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ABSTRACT: Honey bee health is crucial for global ecosystems, but traditional data analysis methods
often struggle to capture the complex interplay between bee behavior and environmental factors. To
bridge this gap, we developed HivePool, a novel data visualization and analysis tool designed to
empower beekeepers and researchers with deeper insights into these interactions. This paper explores
HivePool’s functionalities, focusing on its interactive visualizations and innovative time-oriented pattern
recognition for event prediction. By leveraging time series visualization techniques, HivePool allows
users to explore not only static relationships between environmental variables but also how these
variables change dynamically leading up to specific events within the hive. The paper showcases
HivePool’s effectiveness through two use cases: data-driven event exploration and example-driven
event prediction. Overall, HivePool equips beekeepers and researchers with a powerful set of tools,
facilitating a deeper understanding of bee behavior and environmental influences, ultimately leading to
improved beehive health and management strategies.
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1. Introduction
The alarming decline of honey bee colonies poses a sig-

nificant threat, making it critical to unravel the mysteries
behind Colony Collapse Disorder (CCD) [1]. Initiatives like
the Appalachian Multipurpose Apiary System (AppMAIS)
[2] have played a valuable role in collecting data on honey
bee health. However, this data’s sheer volume and complex-
ity often create a roadblock for researchers trying to identify
meaningful patterns. Existing analysis tools, while helpful,
often fall short in their ability to uncover subtle correlations
hidden within these intricate, multidimensional datasets
[3].

To address this challenge, we developed HivePool, a
groundbreaking visualization system that empowers users
to delve deeper, exploring the intricate relationships be-
tween various time series data—temperature fluctuations,
hive weight changes, and more — and specific events that
occur within honey bee colonies, like swarming episodes.
Unlike traditional analysis methods that may struggle to
reveal these subtle connections, HivePool is specifically
tailored to identify patterns between these diverse vari-
ables over time and how they relate to corresponding bee
behavior.

The motivation behind HivePool stems from the recogni-
tion that existing data analysis tools often fail to illuminate
the hidden connections within honey bee health datasets.
Previous attempts, such as the visualization tool developed
in our lab, provided some initial insights but lacked the
sophistication needed to comprehensively analyze the rich-
ness of multidimensional time series data [3]. Similarly,
Beevis, while offering a comparison of multiple time series
alongside the video, lacked the capability to define events

specific to honey bee behavior and analyze how these multi-
dimensional datasets influence or relate to bee activity [4].
HivePool builds upon these past efforts to bridge the gap
and provide a more powerful platform for exploring the
intricate temporal relationships within honey beehive data.

By providing a platform to define honey beehive data
events and explore the intricate interplay between time se-
ries variables and bee behavior, HivePool offers researchers
and beekeepers a powerful tool for gaining a deeper under-
standing of honey bee health and the factors that influence
it. This paper delves into the functionalities of HivePool
and showcases its effectiveness in uncovering hidden corre-
lations within honey beehive data. By leveraging advanced
visualization techniques and analytical tools, HivePool em-
powers users to extract valuable insights from these complex
datasets, ultimately contributing to a more comprehensive
understanding of honey bee health and paving the way for
developing effective monitoring and management strate-
gies. Through compelling case studies and feedback from
domain experts, we demonstrate HivePool’s ability to un-
lock hidden patterns within bee data, facilitating informed
decision-making in both beekeeping practices and research
endeavors. We conclude by highlighting the significance
of HivePool in advancing our understanding of honey bee
behavior and its implications for colony health, while also
outlining exciting avenues for future research and develop-
ment.

2. Related Work

2.1. Honey Beehive Data Analysis
Understanding honey bee behavior hinges on effective

data collection and analysis from beehives. Here, we ex-
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plore prior research that has significantly contributed to
these efforts. The AppMAIS and Beemon projects [5, 6, 7, 8]
serve as prime examples, collecting diverse data (humidity,
temperature, weight, audio, and video recordings) from
honey beehives in Western North Carolina over the past
thirteen years. This data provides a valuable foundation for
further analysis.

Researchers have increasingly utilized sensor data to
analyze honey bee behavior in relation to environmental
factors. Braga et al. proposed a method using a supervised
machine learning classification algorithm to estimate colony
health status and predict imminent collapsing states for
beekeepers [9]. In [10], the authors introduced a honey bee
colony state identification solution using temperature data
and fuzzy logic. In [11], the authors developed a multi-
sensor platform for real-time and long-term measurement
of relevant hive parameters and environmental conditions.
While these studies establish the groundwork for hive data
collection and basic analysis, they often lack comprehensive
data visualization capabilities.

Visualization techniques play a crucial role in assisting
honey bee analysis by leveraging human visual perception
to analyze biological features or behaviors. Sun et al. de-
veloped an automated 3D visual system that utilized two
video cameras to observe and output 3D space trajectories
and inflight statistics of target honey bees [12]. Sledevic et al.
visualized honey bee activity at hive entrances to monitor
hive conditions and predict honey bee behavior [13]. How-
ever, these approaches often lack an efficient visualization
system with a user-friendly interface and the capability for
comprehensive visual analysis, motivating the development
of HivePool.

Detection and prediction of honey bee swarms have
also attracted significant research interest, further motivat-
ing HivePool’s development. Voudiotis et al. presented
a bee-condition-monitoring system incorporating a deep
learning process to detect bee swarming [14]. In [15], the
authors proposed a method to detect swarming remotely.
In [16], the authors disclosed a method for monitoring and
predicting the swarming process within honey bee colonies
using vibro-acoustic information, similar to the approach
taken by Beemon.

HivePool builds upon these efforts by attempting to
model the pattern using a time series of all variables pre-
ceding the swarm event. This enables prediction based on
historical data and identified patterns.

2.2. Multivariate Time Series Visualization

Time series data visualization has garnered significant
interest among researchers, inspiring the development of
HivePool. Several existing visualization tools and tech-
niques have influenced HivePool’s design, particularly in
the context of exploring multivariate time series data.

TimePool, a tool for visualizing multiple univariate time
series, utilizes line charts – a concept similarly adopted by
HivePool to represent time series of selected variables for
multiple hives [17, 18, 19]. However, displaying numerous
line charts can lead to clutter, hindering data comparison
and individual item tracking [20, 21]. Variations like 3D line
graphs and braided graphs offer minimal improvement and
can be misleading with more data [22, 23]. ChronoLenses,

which applies data transformations and displays results in
line charts, can also be more cluttered than the original data
[24].

To address clutter from multiple line charts, HivePool
employs juxtaposed techniques, projecting them onto a set
of time lines for each hive [17]. Similar approaches include
line graph explorers [25], two-tone pseudo coloring [26],
Spark Cloud [27], and Horizon Graphs [28], all of which
display time series side-by-side to avoid overlapping data.
Works like Interactive Horizon Graphs [29] allow users to
adjust the baseline for pattern discovery, while Qualizon
graphs [30] incorporate qualitative categories with bands. In
[31], the researcher present time series with multiple detail
levels and abstractions, combining quantitative and qual-
itative representations. However, juxtaposed techniques
become less effective as the number of displayed time series
increases due to cognitive overload [23, 32, 33].

Juxtaposed timelines are commonly used for event explo-
ration in various domains like news analysis [34], commu-
nication analysis [35, 36], and medical research [37, 38, 39].
HivePool leverages juxtaposed timelines to facilitate analy-
ses of time series data for multiple hives, applying them in a
different context than existing works. Similar to those used
in the matrix or line-based visualizations, sorting techniques
are also employed to reveal patterns within the data [40, 41].

EVis serves as another significant inspiration for Hive-
Pool [42]. It visualizes a multivariate time series preceding
an event on a RadViz space. HivePool borrows this con-
cept to define the Event Leash on the scatter plot for two
environmental variables.

In [43], the author presented a set of line charts, one
for each dimension, to visually analyze multivariate time
series. Selecting a series in one chart would highlight it in all
charts, enabling interactive exploration. While intuitive, this
approach doesn’t explicitly reveal temporal relationships
among the dimensions.

In [44], the authors employed a two-step dimension
reduction process to project a group of multivariate time
series as points in a 2D space. Users could examine fea-
ture contributions to clusters within the projection space.
However, reducing each time series to a single point made
it difficult to compare temporal trends in detail for a large
number of series. In [45], the authors used animations and
trajectories to show how values of multiple objects change
over time in a shared 2D space. This approach can suffer
from clutter and change blindness issues with many objects.

Specifically, several methods have been proposed to
visualize a single multivariate time series. In [46], the au-
thor divided a multivariate time series into time slices and
projected them onto an MDS plot based on their similari-
ties. The temporal order was mapped to the color of the
projections. Time Curves [47] projected high-dimensional
temporal data points to a 2D space and connected them by
temporal order with a time curve. Characteristics of the
time curve were extracted to reveal patterns in the evolving
data. In [48], the authors projected snapshots of a dynamic
network to dots in a 2D space and connected them using a
curve. However, visualizing a large number of time series
was not a focus of these approaches.

The trajectory-based financial time series visualization
[49] is relevant to HivePool’s Event Leash concept. It plotted
2D time series as trajectories in a 2D space and clustered
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them based on high-dimensional feature vectors using a
Self-Organizing Map [50].
2.3. Trajectory Similarity Search

Calculating the similarities of trajectories is a common
computational task in many domains [51]. For our applica-
tion, trajectory similarity is key to revealing similar patterns
of change in environmental variables preceding specific
events within a hive. HivePool, utilizing a domain appro-
priate similarity metric, searches for times within beehives
with similar changes selected measured variables.

In [52], the authors provide an overview of trajectory
similarity measures. Popular approaches vary in complex-
ity, susceptibility to noise, and whether they account for
temporal differences [53]. Existing literature divides these
measures into being either metric or nonmetric. A distance
measure is considered metric if it is unique, symmetric,
non-negative, and satisfies the triangle inequality [52]. Non-
metric measures do not meet these requirements.

Euclidean distance is perhaps the simplest measure of
quantifying similarity between trajectories [54]. However,
it requires trajectories to be of equal length, which may be
too primitive for some applications. Fréchet distance and
Hausdorff distance both measure shape similarity [55, 56],
though unlike Hausdorff, Fréchet is a metric measure [52].
Yet, none of these three distance measures account for tem-
poral similarity.

Selected spatio-temporal similarity measures include Dy-
namic Time Warping and Longest Common Subsequence.
Dynamic Time Warping performs a recursive search to lo-
cate the most similar points between trajectories [52, 57].
The longest Common Subsequence is a nonmetric measure
that emphasizes robustness to noise [52, 58].

Similarity searching, finding the most similar trajectories
within a large subset, can prove to be a computationally
complex calculation. Searching large databases with many
trajectories typically leads to a prohibitive runtime [59]. One
attempt to devise an efficient searching algorithm is Wang
and Liu’s algorithm, which supports queries personalized
to users [59]. Supporting such queries provides a tailored
user experience, but this algorithm does not account for
temporal differences.

Moreover, unlike in many real-world scenarios, notably
with GPS data where trajectories may not be of the same
length [60], the same number of points between compared
trajectories can be guaranteed for our data. Searches that
accommodate trajectories of varying lengths are unnecessar-
ily complex for our application. Frentzos and Theodoridis
proposed a novel algorithm to efficiently conduct an index-
based similarity search, which utilizes R-trees [61]. Torch is
a trajectory search engine that features a trajectory similarity
search and utilizes R-trees [62]. Torch supports various
search queries, allowing users to investigate patterns among
trajectories. Likewise, HivePool supports two versions of
similarity searching to find the most similar trajectories
between all variables or two user-selected variables.
3. Domain Background And Data

3.1. Data Collection Methodology

This research utilizes data collected through the App-
MAIS Beemon system [63]. Beemon functions by acquiring

data via a Raspberry Pi 4B (Rpi) and transmitting it to a des-
ignated server for primary analysis and visualization. Fig
1 provides a comprehensive view of the Beemon system’s
hardware configuration.

Beemon System Hardware:
The core components of the Beemon system include a

Raspberry Pi 4B (Rpi), a Raspberry Pi Camera Model 2, and
protective casing for both units.

Data Acquisition:

• Environmental Sensors: Data pertaining to scale read-
ings, humidity, and temperature is collected by the
Rpi through Field-Programmable Gate Array (FPGA)
pins.

• Audio Data: A microphone connected to a USB port
on the Rpi captures audio information.

• Video Analysis: Computer vision techniques are ap-
plied to video recordings to estimate bee activity lev-
els (VideoFileSize) and bee traffic (departures and
arrivals).

Data Used for HivePool:
Internal hive data:

• RMSDb: Noise level within the hive in Decibel scale

• Temperature: Internal hive temperature

• Humidity: Internal hive humidity

External hive data:

• Hive Scale: Weight of the hive

• VideoFileSize: Indicator of bee activity level

Derived data:

• Arrivals: How many bees come into the hive entrance
within the video recording

• Departures: How many bees fly away from the hive
entrance within the video recording

• Difference: The difference between Arrivals and Depar-
tures

Figure 1: The Beemon system

This breakdown clarifies the data collection process and
separates Beemon system details from the specific data used
by HivePool for analysis.
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3.2. Data Collection Timeframe

Our data collection focused on the active period of the
hives, primarily daylight hours between 8:00 AM and 8:00
PM Eastern Standard Time (EST). For audio and video data,
we captured one-minute segments at frequent intervals.
Specifically, the Raspberry Pi (RPi) uploaded one-minute
audio and video recordings every five minutes throughout
the designated collection window, starting at 8:00 AM EST.

3.3. Challenges and Considerations

The Beemon system has undergone extensive testing
for reliability under various weather conditions. However,
occasional data gaps exist due to sensor malfunctions, power
outages, or internet disruptions. Additionally, it’s impor-
tant to note that while video recordings capture the hive
entrance, audio recordings come from within. This means
they are not perfectly synchronized despite being captured
simultaneously. Furthermore, propolis, a resin used by
bees to seal their hives, can sometimes coat sensors and
microphones, potentially affecting humidity, temperature,
and audio data quality.

Despite these limitations, the data collected using the
AppMAIS Beemon system provides a comprehensive snap-
shot of honey bee activity and environmental conditions.
These datasets offer valuable insights into bee behavior and
hive dynamics, even with inherent challenges. They serve
as a strong foundation for developing advanced analytical
and visualization techniques to unlock the complexities of
honey bee ecosystems.

Figure 2: A scatter plot matrix with VideoFileSize, RMSDb, Temperature,
Humidity, and hive Scale that shows no obvious relationships between
these variables.

4. Motivation And Tasks

4.1. Motivation

Unveiling the intricate dance between honey bee behav-
ior and environmental factors is critical for understanding
colony health and dynamics. Traditional data analysis

methods, however, often struggle to capture these subtle
connections within complex, multidimensional datasets.
Here, the rich data collected by the AppMAIS Beemon sys-
tem presents a unique opportunity to delve deeper into
these relationships.

While an initial scatter plot matrix (Fig 2) might not
reveal clear correlations between independent variables like
video file size, audio loudness (RMSDb), temperature, hu-
midity, and hive weight, the potential to uncover hidden
patterns remains significant.

This research is driven by two key motivations:

4.1.1. Understanding the Impact of Environmental Changes

We aim to discover how fluctuations in environmental
variables (e.g., temperature, humidity) influence honey bee
behavior within the hive. By analyzing these relationships,
we can gain valuable insights into bee health and colony
well-being.

4.1.2. Predicting Honey Bee Swarms

Swarming is a natural process where a portion of a colony
leaves to establish a new one. Predicting swarm events is
crucial for beekeepers as it allows proactive management
and minimizes potential honey production losses. However,
accurately predicting swarms remains challenging due to
the complex interplay of factors involved.

4.2. Tasks

Addressing these motivations translates to two primary
tasks for HivePool:

4.2.1. Task 1: Data-Driven Event Exploration

This task explores user-defined events within the beehive
data and identifies potential correlations with environmen-
tal factors. It comprises three subtasks:

• (T1-1) Events Definition: Since there are no prede-
fined behavioral events within the data, users can
leverage variables like VideoFileSize, RMSDb, and bee
traffic data to define events of interest. This might in-
volve investigating variable distributions across hives
and time to identify potential inflection points or
thresholds that could be considered events.

• (T1-2) Environmental Pattern Definition: Once an
event is defined, the goal is to explore the environ-
mental factors (temperature, humidity, etc.) and how
they change leading up to the event. This involves
identifying patterns in these variables that might be
associated with the chosen event.

• (T1-3) Potential Event Exploration: HivePool then
quantifies the relationship between defined events
and the time series of independent variables through
correlation analysis. Assessing the strength and di-
rection of these correlations helps us understand the
influence of environmental factors on bee behavior
and hive dynamics.
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4.2.2. Task 2: Example-Driven Swarm Prediction

This task tackles the challenge of predicting honey bee
swarms using historical data. It consists of the following
subtasks:

• (T2-1) Training and Test Set Splitting: Swarm event
data, typically collected by domain experts through
video recordings, audio analysis, and direct observa-
tion, is the foundation for this task. The first step
involves splitting these swarm samples into training
and test sets. The training set defines the characteristic
time series pattern preceding a swarm, while the test
set is used to evaluate the prediction accuracy.

• (T2-2) Multi-Variable Time Series Pattern Definition:
Since swarm samples are often limited, directly apply-
ing machine learning techniques might be impractical.
To address this, HivePool utilizes the concept of a
multi-variable time series pattern. This pattern, vi-
sualized using Detailed Leashes, depicts the changes
in all relevant variables (temperature, humidity, etc.)
leading up to a swarm event within the training set.

• (T2-3) Similarity Search: With the training pattern
established, HivePool performs a similarity search
across new datasets. This search identifies data points
exhibiting similar patterns to the training swarm exam-
ples, potentially indicating upcoming swarms within
the beehives.

• (T2-4) Evaluation: The effectiveness of these predic-
tions is then evaluated using the predefined test set.
By comparing the similarity search results with the
known swarm events in the test set, HivePool can
assess its accuracy in predicting future swarms.

This breakdown clarifies the importance of swarm predic-
tion for beekeepers and highlights the challenges involved.
It also details how HivePool addresses these challenges
through its multi-variable time series pattern approach and
evaluation using a test set.

5. HivePool Visualization

HivePool prioritizes user-friendliness with its compre-
hensive visualization design. This design allows users to
gain intuitive insights into how honey bee behavior interacts
with environmental variables. The toolbox offers a variety
of components, including line charts for visualizing trends,
time maps for spatial representation of events, hive time
bar charts for activity breakdowns within the hive, scatter
plots for exploring correlations, and a powerful algorithm
for uncovering similar patterns within the data.

5.1. Line Charts: Unveiling Trends in Bee Activity

Line charts are HivePool’s workhorse for visualizing
honey bee behavior. They offer a clear view of a chosen
variable’s time series data for each hive. Since bee data is
time-oriented and often collected intermittently (typically 8
AM to 7 PM daily), HivePool employs a segmented timeline
approach. Each day is represented by a continuous segment,
allowing for scaling of daily data within it.

These line charts display the variable’s basic line graph
for each hive, typically the event under analysis. Users can
observe how the variable changes over time, following its
path across each day’s segment as showin in figure 3 (1). To
simplify the analysis, users can select individual hives to
highlight their lines, isolating and comparing specific hive
data to identify unique trends and patterns.

Interaction is key: users can zoom in or out to focus on
specific timeframes or adjust the scale for different levels
of detail. Hovering over data points reveals specific values,
fostering deeper exploration. Ultimately, HivePool’s line
charts empower users to analyze time series data across
multiple hives. By enabling the visualization of trends, pat-
terns, and correlations in bee behavior over time, line charts
become a powerful tool for understanding hive dynamics
and informing beekeeping and research decisions.

5.2. Time Maps: Decoding Bee Activity Throughout the Day

HivePool’s time maps allow users to examine the daily
distribution of a chosen variable more closely. They visu-
alize this data using bubbles arranged along a vertical line
within each day segment of the timeline.

Each bubble represents a specific data point, with its
position on the y-axis indicating the time of day and its size
reflecting the variable’s value at that moment. This allows
for a quick grasp of how the chosen variable fluctuates
throughout the day within a hive.

Want to focus on a specific hive? No problem! Selecting
a hive filters the time map, displaying only its data for
focused analysis and pattern recognition across different
days.

By visually depicting the variable’s distribution within
each day, the time map helps users understand how it
changes over time. Identifying trends, peaks, and patterns
in the variable’s behavior provides valuable insights into
hive dynamics and the influence of environmental factors.

Seamlessly integrated with the line chart, the time map al-
lows for comparing the variable’s daily distribution with its
overall trend across multiple days. This lets users correlate
specific time-based events with broader patterns observed
in the line chart (See Fig 3 (2) for a sample: five-day line chart
and time map for VideoFileSize in hive AppMAIS12R).

HivePool’s time maps go beyond the line chart, offering
a granular view of a variable’s daily fluctuations. By pro-
viding a deeper understanding of bee activity patterns and
environmental influences, the time map empowers users to
make informed decisions and conduct insightful analyses.

5.3. Hive Map: Spotlighting Activity Across Hives

HivePool’s Hive Map takes a unique approach to vi-
sualizing time series data. Imagine a bar for each hive,
divided into colored segments that mirror the line chart’s
threshold (think green for above threshold, orange for below,
consistent across all visualizations).

These segments clearly show how the chosen variable is
distributed across different hives over time, relative to the
threshold. This makes it easy to identify periods when the
variable exceeds or falls below the threshold for each hive,
aiding in understanding hive dynamics and environmental
influences.

www.jenrs.com Journal of Engineering Research and Sciences, 3(9): 61-74, 2024 65

http://www.jenrs.com


T. Feng et al., HivePool: An Exploratory Visualization System

Figure 3: The layout of HivePool. (1) Line Charts and Time Maps. (2) Line Charts and Time Maps with a hive selected. (3) Scatter Plot with an Event
Leash for a selected time point. (4) Hive Map. (5) Details of some data-driven event search results, which indicate the high VideoFileSize (green lines)
are matched with the search results.

For better comparison, hives can be sorted based on the
total length of green or orange segments, depending on
your preference. This sorting helps you see which hives ex-
perience the most or least time at a specific value, revealing
patterns and trends across them.

The Hive Map also boasts interactive features to enhance
user experience:

• Hive Selection: Clicking a hive’s name highlights it
in the line chart and filters the time map, allowing
focused analysis of a single hive’s data.

• Event Selection: Manually select an event and see
similar events highlighted on the Hive Map. This
lets you explore how hives behave similarly based on
specific events or conditions, offering insights into
hive dynamics and environmental factors.

By providing intuitive visuals and interactive features,
the Hive Map empowers users to explore the chosen vari-
able’s distribution across hives over time. This facilitates
in-depth analysis of hive dynamics and environmental in-
fluences, ultimately aiding informed decision-making and
a deeper understanding of honey bee behavior. Fig 3 (4)
shows the Hive Map right below the Line charts and Time
Map.

5.4. Scatter Plots & Event Leash: Unveiling Environmental
Triggers

While line charts, time maps, and hive maps paint a vivid
picture, HivePool goes beyond static visuals. It offers scatter

plots to explore relationships and distributions between two
chosen environmental variables for each hive. However,
scatter plots lack a time dimension. Enter the Event Leash,
a novel feature that bridges this gap.

Scatter Plots: These plots allow users to visualize the
correlation, distribution, and potential patterns between two
selected environmental variables across different hives. This
empowers users to identify potential connections between,
say, temperature and humidity within each hive.

Event Leash: Unveiling Time-based Triggers: This inno-
vative feature injects time-awareness into the scatter plot
view. It displays a time series of the two environmental
variables leading up to a selected event (visualized on the
Hive Map). Imagine selecting a time point on the Hive
Map – the Event Leash showcases the trajectory of both
environmental variables right before that event.

The Event Leash’s path reveals how these environmental
variables changed before the event. To make interpretation
easier, HivePool color-codes the time order – allowing users
to see the sequence of changes clearly. (Imagine a rainbow,
with earlier points closer to the event being red and transi-
tioning to violet as you move backward in time.) Fig 3 (3)
shows an Event Leash on the Scatter Plot.

By integrating the Event Leash, HivePool takes scatter
plots to the next level. This innovative feature allows users
to go beyond static correlations and delve into the temporal
dynamics of hive behavior and environmental influences.
It empowers users to understand how changes in environ-
mental variables might precede specific events within the
hive.
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5.5. Detailed Leash: Diving Deeper into Pre-Event Changes

The Event Leash shows how environmental variables
shift before an event. But what if you want to scrutinize
each variable’s individual story? Here’s where the Detailed
Leash steps in.

The Detailed Leash provides a zoomed-in view of the
time series data for each environmental variable leading up
to the selected event. This detailed view allows users to see
each variable’s specific patterns and trends and how they
might contribute to the event’s occurrence.

Imagine a vertical line marking the event’s exact time.
The Detailed Leash plots the time series data for each vari-
able on either side of this line, showcasing their individual
pre-event behavior. Fluctuations, trends, and anomalies be-
come clear, allowing users to understand how each variable
plays a role.

By examining the Detailed Leash, users can:

• Analyze how each variable evolves over time leading
up to the event.

• Identify potential correlations and causal relationships
between variables and the event.

• Discover potential predictive indicators associated
with the event’s occurrence.

This in-depth analysis empowers users to:

• Gain a deeper understanding of the factors influencing
the event.

• Make informed decisions about beekeeping practices
or research interventions.

The time-oriented pattern for swarm samples in Fig 5
are defined using the Detailed Leash.

The Detailed Leash elevates HivePool’s analysis capa-
bilities. Offering a granular view of individual variable
behaviors facilitates a deeper understanding of the nuanced
dynamics leading up to an event. This knowledge is crucial
for informed decision-making and effective interventions in
beekeeping and research.

5.6. Similarity Search: Unveiling Hidden Patterns in Bee Behav-
ior

Behind the scenes, HivePool employs a greedy algorithm
for similarity search. Within a user-defined date range and
difference threshold, HivePool greedily searches for events
with a set of leashes most similar to those of the swarm
samples. An event, defined by the combination of its hive
and leash start time, consists of a leash for each observed
variable. By incrementally building the leashes and elimi-
nating an event from consideration whenever its calculated
difference exceeds the given threshold, HivePool avoids an
expensive, exhaustive search.

5.6.1. Similarity Metric

HivePool utilizes a similarity metric that accurately calcu-
lates similarities amongst time series trajectories. Consider
two leashes of the same length, a swarm and an event leash

of a single variable, for which we need to calculate their
trajectory similarity. HivePool calculates a similarity score
between 0 and 1, where higher scores indicate more simi-
lar trajectories. The similarity between two corresponding
points at index i on a swarm (s) and an event (e) leash, a and
b respectively, is calculated using the following equation:

similarity(i) = 1−
|a−b|

max(max(e),max(s))−min(min(e),min(s))
(1)

To avoid unexpectedly high similarity scores, we penal-
ized differences at the head of a leash higher than those
at the tail of a leash by applying weights to the calculated
similarity score at each index. Let D’ be an array of length
n, the length of both the swarm and event leashes, where
the value at each index i is given by (i+ 1)2. The array of
weights, D, is then calculated using the following formula:

D(i) =
D′[i]∑

(D′)
(2)

The final similarity score, a value between 0 and 1, for
two entire leashes is calculated using the following formula:

n−1∑
i=0

similarity(i)∗D(i) (3)

5.6.2. Greedy Algorithm

Figure 4: Four search results with high VideoFileSize for the Data-Driven
Event Exploration. All the leashes show a similar pattern of continuous
increasing humidity and a drop-first-and-rise-then temperature.

Since there could be an excessively large number of
leashes in the similarity search, HivePool pursues a greedy
approach where events with difference scores that exceed
the user-defined difference threshold are immediately dis-
carded. Then, at the termination of the search, HivePool
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identifies a list of events whose final similarity scores are
guaranteed to be below the difference threshold.

In the first step, we consider only the first point, the head,
of each variable leash for an event. We compare these to the
first point of each corresponding swarm variable leash to
calculate an initial similarity score. If the average difference
between all swarms’ leashes and the event leash is above the
difference threshold, we eliminate the event from further
consideration for each variable.

Once this initial search concludes, we may be left with
numerous overlapping leashes, or leashes that contain the
same time series data from the same hive. We remove
overlapping events, greedily retaining only the event with
the highest initial similarity score.

We repeat the similarity calculation for each point re-
maining in the leashes of the events still under consideration.
Similarly, if any variable’s average difference exceeds the
difference threshold at any calculation step, we discard that
event. Once the search concludes, the events remaining
are returned with each variable’s calculated final similarity
score.

6. Analysis Cases

This section explores HivePool’s effectiveness in achiev-
ing its two core functionalities: data-driven event explo-
ration and example-driven swarm prediction.

6.1. Case 1: Data-Driven Event Exploration

Jerry, a curious and meticulous beekeeper who is in-
terested in understanding how internal hive conditions,
specifically temperature and humidity, might influence the
bees’ activity levels. To delve deeper into this question,
Jerry decided to leverage the power of HivePool to unlock
insights from beehive data. With HivePool at his disposal,
Jerry embarked on a multi-step analysis process to explore
the relationship between these environmental factors and
bee activity.

6.1.1. Exploring Activity and Setting the Stage

Having identified temperature and humidity as key en-
vironmental factors of interest, Jerry turned his attention to
selecting a suitable indicator for bee activity within HivePool.
Because a larger file size in the video recordings captured
by the beehive sensors might correlate with a higher num-
ber of bees present, Jerry opted for VideoFileSize as his
metric. Within HivePool, Jerry explored the VideoFileSize
data using two key visualization elements: line charts and
time maps. The line charts provided a detailed view of
how VideoFileSize fluctuated over time for each beehive,
allowing him to identify trends and patterns in bee activity
across different days. The time maps, on the other hand,
offered a broader overview, displaying the distribution of
VideoFileSize values across the entire dataset. This visual
representation enabled Jerry to quickly identify days with
unusually high or low levels of bee activity.

By strategically adjusting a threshold line overlaid on
the VideoFileSize line charts, Jerry could highlight specific
time periods where the video file size exceeded a certain
value, potentially indicating increased bee activity within

the hive. This selection was then reflected on the Hive Map
(Fig 3 (1) & (4)). Here, green segments represented these
periods of high VideoFileSize activity for each individual
hive. The hives were further sorted based on their total
duration in these green segments, providing Jerry with a
quick comparison of activity levels across his beehives.

However, a closer inspection of the Hive Map revealed
a potential data collection bias. One particular hive (App-
MAIS7L) displayed a disproportionately long green segment
compared to the others. This anomaly prompted Jerry to
shift his focus to another hive (AppMAIS10L) that also ex-
hibited a substantial period of high activity (bright yellow
rectangle in Fig 3 (4)). He designated this specific time
period, identified as T1-1, as the event of interest for further
investigation within HivePool.

6.1.2. Event Leash and Pattern Recognition

Continuing his exploration within HivePool, Jerry delved
deeper into the relationship between the chosen indicator
(VideoFileSize) and the environmental factors of interest
(temperature and humidity). Two key visualizations offered
valuable insights at this stage.

The Scatter Plot, a powerful tool for revealing correla-
tions between variables, displayed the relationship between
temperature and humidity specifically for the hive Jerry had
selected (Fig 3 (3)). Each data point within the scatter plot
represented a specific point in time, with its position de-
termined by the corresponding temperature and humidity
values. By visually examining the distribution of these data
points, Jerry could identify potential patterns or trends in
how these two environmental factors interacted.

Overlaid on top of the Scatter Plot was the Event Leash,
a unique visualization element offered by HivePool (Fig 3
(3)). Represented by a rainbow line, the Event Leash served
as a dynamic timeline, tracing the changes in both tem-
perature and humidity leading up to the selected event of
interest (T1-1) – the period of high VideoFileSize identified
earlier. By simultaneously observing the scatter plot and
the Event Leash, Jerry could gain a more comprehensive
understanding of how temperature and humidity fluctu-
ated in relation to each other and how they evolved in the
lead-up to the identified period of high bee activity. In
this specific instance, Jerry noticed a potentially interesting
pattern – a decrease in temperature followed by an eventual
rise, occurring alongside a continuous increase in humidity.
This pattern, displayed prominently by the Event Leash,
offered a valuable clue for Jerry to consider as he continued
his investigation into the factors influencing bee activity
within his hives.

6.1.3. Similarity Search and Potential Events

With the high activity period (T1-1) identified for his cho-
sen hive (AppMAIS10L), Jerry wasn’t finished yet. HivePool
offered an additional layer of analysis – the ability to search
for similar environmental patterns across other hives. In the
background, upon selecting the event, HivePool initiated
a sophisticated similarity search. This search algorithm
scanned the data from all the beehives, searching for data
points where the Event Leashes exhibited patterns that
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closely resembled the one associated with T1-1. These simi-
lar patterns could indicate similar environmental changes
leading to high bee activity in other hives.

The results of this search were then displayed on the
Hive Map (Fig 3 (4)) using dimmed yellow rectangles. Each
rectangle represented a potential high activity event in an-
other hive, identified by the similarity search algorithm
based on the environmental patterns observed in T1-1. This
visual representation on the Hive Map allowed Jerry to see
how the environmental changes (represented by the green
segments associated with high VideoFileSize in his initial
event) aligned with the potential high activity events in
other hives (represented by the dimmed yellow rectangles)
(Fig 3 (5)). The spatial distribution of these potential events
offered valuable insights into the potential influence of these
environmental changes across his apiary.

Furthermore, HivePool’s interactive nature allowed Jerry
to delve deeper. By clicking on each potential event high-
lighted on the Hive Map, he could access the corresponding
Event Leash for that specific data point. Examining these
Event Leashes (Figure 4) provided a detailed view of how
temperature and humidity evolved in those other hives
leading up to their potential periods of high activity. Inter-
estingly, all four potential event Leashes displayed a similar
pattern to the one Jerry observed in T1-1: a drop in temper-
ature followed by a rise, alongside a continuous increase
in humidity. This remarkable consistency across multiple
hives strengthened the potential connection between this
specific environmental pattern and periods of high bee
activity.

This exploration gave Jerry valuable insights into the
potential relationship between temperature, humidity, and
bee activity within his hives. HivePool’s interactive vi-
sualizations and powerful similarity search functionality
empowered him to analyze user-defined events and identify
potential correlations with environmental factors across
his entire apiary. This comprehensive approach offered by
HivePool can be a valuable tool for beekeepers seeking to
understand and manage the complex interplay between
environmental conditions and bee behavior.

6.2. Case 2: Example-Driven Swarm Prediction

Gigi, a seasoned honey bee researcher, has meticulously
documented honey bee swarm events for years. She has
identified some swarm occurrences across 2022 and 2023
through video recordings and on-site observations. Driven
by a desire to manage beehive health and prevent disrup-
tions caused by swarming proactively, Gigi embarked on
a mission to develop a model capable of predicting future
swarm events.

Her initial approach involved constructing a machine
learning model. With this model in mind, Gigi meticulously
loaded data specific to the identified swarm occurrences.
The data encompassed precise timeframes relevant to each
swarm event: May 30th, 2022, to June 20th, 2022, for eight
samples identified in 2022, and May 15th, 2023, to June 15th,
2023, for four samples observed in 2023. Following these
preparations, Gigi attempted to train the machine learning
model using the 2022 dataset, evaluating its ability to predict
swarms using the 2023 dataset.

However, a significant hurdle emerged during this pro-
cess: extreme class imbalance within the labels. The positive
labels signifying swarm samples constituted a minuscule
fraction of the data. In the training set, only eight data
points out of a staggering 75,628 (from 24 hives) were la-
beled as swarm events. Similarly, the test set has just four
positive labels out of 147,351 data points (from 29 hives).
This unbalanced distribution posed a substantial challenge
for the machine learning algorithm. Due to the overwhelm-
ing presence of negative labels (representing non-swarm
periods), the algorithm struggled to learn the intricacies of
the positive class (swarm events) effectively. Recognizing
this limitation and the potential for misleading results, Gigi
explored alternative swarm prediction approaches. This
led her to HivePool, a visualization-based analysis tool that
facilitates swarm prediction using a visually-built precedent
time series pattern. By leveraging HivePool’s ability to
identify similar environmental patterns preceding swarm
events, Gigi hoped to gain valuable insights and improve
her ability to predict future swarming occurrences.

6.2.1. Setting Up the Prediction Task

To initiate the analysis, Gigi first loaded the training
set containing the swarm samples from 2022. HivePool
responded by generating Detailed Leashes, one for each
swarm sample (T2-1). These Detailed Leashes, serving
as the foundation for predicting future swarms, visually
represent the time series data for each swarm event. Un-
like Event Leashes used in exploratory analysis, Detailed
Leashes encompass all available environmental variables.
This means each Detailed Leash displays a collection of time
series line charts, one for every variable measured by the
beehive sensors. By examining these charts, Gigi could gain
a comprehensive understanding of how all environmental
factors – temperature, humidity, video file size (indicating
bee activity), scale (weight of the hive), honey bee traffic
(if available), and RMSDb (a measure of hive vibration) –
changed in the lead-up to each swarm event in the training
data (Fig 5). However, a snag emerged when Gigi loaded
the test set containing the 2023 swarm samples. Due to a
data collection adjustment during that period, the 2023 sam-
ples lacked information on honey bee traffic and RMSDb.
Fortunately, HivePool’s design allows it to adapt. Despite
missing some data, HivePool could still harness the remain-
ing variables (VideoFileSize, Temperature, Humidity, and
Scale) to identify patterns within the data. These Detailed
Leashes, encompassing all available variables for both the
training and test sets, collectively define the multi-variable
time series patterns that HivePool will utilize to predict
potential swarm events (T2-2).

6.2.2. Performing the Similarity Search

Having loaded the training set, she initiated the search
function. This prompted HivePool to embark on a simi-
larity search across the 2023 data, utilizing the Detailed
Leashes constructed from the eight training swarm samples
from 2022 (T2-3). The search algorithm itself is designed to
be adaptable. Recognizing that the 2023 data might have
missing variables due to potential adjustments in data col-
lection, the algorithm cleverly disregards missing entries.
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Instead, it focuses solely on the available variables that
remained consistent across both datasets: VideoFileSize,
Temperature, Humidity, and Scale. By comparing these
four variables across the 2023 data points, the algorithm
searched for instances that exhibited a high average simi-
larity to the patterns observed in all eight training swarm
Detailed Leashes. A user-defined threshold determined the
level of similarity required for a data point to be considered
a potential match. The outcome of this search yielded data
points within the 2023 data that displayed a high degree
of similarity to the environmental patterns that preceded
swarm events in the training data from 2022. These identi-
fied data points, representing potential swarm events based
on similar environmental changes, were then transformed
into Detailed Leashes for Gigi’s review. Additionally, these
potential swarm events were highlighted on the Hive Map
with dimmed yellow rectangles, providing a visual rep-
resentation of the distribution of the hive and time. This
combined visualization approach – Detailed Leashes and
Hive Map markings – offered Gigi valuable insights into
potential swarm occurrences within the 2023 data.

Figure 5: Detailed leashes for swarm samples. Eight samples from 2022
served as a training set and four samples from 2023 formed the test set.

6.2.3. Evaluating the Results

Comparing these results to the actual 2023 swarm events,
Gigi observed success. HivePool accurately predicted three
out of four swarms (Fig 6). However, it also generated
many false positives (Type I errors). 477 results points from
the 147,351-point dataset were flagged, indicating potential
algorithm refinement or threshold might be needed to better
balance between accuracy and highlighting potential events.
Despite this, Gigi was encouraged by HivePool’s ability to
identify actual swarms based on environmental patterns.
This initial success suggests promise for beekeepers seeking
to proactively manage hives and prevent disruptions caused
by swarming (T2-4).

6.2.4. Future Refinement

While the high false positive rate necessitates further
development, Gigi is encouraged by the three successful
predictions. This case study highlights HivePool’s ability
to leverage historical data and time-oriented patterns to

support proactive swarm management in beehives. By ad-
dressing the false positive issue through continued research,
HivePool can evolve into a valuable tool for beekeepers to
predict and manage honey bee swarms more effectively.

Figure 6: Swarm prediction based on data of 2023 (with missing variables)
comparing to the training set successfully predict three out of four swarm
samples in the test set, referring to Fig 5.

7. User Study

A user study assessed HivePool’s effectiveness for bee-
keepers with limited data visualization experience. Partic-
ipants, well-versed in honey beehive data, explored data
exploration, environmental impact on bee behavior, and
swarm prediction. This evaluated HivePool’s accessibility
and potential to empower beekeepers with data-driven in-
sights for informed decisions, without requiring extensive
training in specialized visualization techniques.
7.1. Study Design

The user study lasted approximately 30 minutes. The ini-
tial 20 minutes focused on a guided tour led by the developer
to introduce participants to HivePool’s core functionalities,
including exploring beehive data, defining and finding po-
tential events indicative of bee behavior, and even exploring
its potential for swarm prediction. Following the guided
tour, participants were empowered to take the reins for
the remaining 10 minutes. This hands-on session allowed
them to explore the system’s features independently at their
own pace. Participants were encouraged to ask questions
throughout the study to ensure a productive learning en-
vironment. Finally, to gather valuable feedback on their
experience, participants completed a five-question Google
Form after wrapping up their exploration of HivePool.

7.2. Participants

A total of 10 participants were enrolled in the study.
The group comprised 8 graduate students with a strong
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background in honey beehive data and 2 experienced pro-
fessors who brought their domain expertise to the table. A
key characteristic shared by all participants was their lack
of prior exposure to visual analytics tools. This selection
process allowed us to simulate real-world scenarios where
beekeepers, familiar with the intricacies of beehive data but
new to visual analysis techniques, would be encountering
HivePool for the first time. The user study allowed these
participants to evaluate how HivePool’s visual analytics
approach could assist them in analyzing honey beehive data
and extracting valuable insights.

7.3. User Feedback

The user study yielded valuable feedback through a
Google Form survey, with questions focusing on:

• (Q1) Did you find the system intuitive to understand?
(System Intuitiveness): This question gauged how eas-
ily participants understood HivePool’s functionalities.
Feedback was positive, with eight participants offering
positive and one providing a neutral response. Here
are some key quotes from participants: "Surprisingly
intuitive for the number of different visualizations present."
"I appreciated the connection between the graphs and how
responsive the design was!" "The interface controls were
very intuitive." "Once you understand the layout, it is
extremely informative.""All the labels, graphs, and charts
were clear and concise." There is one suggestion: "While
this tool is going to be oriented towards professionals in the
field, it might be helpful to add some more titles to provide
quick context."

• (Q2) Did you find the user interface of the visualiza-
tion system easy to navigate? (User Interface Navi-
gation): This question assessed the user-friendliness
of HivePool’s interface for navigating and interacting
with the data. Feedback was overwhelmingly positive.
Here are some quotes: "The placement of user-determined
options on the top right was very beneficial." "It gave the
user very powerful tools to manipulate and browse the data."
"Interactive items were labeled, which is good to see." There
is also a suggestion: "Adding more descriptive labels to
certain sections of the tool could greatly aid in navigation
and usability."

• (Q3) Did the visualization system provide valuable
insights into honey beehive data and swarm pre-
diction? (Data Insights and Swarm Prediction): This
question evaluated participants’ perception of Hive-
Pool’s effectiveness in providing valuable insights into
beehive data and aiding in swarm prediction. Feed-
back was mostly positive, with seven participants
offering praise and two providing neutral responses.
Here are positive quotes: "Swarm prediction did very
well compared to the limited data about existing swarms
and the number of swarms." "I could see how this would be
very helpful when investigating hive behavior or predicting
swarms." "This system’s visualization helped me have more
insight into the trends of the honeybee data." Some sugges-
tions for improvement: "The error rate is a little too high
right now to be helpful in identifying swarms." "I would
like it if the line plots in the swarm detection graphs had the

area under the curve colored in. This would make it a lot
easier to compare the plots at first glance." "I would prefer
that it includes a wider range of case studies on swarm
events occurring."

• (Q4) How useful did you find the visualizations in
understanding the data and finding patterns? (Visu-
alization Utility): This question explored the perceived
usefulness of the visualizations in helping participants
comprehend the data and identify patterns. Feedback
was very positive, with eight participants offering
praise and one providing a neutral response. Here are
positive quotes: "The use of similarity metrics was great."
"Using leashes in general to find patterns was interesting
and helpful.""The visualizations were easy to understand
while retaining detailed information." "Users are able to
make comparisons and draw conclusions from any of the con-
trasting data points." There are also some suggestions:
"Some sort of outlier filter may be necessary." "It might be
beneficial to aggregate all of the entries highlighted in blue
into a visual carousel... Incorporating a search bar feature
within this carousel would further improve functionality by
enabling users to filter entries based on specific dates and
times.

• (Q5) Did the visualizations aid in making informed
honey beehive data analysis decisions? (Decision-
Making Support): This question assessed how well the
visualizations facilitated informed decision-making
about honey beehive data analysis. Feedback was
overwhelmingly positive. Here are some key quotes
from participants: "(The interaction) would be very
helpful in identifying sensor malfunction." "The similarity
search seems to be very useful...I would look at times when
the queen came out of the hive." "I see incredible potential in
its ability to allow easy exploration through the data." "Anal-
ysis of the data becomes much more reliable and easier.""The
visualizations are the best aid in making those decisions."
"The insights provided by this tool would significantly boost
my confidence in those choices."

Figure 7: User feedback from the User Study.

By analyzing the survey responses and comments, we
can gain valuable insights into user experience and identify
areas for potential improvement within HivePool.

8. Conclusion

This work investigated the potential of HivePool, a
visualization-based analysis tool, for exploring honey bee-
hive data and predicting swarm events. We explored a case
study where a beekeeper leveraged HivePool to investigate
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the relationship between temperature, humidity, and bee
activity within the hives. HivePool’s functionalities empow-
ered the beekeeper to visually analyze user-defined events,
identify correlations between environmental factors and bee
activity, and explore potential patterns across his apiary.
Another case study indicates that a researcher attempted to
apply machine learning for swarm prediction but encoun-
tered challenges due to class imbalance. HivePool offered an
alternative approach by identifying similar environmental
patterns preceding swarm events in historical data.

There is always room for improvement. Here are three
key areas we will focus on in future development:

• Incorporating Change Speed: HivePool will incor-
porate "change speed" as a search criterion, allowing
users to explore how rapidly environmental variables
fluctuate within the hive, providing a more nuanced
understanding.

• Daily Time Series Generation: HivePool currently
uses data collected every five minutes (8am-8pm),
creating time series gaps. This limits Event Leashes
to the current day, hindering analysis of multi-day
patterns. To address this, a daily version of Hive-
Pool will be introduced, aggregating data into daily
points for continuous time series analysis of long-term
environmental factors influencing bee behavior.

• Mitigating Type I Errors: The user study revealed
high false positives in swarm prediction. To improve
prediction accuracy, we’ll refine the search algorithm
or user thresholds, potentially incorporating addi-
tional data (honeybee traffic, RMSDb) or advanced
similarity metrics.

By addressing these limitations and incorporating user
feedback, HivePool will evolve into a robust, user-friendly
tool that empowers beekeepers with data-driven insights
into hive health, swarm prevention, and overall apiary
management.
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