for an easy quantification of the
improvements to the target function after initializaztion.
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1. Introduction

Clustering algorithms are not new. They have played a
prominent part in the area of information retrieval, where
searching for a text that was similar to a given text was often
a difficult task. This lead to the development of various
similarity measures. With the rise of the Internet the impor-
tance of clustering became obvious. Potential customers of
Internet shops had to be segmented into several classes in
order to customize advertising.

Information about texts or customers was frequently
stored in vectors. Hence similarity measures for vector
spaces had to be constructed. Whilst at first the geometrical
concepts of length and angle gave rise to primitive measuseres,
it was soon realized that a purely algebraic descrption of
these concepts was needed. This led to the scalar product
and thus to the first primitive kernels. Kernels, however,
had been known and employed mainly in the context of
Probability Theory and Statistics. A systematic treatment
within the realm of Artificial Intelligence does not seem to
have appeared before the beginning of the century.

It was soon realized that in order to provide added flexi-
bility it would be advantageous to embed the original vector
space into a higher dimensional feature space, . However, it
was also obvious that this would create complexity problems.
Fortunately enough a solution could be provided by using
an abstract construction, namely the Kernel Reproducing
Hilbert Space (KRHS).

These considerations lead to the following outline of the
article. In section 2 kernels are introduced starting from
first principles. En passant two simple similarity measures
are described and the section ends with a description of a
kernel that does not even require a vector space structure.

In section 3 the Kernel Reproducing Hilbert Space (RKHS)
is introduced. It involves a very abstract construction whose
usefulness is not immediately obvious. Thus in section 4 a
simple kernel explicitly shows that embedding the original
vector space in a high dimensional feature space causes com-
plexity problems. It may also lead to overfitting.In section 5
the value of the KRHS becomes evident: The operations in
feature space concerning the generalizations of length and
angle can be performed without explicit reference to the fea-
ture map. Moreover generalized similarity measures can be
constructed. In section 6 a list of kernels is presented. This
involves in particular a systematic construction of kernels.
More historical references concerning Statistics/Probability
Theory are included.The general part continues in subsec-
tion 7 with a listing of several clustering methods. It starts
with a brief review of classical clustering and also mentions
several sophisticated kernel clustering methods. As con-
clusion remains that the kernel k-means algorithm is still a
popular method. Section 8 contains an overview of the main
part of the paper. It starts with Duda’s original algorithm.
It also mentions some of the difficulties remaining typical of
hill climbing methods. Unfortunately those are still present
in the author’s original kernel version. But a solution of
these difficulties is mentionend. It contains a careful initial-
ization. In section 9 the kernel version of the main algorithm
is given without the more technical details. It is shown how
the centres of the clusters change if an element is tentatively
moved to another cluster. An easily evaluated cristerion is
provided for deciding whether this is advantageous as far
as the target function is concerned. In section 10 the new
initialization is described. It is easily transferred from the
original paper to the feature space since again the feature
map is not needed explicitly. In section 11 the technical
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details of the algorithm are presented. In particular the
mean (centre) updates in terms of kernels are explained. In
section 12 the previous results are collected together. This
gives a pseudo code for the main algorithm. Section 13
contains reports on experimental results. The paper finishes
with a conclusion in section 14 as is customary.

2. Kernels

Kernels arise within the realm of Statistics quite naturally,
see [1]. However, within the aerea of Neural Networks the
first systematic treatment seems to have appeared in [2]. In
fact in this context the elementary geometrical concepts of
lenght and angle played an important role. In the cartesian
plane or in three dimensions they were quite sufficient to
construct a separating plane between (in the simplest case
two) classes of vectors. Even similarity measures using a
cosine between angles of vectors proved unproblematic.

Definition:
The squared length of a vector x = (x1 , x2) denoted by ∥x∥2
is given by

∥x∥2 = x2
1 + x2

2 (1)

Suppose that x and y are unit vectors and that they make
angles 𝛼1 and 𝛼2 respectively with the x-axis then the angle
𝛼 = 𝛼1 - 𝛼2 is given (using elementary trigonometry) by

cos 𝛼 = cos 𝛼1 cos 𝛼2 + sin 𝛼1 sin 𝛼2 = 𝑥1𝑦1 + 𝑥2𝑦2 (2)

However, it was soon realized that an algebraic version of
these concepts was needed to cope with higher dimensions.
Of course, the above definition in equation (2) immediately
suggests an algebraic version of the geometric concepts by
introducing the scalar product.

Definition:
Let two vectors x = (x1 , x2) and y = (y1 , y2) be given. Then
their 𝑠𝑐𝑎𝑙𝑎𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 denoted by < ., . > is given by

< x, y >= x1y1 + x2y2 (3)

This then generalizes to higher dimensions in the obvious
way. Note also that due to the Schwartz inequality the
definition of the cosine in higher dimensions is consistent
with the definition in two and three dimensions since the
Schwartz inequality guarantees that the cosine has modulus
≤ 1.
Utilizing these definitions one can easily construct two prim-
itive similarity measures 𝑠𝑖𝑚1 and 𝑠𝑖𝑚2 between vectors
x = (x1 , x2 , . . . , xn) and y = (y1 , y2 , . . . , yn) by setting

𝑠𝑖𝑚1(x, y) = ∥x − y∥ (4)

and

𝑠𝑖𝑚2(x, y) = cos(𝛼) (5)

Here cos(𝛼) = 1
∥x∥∥y∥ < x, y >.

More similarity measures can be found in [3, 4]. However,
even the scalar product between vectors admits a further
generalization. This generalization does not even require a
vector space structure. The definition is given as follows.

Definition:
Given a topological space X and a continuous function
𝐾 : 𝑋 × 𝑋 →ℜ, whereℜ denotes the real numbers. Then
K is called a positive semi definite (p.s.d.) kernel if it satisfies
a symmetry condition, namely

𝐾(𝑥, 𝑦) = 𝐾(𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝑋 × 𝑋 (6)

and a positivity condition

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝛼𝑖𝛼 𝑗𝐾(𝑥𝑖 , 𝑥 𝑗) ≥ 0 ∀(𝛼𝑖 , 𝑥𝑖) ∈ ℜ × 𝑋. (7)

Example: The scalar product between vectors obviously
satisfies conditions (6) and (7). This example shows that
the given definition extends the scalar product. For more
general kernels and in particular the construction of kernels
see e.g.[2], p. 291-326.

Note that the elements in the above definition have not
been described in bold face to emphasize that they are not
necessarily vectors. However, in the sequel only vector
spaces shall be considered.

3. The Reproducing Kernel Hilbert Space

This is an abstract construction that is most important
for practical applications, see [5, 6, 7, 8]. It guarantees the
existence of a map embedding the original sample space
into a Hilbert space (sometimes also called feature space).
Somewhat unusually the Hilbert space consists of func-
tions where addition and scalar multiplication are defined
pointwise. To be more precise:

Definition:
Given a p.s.d. kernel 𝐾 on a vector space X. Let

{ℱ =

𝑛∑
𝑖=1

𝛼𝑖𝐾(xi , .) : n ∈ 𝒩 ∀(𝛼i , xi) ∈ ℜ × X} (8)

In (8) define addition and scalar multiplication pointwise
(the arguments of the functions have been indicated by
"."). Let 𝑓 , 𝑔 ∈ ℱ be given as 𝑓 (x) = ∑l

i=1 𝛼iK(xi , x) and
𝑔(x) = ∑m

j=1 𝛽jK(yj , x) . Then define the scalar product by;

Definition:

< 𝑓 , 𝑔 >=
𝑙∑
𝑖=1

𝑚∑
𝑗=1

𝛼𝑖𝛽 𝑗𝐾(xi , yj) =
l∑

i=1
𝛼ig(xi) =

m∑
j=1

𝛽jf(yj)

(9)
Clearly this scalar product has the required symmetry and
bilinearity properties that follow from (9). The positivity
condition follows from the p.s.d. kernel. Moreover the
heading of the section is explained by observing on taking
𝑔 = 𝐾(x, .) in (9) that

< 𝑓 , 𝐾(x, .) >=
l∑

i=1
𝛼iK(xi , x) = f(x) (10)

By separation and completion a Hilbert Space is obtained
as usual. Note that by abuse of notation the scalar product
has been denoted by the same symbol in both spaces. This
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should not cause any problems since it will be obvious from
the context which scalar product is intended.

From a practical point of view it is most important to
realize that the existence of a map 𝜂 into the feature space
has been shown, namely

𝜂(x) = K(x, .) (11)

4. Embedding Map versus Kernel

It was realized at an early stage that by embedding
the original sample space into a higher dimensional space
greater flexibility could be achieved, see e.g. [8]. Unfortu-
nately the corresponding embedding map 𝜂 turned out to
be somewhat difficult to handle in practice. This is going to
be shown by considering a simple polynomial kernel given
as

𝐾(x, y) = (c+ < x, y >)2 for a constant c ≥ 0. (12)

If the original sample space is Euclidean of dimension
n then the embedding function 𝜂 will map into a space of
monomials of degree ≤ 2. Knuth in [9] p. 488 gives the
number of different monomials of degree 2 as

(
𝑛+1

2
)
. Hence

an easy induction proof over n shows that the number of
monomials of degree ≤ 2 is given by

(
𝑛+2

2
)
. The rather com-

plicated embedding function is in [10] implicitly described
via the kernel as;

𝐾(𝜂(x), 𝜂(y)) =
n∑

i=1
x2

i y2
i +

𝑛∑
𝑖=2

𝑖−1∑
𝑗=1

√
2𝑥𝑖𝑥 𝑗

√
2𝑦𝑖𝑦 𝑗 +

𝑛∑
𝑖=1

√
2𝑐𝑥𝑖
√

2𝑐𝑦𝑖 + 𝑐2
(13)

Whilst the generation of this formula is not at all easy (it
involves the multinomial theorem) it is quite simple to verify
it by induction over n. Using (13) the explicit embedding
function in [10] is given as;

𝜂(x) = (x2
n , . . . , x2

1 ,
√

2xnxn−1

. . . ,
√

2𝑥𝑛𝑥1 . . . ,
√

2𝑐𝑥𝑛 , . . . ,
√

2𝑐𝑥1 , 𝑐)
(14)

Clearly it would be most cumbersome to deal with the
explicit embedding function even in this simple example.
Fortunately enough it is possible to avoid explicitly handling
the feature map since all the information required is present
in the kernel.

5. Length and Angle in Feature Space

From (11) it follows immediately that the length of an
element in feature space is given by

𝜂(x) = K(x, x)1/2 (15)

Hence the (generalized) length of a vector in feature
space can be computed without explicitly using the em-
bedding map. This also holds for more general vectors in
feature space as can be seen by using the bilinearity property

of the scalar product in feature space. The distance between
vectors in feature space is similarly worked out:

∥𝜂(x) − 𝜂(y)∥2 = K(x, x) − 2K(x, x) + K(y, y) (16)

Again the feature map is not needed explicitly. It seems
somewhat remarkable, that generalized similarity measures
can be constructed by using the generalized notion of angle;

𝑐𝑜𝑠(𝜂(x), 𝜂(y)) = ( 1
K(x, x)K(y, y) )

(1/2)K(x, y) (17)

That the generalized cosine has modulus ≤ 1 is guaran-
teed by the Schwartz inequality. A further concept is needed
for later use. Suppose now that the topological space X is a
finite set 𝑆 := {x1 , x2 , ..., xn} of samples in a Euclidean space
(this is the situation envisaged for the kernel k-means itera-
tive algorithm below) and let 𝐹𝑆 := {𝜂(x1), 𝜂(x2), ..., 𝜂(xn)}
denote its image in feature space. Then its centre of mass or
mean can be defined in feature space by;

Definition:

𝑚𝑒𝑎𝑛(𝐹𝑆) := 1/𝑛
𝑛∑
𝑖=1

𝜂(xi) (18)

Note here that the mean my not have a preimage in X. Nev-
ertheless the distance of a point w = 𝜂(x) in FS from the
center of mass can be computed:

∥w −mean(FS)∥2 =< 𝜂(x), 𝜂(x) > − 2
n < 𝜂(x),

n∑
i=1

𝜂(xi) >

+ 1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

< 𝜂(xi), 𝜂(xj) > =

𝐾(x, x) − 2
n

n∑
i=1

K(xi , x) +
1
n2

n∑
i=1

n∑
j=1

K(xi , xj)

(19)

6. List of Kernels

The history of kernels goes back a considerable time. As
mentioned above they seem to have arisen mainly in the con-
text of Probability Theory and Statistics. Two of the earliest
papers seem to be due to Schoenberg [11, 12]. He considers
kernels in the context of positive definite functions, where
normalized positive definite functions can be seen as Fourier
transforms of probability measures by Bochner’s theorem.
In the same context conditionally positive definite functions
(they appear as logarithms of positiv definite functions)
were treated in [5]. There was also exhibited a connection
to the Levy-Khinchine formula.

A systematic construction of kernels is described in [2], as
mentioned above. The particular choice of kernels suitable
to solve a special problem can vary quite considerably.

Particularly popular are polynomial kernels of degree
two or three, see (12). Higher dimensional kernels are not
frequently used since there is a danger of overfitting, see
[13]. Further kernels may be found in [14] and [15] where
additionally the connection to certain cohomology groups
is treated.
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7. Clustering Kernel Algorithms

Clustering has been a subject of study for a long time,
see [13, 16, 17]. However, kernel clustering seems to be
somewhat newer. One of the first systematic studies can
probably be found in [2], p. 264-280. There amongst others
measuring cluster quality, a k-means algorithm, spectral
methods, clustering into two classes, multiclass clustering
and the eigenvector approach are discussed.

More recently [8, 18] and [19] must be mentioned. In
the latter as an example kernel PCA is treated. Of course,
principal component analysis plays an important role where
image recognition is concerned. Nevertheless the k-means
algorithm in its various forms remains popular presumably
because of its simplicity.

8. Overview of the Main Part of the paper

In their seminal book Duda et al. amongst other topics
treat unsupervised learning and clustering in particular.
They establish an elegant iterative version of the k-means
algorithm [17], p.548. In order to increase its flexibility and
efficiency a kernel version of this algorithm was given in
[20], p.221; for related work see [1, 21], and for the well-
known connection to maximum likelihood methods see
also [11, 21]. Unfortunately one of the major shortcomings
already pointed out by Duda et al.[17] that are typical of hill
climbimg algorithms, namely getting stuck in local extrema,
remained. However, in [6] an initialization for general k-
means algorithms was presented that proved applicable.
Moreover it was shown in several tests that this improved
the performance considerably, see [2]. Hence the slightly
modified algorithm including this initialization is trans-
ferred to feature space here. It allows an easy quantification
of the further improvements after the initialization. This
was also employed to create a trial and error version using
multiple repetitions and a ratchet, as in Gallant’s Pocket
Algorithm, see [22]. This was suggested in the conclusion
of [2]. Also, en passant, several formal results present in [2]
and [20] were modified allowing for better readability.

9. The Main Algorithm

The problem that is originally being considered may be
formulated as follows:

Given a set of n samples 𝑆 := {x1 , x2 , ..., xn}, then these
samples are to be partitioned into exactly k sets 𝑆1 , 𝑆2 , ..., 𝑆𝑘 .
Each cluster is to contain samples more similar to each other
than they are to samples in other clusters. To this end one
defines a target function that measures the clustering quality
of any partition of the data. The problem then is to find a
partition of the samples that optimizes the target function.
Note here that the set S from now on will carry a vector
space structure in the present paper. Note also that the
number of sets for the partition will now be denoted by k
since a k-means algorithm will be employed.

In contrast to Duda’s original definition the target func-
tion will be defined as the sum of squared errors in feature
space. More precisely, let 𝑛𝑖 be the number of samples in 𝑆𝑖
and let

ci = 1/ni
∑
x∈Si

𝜂(x) (20)

be their mean in feature space, then the sum of squared
errors is defined by

𝐸𝑘 :=
𝑘∑
𝑖=1

∑
x∈Si

∥𝜂(x) − ci∥2 (21)

Of course, the above expressions, (20), (21)) can be ex-
pressed without explicitly using the feature map as shown
in (19).Thus for a given cluster 𝑆𝑖 the mean vector ci is the
best representative of the samples in 𝑆𝑖 in the sense that it
minimizes the squared lengths of the error vectors 𝜂(x) − ci
in feature space. The target function can now be optimized
by iterative improvement setting;

𝐸𝑘 :=
𝑘∑
𝑖=1

𝐸𝑖 (22)

where the squared error per cluster is defined by

𝐸𝑖 :=
∑
x∈Si

∥𝜂(x) − ci∥2 (23)

Suppose that sample xt in 𝑆𝑖 is tentatively moved to 𝑆 𝑗 then
cj changes to

c★j := cj + 1/(nj + 1)(𝜂(xt) − cj) (24)

and 𝐸 𝑗 increases to

𝐸★𝑗 = 𝐸 𝑗 + 𝑛 𝑗/(𝑛 𝑗 + 1)∥𝜂(xt) − cj∥2 (25)

For details see [20], p. 221, [23].

Similarly, under the assumption that 𝑛𝑖 ≠ 1, (singleton
clusters should not be removed) ci changes to

c★i := ci − 1/(ni − 1)(𝜂(xt) − ci) (26)

and 𝐸𝑖 decreases to

𝐸★𝑖 = 𝐸𝑖 − 𝑛𝑖/(𝑛𝑖 − 1)∥𝜂(xt) − ci∥2 (27)

These formulae simplify the computation of the change in
the target function considerably. Thus it becomes obvious
that a transfer of xt from 𝑆𝑖 to 𝑆 𝑗 is advantageous if the
decrease in 𝐸𝑖 is greater than the increase in 𝐸 𝑗 . This is the
case if

𝑛𝑖/(𝑛𝑖 − 1)∥𝜂(xt) − ci∥2 > nj/(nj + 1)∥𝜂(xt) − cj∥2 (28)

Thus, if reassignment is advantageous then the greatest
decrease in the target function is obtained by selecting the
cluster for which

nj/(nj + 1)∥𝜂(xt) − cj∥2 (29)

is minimal. It semms worth pointing out again that due
to (19) the embedding map can be eliminated and thus no
explicit reference to the feature space must be made.
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10. Initialization

In [24], the authors give an interesting method for ini-
tializing the classical k-means algorithm, see also [25]. They
cite several tests to show the advantages of their careful
seeding. In view of the distance function in feature space
described without explicitly using the feature map in (15)
this can easily be applied for the algorithm described here.
For use below a lemma proves helpful that follows from
lemma 2.1 in [26], see also [6], but has been transferred into
feature space.

Leema: Let 𝐹𝑆 be as above, i.e.

𝐹𝑆 := {𝜂(x1), 𝜂(x2), ..., 𝜂(xn)} (30)

with center 𝑚𝑒𝑎𝑛(𝐹𝑆) and let z be an arbitrary point with
z ∈ FS. Then∑

x∈FS
∥𝜂(x) − z∥2 −

∑
x∈FS
∥𝜂(x) −mean(FS)∥2 =

𝑛 ∗ ∥𝑚𝑒𝑎𝑛(𝐹𝑆) − z∥2
(31)

Indeed the procedure in feature space may then be de-
scribed as follows.
1. Choose an initial center c1 uniformly at random from 𝐹𝑆.
2. Select the next center ci from 𝐹𝑆 with probability

(𝐷(ci))2/
∑
c∈FS
(D(c))2 (32)

Here 𝐷(c) denotes the shortest distance from the data point
c to the closest center that has already been chosen.

In [2], the authors proves that the expected value of the
target function is of order 8(𝑙𝑛k+2)𝐸𝑘(𝑜𝑝𝑡𝑖𝑚𝑎𝑙) after the
described initialization. However, seeing that only improve-
ments can occur in the iterative algorithm this is somewhat
satisfactory.

11. Technical Details of the Algorithm

Without explicitly using the kernel feature space function
the increase in 𝐸 𝑗 can now be expressed as

𝑛 𝑗/(𝑛 𝑗 + 1)[𝐾(xt , xt) + 1/n2
∑
x∈Sj

∑
y∈Sj

K(x, y)

−2/n
∑
y∈Sj

K(xt , y)]
(33)

The decrease in 𝐸𝑖 can be obtained in a completely analo-
gous fashion, as mentioned before. Thus, if reassignment is
possible, then the cluster that minimizes the above expres-
sion should be selected.

Mean Updates in Terms of Kernels: It is useful to define
an 𝑛 × 𝑘 indicator matrix S as follows, see [2]:

S =

©«
𝑠11 𝑠12 · · · 𝑠1𝑘
𝑠21 𝑠22 · · · 𝑠2𝑘
. . . . . . . . . . . . . . . . . .
𝑠𝑛1 𝑠𝑛2 · · · 𝑠𝑛𝑘

ª®®®¬ (34)

Here

{
𝑠𝑖 𝑗 = 1 𝑖 𝑓 xi ∈ Sj

𝑠𝑖 𝑗 = 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Clearly the matrix S has precisely one 1 in every row
whilst the column sums describe the number of samples in
every cluster. Moreover a 𝑘 × 𝑘 diagonal matrix D is needed.

D =

©«
1/𝑛1 0 · · · 0
0 1/𝑛2 · · · 0
. . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 1/𝑛𝑘

ª®®®¬ (35)

The entries on the diagonal of D are just the inverses of the
number of elements in each cluster (notation as above). In
addition a vector X containing the feature version of the
training examples will be helpful.

X =

©«
𝜂(x1)
𝜂(x2)
. . . . .
𝜂(xn)

ª®®®¬ (36)

From this one obtains on a purely formal level

XTSD = (
∑
x∈S1

𝜂(x),
∑
x∈S2

𝜂(x), . . . ,
∑
x∈Sk

𝜂(x))D (37)

which gives

(1/𝑛1
∑
x∈S1

𝜂(x), 1/n2
∑
x∈S2

𝜂(x), . . . , 1/nk
∑
x∈Sk

𝜂(x))

This does of course describe the vector of means in fea-
ture space albeit still containing the feature map explicitly.
Thus, to construct the complete algorithm, it is still necessary
to remove the dependence on the feature map.

Finally a vector k of scalar products between 𝜂(xt) and
the feature version of the samples is going to be defined in
terms of the kernel matrix K:

k =

©«
𝐾(xt , x1)
𝐾(xt , x2)
. . . . . . . .
𝐾(xt , xn)

ª®®®¬ (38)

Hence kTSD is given by

(< 𝜂(xt), 1/n1
∑
x∈S1

𝜂(x) >, < 𝜂(xt), 1/n2
∑
x∈S2

𝜂(x) >, . . . , )

It is now possible to compute

𝑛 𝑗/(𝑛 𝑗 + 1)∥𝜂(xt) − cj∥2

= 𝑛 𝑗/(𝑛 𝑗 + 1)(∥𝜂(xt)∥2 − 2 < 𝜂(xt), cj > +∥cj∥2)
(39)

without involving the explicit use of the feature map whilst
also including the indicator matrix:

𝑛 𝑗/(𝑛 𝑗 + 1)(𝐾(xt , xt) − 2(kTSD)j + (DSTK(xi , xj)SD)jj)

Note here that for brevity the j-th vector (jj-th matrix) ele-
ments have been indicated by subscripts.
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12. Pseudo Code for the Main Algorithm

The Kernel Algorithm
Collecting together the above results the following kernel
k-means algoritm is obtained:

begin initialize n, k, c1(p), c2(p), . . . , ck(p)
as described above, 𝐸(𝑝), S(p),D(p), iter.
iter times repeat
(★)
initialize c1(t), c2(t), . . . , ck(t),
𝐸(𝑡), S(t),D(t).
do randomly select a sample xt(t)

𝑖 ← argmin1≤l≤k (𝐾(xt(t), xt(t)) - 2(kT(t)S(t)D(t))l +
(D(t)ST(t) K(xi , xj)S(t)D(t))ll)) (classify xt)
if 𝑛𝑖 ≠ 1 then compute

𝜌 𝑗 =


𝑛 𝑗/(𝑛 𝑗 + 1)(𝐾(xt(t), xt(t)) − 2(kT(t)S(t)D(t))j
+(D(t)ST(t)K(xi , xj)S(t)D(t))jj) j ≠ i

𝑛𝑖/(𝑛𝑖 − 1)(K(xt(t), xt(t)) − 2(kT(t)S(t)D(t))i
+(D(t)ST(t)K(xi , xj)S(t)D(t))ii) j = i

if 𝜌𝑚 ≤ 𝜌 𝑗 for all j then transfer xt(t) to 𝑆𝑚
recompute 𝐸(𝑡), ci(t), cm(t) and update the 𝑛𝑖 in D(t)
as well as the entries of S(t)
until no change in 𝐸(𝑡) in n attempts
if iter ≠ 0 then iter = iter-1 go to(★) else
if E(t) ≤ E(p) then replace the
pocket values by the temporary values
return the pocket values

end

Here the t designates temporary values. The temporary
values are finally transferred to the pocket values and thus
constitute the output.
In addition the expression behind the brace describes the
updates of the centres (means) as obtained in section XI.
Using Gallant’s method it is possible to fix a number of
repetitions of the algorithm and then select the best one
obtained. This is standard practice.

13. Experimental Results Reported

In [1] David Arthur and Sergei Vassilitski report the
following.

Experiments:
They implemented and tested their k-means++ algorithm
in C++ and compared it to k-means. They tested k = 10, 25,
50 with 20 runs each due to randomized seeding processes.

Data Sets Used:
They used four datasets. The first one was a synthetic
data set containing 25 centers selected at random from a
fifteen dimensional hypercube. They then added points of a
Gaussian distribution of variance 1 around each center thus
obtaining a good approximation to the optimal clustering
around the original centers. The remaining datasets were
chosen from real-world examples off the UC-Irvine Machine
Learning Repository.

Results Reported:
They observed that k-means++ consistently outperformed
k-means, both by achieving a lower target function value,

in some cases by several orders of magnitude, and also by
having a faster running time. The𝐷2 seeding (the weighting
given in (32)) was slightly slower than uniform seeding, but
it still lead to a faster algorithm since it helped the local
search converge after fewer iterations. The synthetic ex-
ample was a case where standard k-means did very badly.
Even though there was an “obvious” clustering, the uniform
seeding would inevitably merge some of these clusters, and
the local search would never be able to split them apart. The
careful seeding method of k-means++ avoided this problem
altogether, and it almost always attained the optimal clus-
tering on the synthetic dataset. As far as applications go
it should be mentionend that it is possible to exploit this
algorithm for maximum likelihood applications, for details
see [21], where the clustering algorithm is used to obtain an
approximate solution of the maximum likelihood problem
for normal mixtures.

The difference between k-means and k-means++ on the
real world data sets was also substantial. Without excep-
tion k-means++ achieved a significant improvement over
k-means. In every case, k-means++ achieved at least a 10
% improvement in accuracy over k-means, and it often per-
formed much better. Indeed, on the Spam and Intrusion
datasets, k-means++ achieved target function values 20 to
1000 times smaller than those achieved by standard k-means.
Each trial also completed two to three times faster, and
each individual trial was much more likely to achieve a
good clustering Of course, these results cannot be directly
transferred to the kernel algorithm, since that is dependent
on the particular kernel employed. The choice of kernel
again depends on the particular problem to be handled.
Nevertheless, they provide good indications as to how to
improve the classical algorithm in feature space.

14. Conclusion

By adopting the initialization suggested by Arthur and
Vassilitski the kernel version of Duda’s algorithm could be
improved. In particular it seems that the well-known prob-
lems concerning getting stuck in local extrema have been
avoided to some extent. This way the special advantages of
the iterative algorithm originally described by Duda can be
fully exploited. Indeed experimental results presented by
Arthur and Vassilitski substantiate that claim. Moreover a
trivial modification allows a quantification of improvements
obtained after the initialization. Thus an easy application of
trial and error methods using a ratchet is obtained. This is
similar to a method used in supervised learning (Gallant’s
Pocket Algorithm). As far as applications go it should be
pointed out that it is possible to exploit this algorithm for
maximum likelihood applications, where the clustering al-
gorithm is used to obtain an approximate solution of the
maximum likelihood problem for normal mixtures. In this
context it should also be mentioned that by Arthur and
Vassilitski certain generalizations of the k-means++ algo-
rithm are considered yielding only slight weaker results.
The author also considered Bregman Divergencies and the
so-called Jensen Bregman. This can be utilized to obtain
a generalization by appealing to the Reproducing Kernel
Hilbert Space, see section III.

The experimental results described above give clear indi-
cations towards the advantages of careful seeding. However,
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further investigations are needed to find suitable kernels for
the particular problems considered. Thus there is still room
for much future work.
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