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ABSTRACT: As documented in recent research, this review offers a thorough examination of the intricate
subject of fingerprint authentication, including a wide range of issues and applications. Addressing
problems like non-linear deformations and enhancing picture quality, which are frequently reduced
by sophisticated improvement and alignment techniques are important components of fingerprint
image authentication. Countering security concerns such as spoofing is a major focus of Automated
Fingerprint Identification Systems and necessitates the use of sophisticated cryptographic techniques
and liveness detection. In order to accomplish speedier identification processes, the paper emphasizes
the advancements made in fingerprint indexing and retrieval, with a focus on deep learning technologies
and minutiae-based methodologies. Furthermore, fingerprint authentication is used for a variety of age
groups, including neonates, where it is essential for identification verification and the management of
medical records. The paper also highlights the wider uses of fingerprint technology, such as improved
crime detection skills, insights into age-related features, and contributions to medical diagnostics. This
review provides a thorough overview of the latest developments and potential future directions in
fingerprint authentication by combining state-of-the-art methodologies and analysing technical details,
implementation challenges, and security issues. This captures the dynamic and important role of this
biometric technology.

KEYWORDS: Biometric Authentication, Fingerprint Identification System, Biometric Security, Biometric
Application

1. Introduction

In the rapidly evolving landscape of biometric technol-
ogy, fingerprint authentication has emerged as a cornerstone
of identity verification and security systems. The intricate
and unique ridge patterns present on human fingertips
provide a reliable and convenient means of confirming
individuals’ identities. As societies transition towards dig-
italization and interconnectedness, the role of fingerprint
biometrics becomes increasingly crucial in ensuring secure
access to systems, facilities, and personal information. This
paper delves into the intricate web of fingerprint biometric
research, offering a comprehensive overview of the chal-
lenges faced, innovative solutions devised, and emerging
trends that collectively shape the present and future of this
dynamic field. Figure 1 depicts a few fingerprint images
that have been collected through different technologies. Fig-
ure 1(a) represents fingerprint collected by ink and paper
method, Figure 1(b) shows fingerprint collected by a digital
scanner and Figure 1(c) shows fingerprint collected from a
crime scene.

We will go through a number of fingerprint biometric
dimensions in this exploration, each with its own oppor-
tunities and limitations. The challenge of authenticating
unformatted fingerprint photos is significant because of

non-linear deformations, different pressures during acquisi-
tion, and a range of environmental factors. [1]. In response,
researchers have developed intricate algorithms harness-
ing machine learning, convolutional networks, and auto
encoders to enhance image quality and improve matching
accuracy. Security vulnerabilities inherent in Automated
Fingerprint Identification Systems (AFIS) call for advanced
strategies to safeguard against threats such as spoofing and
data tampering. Biometric cryptosystems and cancellable
templates are among the innovative solutions that fuse
cryptographic techniques with biometric data, forging new
frontiers in secure authentication [2]. The realm of fast
fingerprint indexing and searching is another pivotal arena,
demanding the fusion of speed and precision in matching
large datasets. Leveraging fingerprint features and deep
learning algorithms, researchers have crafted strategies to
expedite the matching process while ensuring accurate re-
sults. Furthermore, the application of fingerprint biometrics
extends beyond traditional identity verification. From diag-
nosing medical conditions through changes in fingerprint
patterns to detecting drug consumption and even deter-
mining handedness, the fingerprint’s unique attributes are
being harnessed for a diverse array of purposes. As this ex-
ploration unfolds, it underscores not only the strides made
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in fingerprint biometrics but also the ethical considerations
and societal implications that accompany the growing inte-
gration of biometric data into various aspects of modern life.
As researchers continue to innovate and push the bound-
aries of what is possible, fingerprint biometrics remain a
cornerstone in the pursuit of a secure and interconnected
future [3].

Figure 1: Different Source FP Images: (a) Rolled ink (b) Live scan (c) Latent

The objective of this review is to comprehensively explore
the landscape of fingerprint authentication as documented
in previous literature. It aims to delve into the technical
challenges encountered in fingerprint image authentication,
including addressing non-linear deformations, enhancing
image quality, and implementing alignment methods. The
review also seeks to examine the security considerations
within Automated Fingerprint Identification Systems (AFIS),
focusing on strategies to combat spoofing through liveness
detection and advanced cryptographic measures. Addition-
ally, it aims to analyse the methodologies and advancements
in rapid fingerprint indexing and retrieval, particularly em-
phasizing minutiae-based approaches and the integration of
deep learning techniques. Furthermore, the review intends
to assess the diverse applications of fingerprint authentica-
tion, from identity verification in infants to its implications
for medical history tracking, as well as its broader roles in
medical diagnostics, age-related studies, handedness detec-
tion, and crime prevention. Through a thematic analysis
of existing literature, this review aims to provide insights
into the current state-of-the-art methodologies, implemen-
tation challenges, and security concerns within the field of
fingerprint authentication.

To present a thorough overview of developments in the
field of biometric authentication, we carefully reviewed
publications published in the past ten years as part of the
data collecting and analysis for this review study. Each
study was methodically identified and categorized accord-
ing to its purported benefits and drawbacks, accuracy mea-
sures, and procedures used. To comprehend these research’
methods to algorithmic processing, performance evalua-
tion, and biometric data gathering, we carefully examined
their techniques. The study aimed to evaluate the effi-
cacy and accuracy rates of various biometric approaches,
taking into account the advantages and disadvantages of
each method. Through the consolidation of this data, we
were able to identify patterns and breakthroughs, evaluate
the development of biometric technologies, and provide
perspectives on the condition of the technology sector at
large. This comprehensive study seeks to offer a fair assess-
ment of the advancements made, point out areas in need
of development, and determine future paths for biometric
authentication research.

In this study, we attempt to investigate various state-

of-the-art developments in finger print biometric practical
application. The format of this essay is as follows: The diffi-
culties and security risks associated with latent fingerprint
authentication and automatic fingerprint authentication sys-
tems are discussed in Section 2. The method for all-purpose
fingerprint user identification is described in Section 3. Fast
fingerprint indexing and searching are covered in Section 4.
The difficulties and solutions for analysing and identifying
infants’ fingerprints are described in Section 5. Multi-modal
biometric techniques are discussed in Section 6. Compara-
tive comparison of various approaches is the main topic of
Section 7. Section 8 concludes with some final thoughts.

2. Challenges in Authentication

2.1. Authentication of Unformatted Fingerprint Image

In the field of fingerprint authentication, raw fingerprint
images can be obtained from different sources, such as rolled
ink prints, live scans, and latent prints. These images often
suffer from non-linear deformations and poor quality, mak-
ing authentication challenging. Non-linear deformations
can arise due to variations in finger pressure and improper
finger placement during image acquisition. These defor-
mations can lead to unsatisfactory matching scores and
impact the accuracy of fingerprint authentication systems.
Low-quality fingerprint images can also result from factors
like image scanner noise, partial prints collected from crime
scenes (latent prints), and various skin conditions. These
low-quality prints can be categorized as dry, wet, damaged,
dotted, and blurred. Dry prints have minimal contact with
the scanning surface, while wet prints result in smudged
ridges and valleys due to extensive contact. Damaged prints
may arise from scars or skin issues, while dotted prints are
caused by excessive sweating. Blurred prints occur when
motion or unclear ridges during scanning lead to image
blurriness. To address these challenges, various techniques
have been developed for fingerprint enhancement and align-
ment. Traditional methods such as Gabor filtering and
adaptive boosted spectral filtering are commonly used for
enhancing fingerprint images. Alignment techniques and
cluster-based methods aim to rectify non-linear deforma-
tions, improving the accuracy of matching in automated
fingerprint identification systems (AFIS). Figure 2 shows
fingerprint feature extraction using convolution neural net-
work, where three parallel CNN extract features from the
fingerprint image and after the merging of the three features
to form a unique feature descriptor, which is passed to a
classifier for classification task.

Because of their high dimensionality, minutiae descrip-
tors, which are widely used in fingerprint identification
algorithms, face considerable hurdles. These descriptors
are robust for fingerprint pattern identification because they
capture fine features. However, the noise and volatility
present in real-world settings might have a significant im-
pact on their performance. Noise may cause mismatches
during matching procedures by distorting minute points.
This noise can originate from various sources, such as defec-
tive sensors or low-quality images. Accurate identification
is made more difficult by unpredictable variations in finger-
print traits, such as ageing or changes brought on by injuries.
Thus, even though minutiae descriptors are excellent at
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collecting distinctive fingerprint features, their effectiveness
depends on how well noise and unpredictability are han-
dled to provide safe and dependable biometric identification
systems.

Figure 2: Extraction of Minutiae Descriptor using CNN

A novel latent fingerprint matching approach is pre-
sented by [4], which makes use of a descriptor-based Hough
transform for latent prints together with a robust align-
ment technique. Their approach achieved a noteworthy
rank-1 accuracy of 53.5% on NIST SD27, outperforming two
commercial matchers and a non-commercial algorithm. Sin-
gular point-based alignment is a problem, as performance
depends on the quantity of minutiae and the overall print
quality. Refining features with top-down information from
an exemplar print, in [5], the authors presented a feedback
system for latent fingerprint matching. When combined
with a cutting-edge matcher, it improved identification ac-
curacy in the NIST SD27 and WVU databases by 0.5–3.5%.
Finding a balance between the advantages of feedback and
the complexity of the system, as well as the example print
quality, is a challenge. Deformable Minutiae Clustering was
proposed by [6] for latent fingerprint recognition, improv-
ing minutiae matching via cluster merging and Thin Plate
Spline modelling. It outperformed previous techniques
with up to 85.6% (Cylinder-Codes) and 83.3% (m-triplets)
accuracy across different fingerprint databases. Scalabil-
ity issues for latent-to-latent identification and algorithm
speed are among the limitations. Using feature selection
and random decision forest classification, the authors in
[7] provided an adaptive latent fingerprint segmentation
approach that achieved state-of-the-art performance on
three databases. In order to balance accuracy and selection
time, their method includes a unique SIVV-based metric
for segmentation evaluation and modified RELIEF feature
selection. Constraints about the applicability of the SIVV
metric and assumptions about consistent ground truth are
examples of limitations. A collaborative filtering paradigm
for fingerprint enhancement was proposed by [8]. It involves
pre-enhancing using Gabor filters and spatial patch-based
enhancement utilizing spectral diffusion after that. Test
findings on FVC2004 datasets showed that this approach
was better than other approaches such as the Gabor filter
and VeriFinger Algorithm Demo. The study is limited by
fixed patch size effects and sensitivity to input fingerprint
quality, which calls for additional investigation to fully eval-
uate resilience. FingerNet, a CNN-based method for latent
fingerprint enhancement, was introduced by [9]. It has
shared convolution and deconvolution layers for orientation
guiding and noise reduction. It demonstrated potential for
improvement with larger datasets and ground truth ROI an-

notations, as demonstrated by its top-1 matching accuracy of
47.7% when tested on NIST SD27 using data collected from
SD4. Using Convolutional Neural Networks (ConvNets)
for ridge flow estimation and minutia descriptor extraction.
In [10], the authors proposed an automated latent finger-
print recognition system that achieved rank 1 identification
accuracies of 64.7% and 75.3% on NIST SD27 and WVU
latent databases. Poor ridge quality, background noise, a
tiny friction ridge area, reliance on manual ROI selection,
long processing times, and scaling issues are some of the
limitations. A technique to improve Automated Fingerprint
Identification Systems (AFIS) by utilizing uncommon minu-
tiae was suggested by [11]. This involves altering similarity
scores that are based on least squares fitting mistakes in
order to improve matching accuracy. It greatly improves the
rank identification accuracy of minutiae-based matchers,
as demonstrated by tests conducted on the GCDB forensic
database. Future study on generalization and database size
effects is suggested by the challenges of dataset restrictions
and manual intervention for latent AFIS. An end-to-end
latent fingerprint recognition system with automated ROI
cropping, minutiae extraction based on deep learning, and
texture template creation was promoted by [12]. Tested
against a background of rolled prints on many datasets,
yielding rank-1 retrieval rates varying from 7.6% to 69.4%.
Among the drawbacks are difficulties in identifying fine
details on low-quality photos, trimming dry latents, and
the requirement for more varied operating databases for
thorough training. By utilizing fine-coarse parallelism and
asynchronous processing for latent fingerprint recognition.
In [13], the authors invented ALFI and achieved a 22x speed
gain over state-of-the-art approaches with equivalent ac-
curacy. Tested on NIST SD27, they report accuracy using
Equal Error Rate and F1-score, recognizing dataset size con-
straints, restricted classification strategies, and unknown
uses beyond fingerprints, such as DNA analysis. LQMetric,
an automated method for evaluating latent fingerprint qual-
ity and forecasting the probability of a rank-1 hit in the FBI’s
NGI AFIS system, was suggested by [14]. It produced a
61.4% match with human examiner assessments using local
clarity maps and image analysis tools; it worked well for
NGI searches but was not uniformly applicable to other AFIS
methods. For improving latent fingerprint images. In [15],
the authors provide a progressive GAN-based technique
that consists of off-line training and repeated on-line testing
phases. Based on CMC curve metrics, evaluation on the
NIST SD27 dataset demonstrates better performance than
previous models. Constraints on dataset quantity, process-
ing cost, and possible inefficiency with subtle ridge features
in latent prints are some of the limitations. An automated
latent fingerprint identification system using DCNN-FFT
augmentation for minutiae extraction and matching was
described by [16]. It achieved 100% rank-1 identification
on the FVC2002 and FVC2004 databases and 84.5% on the
NIST SD27. The results show increased recall, F1 scores,
and precision; however, computational time and dataset
diversity are acknowledged as constraints. Using synthetic
data for training. In [17], the author provide a deep nested
UNets architecture for automated latent fingerprint segmen-
tation and improvement. It performs better than current
methods in fingerprint recognition and segmentation ac-
curacy when tested on the NIST SD27 and IIITD-MOLF
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databases. One of the main drawbacks is the lack of high-
quality and low-quality coupled fingerprint picture pairs
in the current databases. This can be overcome by creating
synthetic latent images for training. Using dense fingerprint
patch alignment and matching. In [18], the authors pro-
moted a non-minutia latent fingerprint registration method
that outperformed previous techniques in registration when
tested on the NIST27 and MOLF datasets. Its drawbacks
include its dependence on 2D data, higher processing re-
quirements, and possible inadequacy for poor-quality pic-
ture data. Using an algorithm based on Lindeberg’s scale
selection method. In [19], the authors revealed integrating
pores (level 3 characteristics) alongside minutiae for latent
fingerprint identification. When combined with pores, as
opposed to just minutiae matching, greatly improves recog-
nition rates on the IIITD Latent database. A small dataset
size, a focus plane restriction for pore extraction, and com-
putational costs that affect matching time are among the
limitations. For latent fingerprint identification. In [20],
the authors proposed the "Ratio of Minutiae Triangles"
(RMT) algorithm, which makes use of local minutiae ar-
rangements without pre-alignment. tested with Rank-1
recognition accuracy of 80% and 63.8% on the FVC2004 and
NIST SD27 databases, respectively. Poor quality latent cases
and the requirement for better feature extraction and match-
ing phase integration for large databases are acknowledged
constraints. In order to achieve accurate latent fingerprint
enhancement and segmentation. In [21], the researchers
proposed a hybrid model that combines the Chan-Vese ap-
proach for segmentation and Edge Adaptive Directional
Total Variation (EDTV) for enhancement. Accurate Rank-1
identification was achieved with 61.24% and 70.16% on NIST
SD27 and WVU DB databases, respectively. Restrictions
include the size of the database and the requirement for
additional testing on intricate latent fingerprints. Using
Chan-Vese, an adaptive latent fingerprint segmentation and
matching strategy based on the EDTV model was given by
[22]. On the NIST SD27 dataset, this approach achieved
AUCs of 72% and 70.59% for ROC and CMC curves, re-
spectively. Limitation includes poor accuracy of existing
techniques for latent fingerprint segmentation. Using scale
and rotation invariant minutiae characteristics. In [23], the
authors proposed an automatic latent fingerprint identifica-
tion system that significantly improved Rank-1 identification
accuracy on NIST SD27 and FVC2004 datasets. On NIST
SD27, CLMP-NRS produced the maximum Rank-1 accu-
racy of 93.80%. Handling incomplete fingerprints with
limited minutiae characteristics and relying on the quantity
of retrieved minutiae for matching performance are two lim-
itations. MinNet, a minutia patch embedding network for
latent fingerprint identification that optimizes spatial and
angular minutiae distribution, is introduced by [24]. Reach-
ing cutting-edge outcomes, assessed on many public and
private datasets, such as FVC-Latent and NIST SD27, with
rank-1 accuracies of 85.88% and 92.39%, respectively. Its
limitations include the inability to handle fingerprints that
are partially or substantially deformed and its reliance on
high-quality latent pictures for precise minutiae extraction.
To achieve state-of-the-art accuracy and efficiency in latent
fingerprint indexing, the authors in [25] offer a multi-scale
fixed-length representation technique. performed better
than other indexing techniques like PDC and DeepPrint

when tested on a variety of datasets, including Hisign and
NIST SD27. possibility performance variance on simulated
fingerprints and scope-limited optimization are among the
limitations, indicating possibility for more improvements
in feature representation. Using a residual encoder-decoder
architecture and frequency-domain loss function optimiza-
tion, the authors in [26] proposed a deep learning model
for latent fingerprint enhancement. superior than current
methods in terms of rank-25 and rank-50 accuracy when
evaluated using the IIIT-Delhi MOLF database. The ridge-
based approach of the technology and the requirement for
additional refinement in deleting undesired portions of im-
ages and testing on a variety of databases are its limitations.
With an emphasis on fairness in prediction and decision-
making, the authors in [27] provided a technique to and
reduce biases in automated algorithms working with latent
fingerprint pictures. They evaluate the effect on automatic
matching of latent fingerprints using covariate-specific ROC
curves produced from regression models taking quality
and demographics into account. Results demonstrate that,
compared to assessments without quality, the suggested
covariate-adjusted ROC curves conditioned on image qual-
ity and demographics offer a more informative assessment.
The quality measurement algorithm’s underlying assump-
tions and dataset restrictions are examples of limitations.
It is believed that more research on a variety of datasets is
crucial for method validation. ULPrint, a Universal Latent
Fingerprint Enhancer, was introduced by [28], who used
Mix Visual Transformer (MiT) SegFormer-B5 encoder ar-
chitecture and Ridge Segmentation with UNet. By using
directed blending of predicted ridge masks, the technique
improves latent fingerprints and addresses issues with a
variety of latent types. Tests conducted on both synthetic
and actual datasets show notable gains in accuracy; nonethe-
less, there are still issues such as annotator subjectivity and
limited databases. FingerGAN, a GAN-based technique for
latent fingerprint enhancement, was presented by [29]. It
optimizes minute information through adversarial, percep-
tual, and reconstruction losses. Tested on NIST SD27 and
IIIT-Delhi MOLF, FingerGAN outperforms state-of-the-art
techniques, however it has drawbacks such as computa-
tional complexity and dependence on high-quality rolled
fingerprints for data production. For latent fingerprint
recognition, the authors in [30] suggest a hybrid method
integrating local (minutiae and virtual minutiae) and global
features (AFR-Net embeddings). With a multi-stage match-
ing paradigm and Squeeze U-Net CNN for augmentation,
they attain an average rank-1 retrieval rate of 71.22% on mul-
tiple datasets. Failure instances including severe rotations
and overlapping patterns are noted, as are challenges such
as low contrast and occlusion. ACSACO, a hybrid approach
combining Cuckoo Search and Ant Colony Optimization for
latent fingerprint identification, was proposed by [31]. AC-
SACO beats individual algorithms when tested on the NIST
SD-27 dataset, achieving excellent precision and recall for
prints of good quality but lower accuracy for prints of poor
or ugly quality. Complex backdrop problems and overlap-
ping prints are among the limitations, indicating the need
for additional optimization strategies and wider dataset
validation. In order to enhance DeepPrint for recognition
systems, in [32], the authors developed a CycleGAN-based
technique to create artificial latent fingerprints. Their ap-
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proach improves TDR at 0.01% FAR from 23.64% (MSP) to
45.45% (synthetic) when tested on NIST SD27. Reliance on
a single matcher and the lack of functional latent databases
are among the limitations.

Latent fingerprint identification is the painstaking pro-
cess of locating and examining fingerprints from crime
scenes, frequently with the aid of cutting-edge methods to
improve their contrast and visibility. New levels of security
are introduced when these latent prints are scanned and in-
put into automatic fingerprint identification systems (AFIS).
This meticulous manual process is essential for correct iden-
tification. Although AFIS significantly improves fingerprint
matchings scalability and efficiency, it also brings with it po-
tential vulnerabilities that were not as noticeable in manual
systems. Problems like algorithmic flaws, spoofing attempts,
and data breaches emphasize the necessity of strict security
protocols to preserve the accuracy of fingerprint data. In
order to guarantee that the improvements in fingerprint
identification technology do not jeopardize its dependabil-
ity and efficacy, it is crucial to comprehend the shift from
manual latent fingerprint analysis to automated methods.

2.2. Security Threats in AFIS

Digital user authentication through fingerprint biomet-
rics relies on Automated Fingerprint Identification Systems
(AFIS) to verify individuals’ identities. The concept of
AFIS was initially developed by the US Federal Bureau of
Investigation (FBI). The AFIS process can be divided into
two phases: Enrolment and Identification. In the Enrol-
ment phase, users’ fingerprints are registered in the system.
The Identification phase matches query fingerprints against
stored templates for authentication. During Enrolment, fin-
gerprint images undergo preprocessing, feature extraction,
and template creation. In the Identification phase, query
fingerprints are processed and matched against stored tem-
plates to identify valid users. Securing a biometric system is
crucial due to the non-changeable nature of biometric traits.
An AFIS needs robust security measures to safeguard user
information from potential attackers. Various components
within an AFIS can be exploited by attackers. These attack
points include potential vulnerabilities in the biometric data
acquisition process, template extraction, and communica-
tion channels. Several known attacks can compromise the
security of an AFIS, including spoofing (presenting fake
biometric data), exploiting similarity, zero-effort attempts
(using attacker’s own biometric to impersonate a legitimate
user), physical destruction of the biometric sensor, replay
attacks (intercepting and replaying biometric signals), com-
munication channel attacks (cutting or altering channels),
and more. These attacks can lead to unauthorized access,
denial of service, and other security breaches.

2.2.1. Liveness Detection

To address these security challenges, researchers have
developed preventive measures and countermeasures, such
as liveness detection to determine if a fingerprint is from a
living person or a spoof. Various methods have been pro-
posed to detect spoof attacks that use materials like wood,
glue, and gelatine to fabricate fingerprint spoofs. Figure 3
shows the process of liveness detection using auto encoder

where live and spoof fingerprint images are passed to a
encoder to learnt two different latent representation of the
image and then it is passed to decoder to reconstruct the live
and spoof fingerprint, this way the architecture knows the
difference between a spoof and live image and can detect
them.

Figure 3: Process of Fingerprint Spoof Detection

In order to improve the resilience of biometric authenti-
cation systems against spoofing attacks, the authors in [33]
present an approach that combines SURF, PHOG, and Gabor
wavelets with low-level characteristics and shape analysis to
detect liveness in fingerprint images. Achieving an average
EER of 3.95%, their algorithm, which uses PCA for dimen-
sionality reduction and various classifiers, such as SVM and
Random Trees—beams above the previous record of 9.625%,
validated across several databases, including LivDet 2011
and LivDet 2013. However, more testing on a range of
sensors and materials is acknowledged for a thorough ro-
bustness assessment. A software-based fingerprint liveness
detection technique is presented by [34]. It uses image gra-
dient co-occurrence arrays for feature extraction and SVM
classification. It attains greater accuracy on LivDet09DB
and LivDet11DB datasets than state-of-the-art methods, in
spite of drawbacks like quantization-induced information
loss and high-dimensional feature vectors derived from
higher-order co-occurrence arrays. Convolutional neural
networks could improve gradient measurement; however, di-
mensionality reduction methods could be needed to handle
higher-order arrays. In order to achieve state-of-the-art accu-
racy across LivDet datasets, the authors in [35] proposed a
CNN-based technique for fingerprint spoof attack detection
that makes use of local patches centred on minutiae for
fine-grained analysis. The approach shows effectiveness
against different spoof materials and testing settings, with
an average accuracy of 99.03% on LivDet 2015, beating the
95.51% of competition winners. The need for more diverse
datasets and ethical concerns about the use of biometric data
are two acknowledged constraints, though. A fingerprint
liveness detection technique using a BP neural network
and difference co-occurrence matrices for improved tex-
tural features was suggested by [36]. The system builds
input data based on these matrices and uses pre-trained
networks to forecast classification accuracy, achieving higher
detection accuracy on the LivDet 2013 database over earlier
techniques. One of the limitations is the lack of diagonal
direction difference co-occurrence matrices, which could
more accurately represent the properties of the image. For
real-time fingerprint liveness detection, the authors in [37]
promoted a semi-supervised stacked autoencoder-based
method that substitutes learnt representations for hand-
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designed features. Exhibiting efficaciousness on the LivDet
2011 and 2013 datasets, the approach attains satisfactory
performance, but with a recognition of constraints includ-
ing dataset magnitude, model initialization, and difficulties
with substandard quality, excessive brightness, or noisy
images. Adversarial attacks on deep neural network-based
fingerprint liveness detection were described by [38], ex-
posing flaws in cutting-edge models. By applying FGSM,
MI-FGSM, and Deepfool techniques, they illustrated how
models might mistakenly identify phony fingerprints as real
ones with minute variations. The evaluation of the LivDet
2013 and LivDet 2015 datasets made clear that deep learning
applications require more reliable detection models and anti-
adversarial techniques. With a score-level fusion approach
that combines liveness detection and fingerprint matching,
the authors in [39] took first place with 96.88% accuracy in
the Fingerprint Liveness Detection Competition 2019. It was
evaluated using the LivDet2015 and LivDet2019 datasets,
taking into account restrictions on finger pressure and device
time that may effect detection accuracy. It used ONNS for
similarity, Slim-ResCNN for FLD score, and LR classifiers
for fusion. A DenseNet optimized with a genetic algorithm
was provided by [40] for fingerprint liveness detection, and
it achieved 98.22% accuracy on a mixed Livdet dataset. De-
spite constraints in dataset size and computational cost for
real-time applications, the method outperforms state-of-the-
art efforts on LivDet 2009, 2011, 2013, and 2015 datasets by
utilizing ROI extraction and specialized mutation operators.
A liveness identification approach utilizing the Circular
Gabor Wavelet (CGW) algorithm and SVM was presented
by [41], which achieved 99.968% accuracy in differentiating
between real and false fingerprints. The approach, which
has been tested on 272 samples from optical and capaci-
tive sensors, yields encouraging results but still needs to
be assessed further against spoofing techniques used in
the real world. A multi-modal liveness detection method
incorporating fingerprint and iris inputs, leveraging statis-
tical texture features and spatial analysis, was advocated
by [42]. The approach outperforms sum-rule and product-
based approaches with high precision (94.7%) for fingerprint
detection and 97.8% accuracy for decision-level fusion. rec-
ognizing its limits, such as its reliance on dataset size and
its usefulness against particular attack types. Using the
LivDet 2013 and 2015 datasets, the authors in [43] presented
FLDNet, a lightweight CNN architecture for fingerprint live-
ness detection that achieves state-of-the-art performance.
FLDNet solves problems such as accuracy on tiny size fin-
gerprints and robustness against unknown spoof materials,
and achieves 1.76% Average Classification Error (ACE) over
all sensors with a redesigned dense block and attention
pooling layer. A one-class convolutional auto encoder for
fingerprint presentation attack detection is proposed by [44],
and it achieves a D-EER of 2.00% on a dataset of 24,050 fin-
gerprint images. Among the method’s drawbacks include
its inability to generalize to additional modalities, the re-
quirement for distinct models for various attack substrates,
and uncertainties about robustness and adversarial attacks.
A weighted multi-modal CNN-based FLD technique was
introduced by [45], which used ROI operation and feature
fusion for improved performance. It achieves excellent accu-
racy in different evaluation circumstances, outperforming
current approaches on LivDet 2011, 2013, 2015, and NUAA

datasets. Two drawbacks are the need for extensive training
datasets and performance variability brought on by sensor
diversity. EaZy learning, an adaptive ensemble learning
model for fingerprint liveness detection, was suggested by
[46]. On LivDet 2011, 2013, and 2015 datasets, it achieved
average accuracies of 60.49% and 67.80%. It solves draw-
backs such as reliance on clustering techniques and dataset
size, as well as potential performance concerns in unknown
contexts due to lack of variety in training data by clustering
training data and integrating predictions using weighted
majority voting. A novel approach using transformers and
GANs to improve fingerprint presentation attack detection
(PAD) generalization across sensors and materials was de-
veloped by [47]. With LivDet2015, the approach achieves
an accuracy gain from 68.52% to 83.12%, addressing the
limits of accuracy degradation in cross-sensor situations
and inadequate generalization. Using a "transient liveness
factor" (TLF) and picture quality measures, the authors in
[48] suggest a person-specific FPAD technique that achieves
100% accuracy in spoof presentation detection. They admit
constraints such as the short dataset size and the difficulty
of generalizing across different materials while conducting
experiments with a dataset of 30 live photos and 138 spoof
samples from various attackers. In comparison to previ-
ous methods, the authors in [49] proposed a Fingerprint
Liveness Detection (FLD) technique that improved accuracy
by 1.0% on average by integrating AlexNet, VGG16, and
ResNet CNNs with a genetic algorithm for feature weight-
ing. Enhancing detection performance on several Livedet
datasets, the strategy addresses the drawbacks of fixed-scale
inputs and possible challenges in training the model due
to over-abundance of features. A CNN-based fingerprint
liveness detection technique was suggested by [50], which
outperformed SVM and CNN+SVM hybrid techniques on
the LivDet2015 dataset. Measured by precision, specificity,
F1 score, and accuracy metrics, preprocessing approaches
and feature extraction methods improve classification ac-
curacy. Given that different materials provide different
obstacles when it comes to creating false fingerprints, more
study is necessary to improve classification performance
in these scenarios. A multi-filter framework for finger-
print liveness detection utilizing hand-crafted features was
promoted by [51], who achieved improved performance
on LivDet test datasets. The method achieves an average
accuracy of 99.15% and an average classification error of
0.85% on the LivDet 2015 dataset, outperforming state-of-
the-art techniques. It involves procedures such as data
augmentation, preprocessing, feature fusion, and dimen-
sionality reduction. The authors recognize that lengthy
processing times and complex parameter setting are real
usability barriers. In order to counteract forced and phony
fingerprint attacks, the authors in [52] introduced MFAS, a
Micro-Behavioural Fingerprint Analysis System that records
fingertip micro-behaviour throughout time. After being
tested on 24 subjects, MFAS achieves 100% accuracy in
identifying voluntary versus forced fingerprint placements,
as well as 100% true positives. Though encouraging, the
system can run into problems in realistic situations, requir-
ing more study to improve technology and comprehend its
application. The incremental learning model A-iLearn, pro-
posed by [53], addresses the stability-plasticity conundrum
in spoof fingerprint detection by adaptively integrating base
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classifiers. A-iLearn increases accuracy on new fake materi-
als by up to 49.57% without appreciable stability loss when
compared to baseline models. It is tested on LivDet 2011,
2013, and 2015 datasets using a variety of spoof materials
and sensors. Some drawbacks include the possibility of
over fitting and the requirement for more research into
feature integration techniques. By combining texture and
sweating pore characteristics, the authors in [54] provided
a static-based fingerprint liveness detection technique. An
auto encoder minimizes feature dimensionality for binary
classification using a softmax classifier by quantifying tex-
tural properties and pore activity. Testing the approach on
LivDet 2013 and LivDet 2015, with an ACE of 0.11-0.24%, it
recognizes the difficulties in maintaining several algorithms
for hardware-based detection while addressing restricted
pore feature-based techniques. A lightweight fingerprint
liveness detection network called LFLDNet is proposed by
[55]. It makes use of style transfer, foreground extraction,
and an enhanced ResNet with MHSA. 95.27% accuracy on
small-area fingerprints and 1.72% average classification er-
ror across sensors were achieved during evaluation on the
LivDet2011, LivDet2013, and LivDet2015 datasets. The au-
thors intend to investigate improved FLD technologies and
GAN-based models for cross-sensor generalization against
fingerprint deception assaults, while acknowledging the
possibility of speed variations. Using CNNs and adver-
sarial data augmentation, the authors in [56] proposed an
FPAD technique and won the LivDet2021 competition. The
method uses clean and adversarial fingerprints for a three-
stage training process that yields good accuracy metrics and
an EER of 0.036. The size restrictions of the dataset and
possible susceptibilities to adversarial assaults are acknowl-
edged by the authors. Using LPDJH image descriptors and
deep learning, the authors in [57] introduced a fingerprint
liveness detection technique that achieved good accuracy
across LivDet datasets. Their approach shows competitive
results on the LivDet 2011 dataset, with an average EER of
3.95%. Because there aren’t enough test samples, the authors
point out possible difficulties in identifying low-resolution
fingerprints and calculating accuracy for particular sensors.
A CNN-based fingerprint liveness detection technique was
introduced by [58] using the Socofing dataset. The model
performed well, achieving 98.964% accuracy with a FAR
of 0.215% and a FRR of 7.251%. Computational limita-
tions, inconsistent fingerprint quality, and unequal dataset
distribution are some of the restrictions.

By addressing the crucial problem of separating real bio-
metric samples from fake or artificial copies, fingerprint live-
ness detection makes sure that the system authenticates the
submitted fingerprints. By stopping unauthorized access,
this procedure is crucial for preserving the integrity of bio-
metric systems. However, biometric cryptographic systems
use biometric information like fingerprints to strengthen
security by using cryptographic methods. This way, bio-
metric identifiers are safely encrypted and shielded from
unwanted access. The interdependence of liveness detection
technologies and the efficacy of biometric cryptography sys-
tems highlights the relationship between these two domains.
Robust liveness detection essentially acts as a cornerstone
supporting the security of biometric cryptography systems,
emphasizing the need for integrated solutions that handle
biometric sample authenticity as well as biometric data

management securely.

2.2.2. Biometric Cryptosystem

Biometric cryptosystems are mechanisms that enhance
the security of biometric systems by embedding biometric
templates with secret keys or auxiliary data. This approach
ensures protection against malicious use and data tampering.
Figure 4 shows the block diagram of biometric cryptosys-
tem, which consist of two parts one is for enrolment where
template are generated from the fingerprint images and
stored in the dataset and the second part is authentication
where template is generated from a query fingerprint and
matched with the stored template to provide access to a
system.

Figure 4: Biometric Cryptosystem

Pair-polar minutiae structures were used by [59] to
present an alignment-free fingerprint cryptosystem. Their
approach achieves robust security and improves privacy
by changing minute structures. It has been tested on sev-
eral databases and performs better than other systems in
terms of Genuine Acceptance Rate (GAR) and False Accep-
tance Rate (FAR); nonetheless, a security risk arises from
its dependence on the complexity of brute force attacks. In
order to maximize security and efficiency, the authors in
[60] suggest a feature-level sequential fusion algorithm for
biometric cryptosystems. Experiments conducted on a fin-
ger vein database show that the algorithm performs better
than the OR rule, decreasing input needs and obtaining a
1.47% False Acceptance Rate. Although the paper admits
its limits in analysing some external security concerns, it
shows that it is resilient to well-considered attacks. An
ECC-free biometric key binding approach employing graph-
based Hamming Embedding (GHE) and minutia-vicinity
decomposition (MVD) for fingerprint minutiae-based rep-
resentation was proposed by [61]. The strategy obtains
GAR of 89% (FRR=11%, FAR=0.16%) for DB1 and GAR of
97% (FRR=3%, FAR=0.061%) for DB2, when tested on the
FVC2002 datasets. The method balances security and perfor-
mance trade-offs, but it is still susceptible to privacy attacks
such as ARM and SKI, and it can only match fingerprint
photos of the same finger taken under various circumstances
or at different times. In [62], the authors provide a method
to improve biometric template security that is based on a
2D logistic sine map (2DLSM). The technique employs diffu-
sion and confusion processes, demonstrating effectiveness
against a range of threats, by using chaotic streams from
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2DLSM. Effectiveness has been evaluated on iris and finger-
print templates; nevertheless, real-time template production
problems and noise sensitivity are among the constraints.
A safe cryptographic authentication approach utilizing bio-
metrics and the discrete logarithm problem was suggested
by [63]. The approach produces cryptographic keys using
a function F using iris codes, which allows it to handle
mistake bits and achieve high accuracy rates. Promising
results are shown by the CASIA iris database evaluation,
which also notes that iris codes still require work in order
to be improved in the future. BioKEY, a biometric-based
cryptographic key generation technique based on convo-
lution coding principles, was promoted by [64]. Unique
cryptographic keys are created without saving templates by
using fingerprint characteristics and applying convolution
coding to specific locations. Tests conducted on common
fingerprint databases such as MIAS, FVC2002, and FVC2004
show good accuracy and effectiveness; nevertheless, there
are certain drawbacks such as difficulties with noisy or hazy
fingerprints and a higher processing overhead in compari-
son to other techniques. ECC-based mutual authentication
strategy for Smart Grid communications with biometric
authentication integration for improved security and pri-
vacy was proposed by [65]. To safeguard against different
types of security risks, the protocol consists of start-up,
registration, and authentication stages. Notwithstanding
its shortcomings, which include parameter sensitivity and
vulnerability to certain assaults, the system shows efficiency
through communication and computing cost comparisons
with current protocols even if it does not offer precise ac-
curacy measurements. In order to safeguard templates in
multi-modal biometric systems, the authors in [66] provide a
fuzzy vault technique that uses encryption to keep authentic
templates safe from copycats. The approach satisfies optimal
biometric security requirements with low FAR (0.1062) and
zero FRR when tested on a simulated face and fingerprint
database. In order to get the best security and accuracy, the
authors recommend avoiding function creep attacks and
balancing key length with chaff points. Hyper elliptic curve
cryptography (HECC) for template encryption was used
by [67] to introduce an improved iris recognition technique
that achieves great security and accuracy. With the use
of fuzzy logic matching and 2D Gabor filter for feature
extraction, the system achieves 99.74% maximum accuracy
and short identification time. Superior performance with
reduced FAR, FRR, and EER measures is demonstrated by
evaluation on the IITD and CASIA Iris V-4 iris datasets. A
multi biometric cryptosystem for client-server network au-
thentication is presented by [68], guaranteeing computation
security and privacy. The approach enhances efficiency by
achieving equivalent accuracy with less user input by using
iris and fingerprint modalities from a dataset of 100 par-
ticipants. The authors request protocol enhancements for
increased security and verification speed, acknowledging
the limitations in accuracy caused by biometric variability. A
multi-biometric template security technique based on graph
creation was proposed by [69] for cloud authentication. A
branching factor graph with a low Equal Error Rate (ERR) of
0.66% is created using fingerprint and palm print features.
The authors point out important benefits over conventional
authentication techniques while also acknowledging limita-
tions with regard to the encryption process and the quality

of the input sample. Using the Diffie-Hellman algorithm
and minute characteristics, the authors in [70] proposed a
fingerprint-based crypto-biometric system for secure com-
munication. Tested using FVC2002 and the NIST special
database 4, the system reports metrics such as FAR, FRR,
GAR, and EER, demonstrating privacy protection. The au-
thors have acknowledged the restrictions pertaining to the
irreversibility of biometric data, possible data distortions,
and key creation. A multi-modal biometric cryptosystem
utilizing fingerprint and ear characteristics was promoted by
[71], which included preprocessing, feature extraction, and
classification stages. The approach achieves excellent accu-
racy (98.76%) with a dataset that includes photos of ears and
fingerprints. Performance is analysed using metrics such as
sensitivity, specificity, accuracy, false positive rate, and false
negative rate. The lack of multi-modal databases and the
dependence on multi-modal systems because particular bio-
metrics, such as ear characteristics, are unreliable are among
the limitations. However, the method offers an efficient fix
for identity and security systems. A biometric cryptosystem
using random projection and back propagation neural net-
work (BPNN) for template protection is introduced by [72].
Original biometric traits are transformed into unlinkable
projected vectors by random projection, and BPNN is then
used to map these vectors to secure keys. Better security and
performance than current techniques are demonstrated via
experimental assessment on a variety of biometric datasets.
The authors stress the necessity for more investigation into
novel ciphers for biometric template security and the im-
provement of security through multiple-biometric template
protection. A novel fingerprint biometric cryptosystem
using fuzzy commitment and CNN-based automated tex-
ture descriptor discretization was presented by [73]. Tests
conducted on the FVC2000 DB2-A database show encour-
aging outcomes: 1.25% for FAR, 1.15% for FRR, and 2.83%
for EER. The restricted number of photos per identifica-
tion class presents challenges, such as precisely identifying
reference points and producing a bigger training set. An
effective cancelable biometric authentication framework us-
ing a Genetic Encryption Algorithm (GA) for increased
security is presented by [74]. The process entails using GA
for increased security, choosing the best sub-images, and
permuting biometric templates. Promising findings were
obtained via evaluation on a variety of datasets, such as the
face and fingerprint datasets; nevertheless, more validation
on bigger and more diverse datasets is required to ensure
generalizability. A cancellable biometric security system
using sophisticated chaotic maps to improve fingerprint
identification was provided by [75]. Using various chaotic
maps, chaos-based picture encryption produces convolution
kernels that are then used to construct encrypted biometric
templates. With an EER of 0.593% and a high detection
probability of 96.139%), the augmented quadratic map 3
performs best in the system. The invertibility of biometric
transformations and the requirement to investigate can-
cellable recognition in alternative biometrics are among the
limitations. The Cancelable Biometrics Vault (CBV) was
introduced by [76], who used winnowing and chaffing to
create safe biometric templates for cryptographic key encod-
ing. Experimental results demonstrate that, regardless of
key size, the CBV’s use of an extended BioEncoding scheme
is acceptable for bit strings such as iris-codes, and that its
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decoding accuracy is equivalent to that of the underlying
CB construct. The reliance on an appropriate CB scheme for
the biometric representation and computational complexity
unfit for real-time applications are among the limitations.
A multi-biometric cryptosystem employing Modulus Fuzzy
Vault, augmenting input data with BDPHE and segmenting
pictures with MBIRCH, was proposed by [77]. Features are
extracted by the bidirectional deer hunting optimization
algorithm, fused using score level and normalized feature
fusion, and then safely stored. The approach enhances
revocability and security while producing superior ROC,
FAR, FRR, and GAR metrics; nonetheless, it has drawbacks
related to algorithm focus and dataset authenticity. A ma-
chine vision gait-based biometric cryptosystem using a
fuzzy commitment strategy was invented by [78]. Robust
bits are chosen for the fuzzy commitment scheme after gait
characteristics are retrieved using LTP and GEl. Tested on
the CASIA A and CMU MoBo datasets, obtaining 0% FAR
and FRR under certain scenarios. One limitation is that it
might be challenging to identify people with complicated
backgrounds or occlusions. An asymmetric cryptosystem
integrating the elliptic curve method and optical scanning
cryptography (OSC) was proposed by [79]. Using ECC
from biometric pictures, the approach encodes things into
holograms, guaranteeing excellent decryption accuracy and
key sensitivity. The technique has to be optimized for speed
and handles vulnerabilities to ciphertext-only assaults, even
though security and key management have improved. In
order to pre-process biometric images, the authors in [80]
promoted the use of a fuzzy extractor that leverages deep
learning, together with code-based cryptosystems to gener-
ate robust keys utilizing face biometrics. Promising accuracy
metrics are found while evaluating the LFW and CelebA
datasets. There is need for improvement in data privacy and
security, as evidenced by limitations such as storage require-
ments and attack vulnerability. ElGamal encryption and
Shamir’s secret sharing are two cryptographic algorithms
that are used in the blockchain-based user re-enrolment
approach for biometric authentication systems proposed
by [81]. Key security characteristics are satisfied by simula-
tions that show secure re-enrolment in a matter of seconds;
nevertheless, scalability and adversarial assumptions are
acknowledged limits. More research is needed to determine
the implementation specifics and practical viability. Based
on Lagrange’s interpolation, the authors in [82] provide
a secure multi-biometric template protection method that
uses irreversible and unlinkable image transformation. By
utilizing feature-level fusion, the technique combines the
properties of the fingerprint, iris, and palm print, attaining a
high accuracy of 99.9816% when applied to high-resolution
picture datasets. Issues include growing database sizes and
possible departures from ISO/IEC 24745 standards, and
privacy protection is still a problem. Biometric attributes can
be randomly shuffled using a 3D chaotic map, as proposed
by [83], to create a safe cancellable biometric cryptosystem.
Larger datasets and other attacks are needed for more re-
search, however evaluation on the ORL, FVC, and LFW
datasets demonstrates encouraging results with very low
Equal Error Rates (6.2460x1013) and high average Area un-
der the ROC curve (0.9998). A robust cancellable biometric
authentication technique is introduced by [84], which makes
use of DNA sequencing theory, PWLCM, logistic map, and

3D chaotic maps. Through dispersion and confusion, the
technique produces biometric patterns that are completely
undefined while achieving increased security. Although
computational complexity is still a barrier, evaluation on a
variety of face and palm print datasets shows encouraging
results in terms of AROC, FAR, DH, SSIM, and PSNR. An
Enhanced Biometric Cryptosystem (BCS) using iris and ear
modalities with Binary Robust Independent Elementary
Feature (BRIEF) was introduced by [85]. Although vulnera-
ble to database-level assaults, experimental assessment on
AMI and UBIPr databases shows better performance across
several parameters compared to state-of-the-art approaches,
suggesting its applicability for security applications. Us-
ing deep learning and crypto-mapping, the authors in [86]
provided a multi-biometric secure-storage technique that
generated cancellable biometrics from fused pictures of the
face, fingerprint, iris, and palm. While ICUB results reveal
greater error rates, experimental results on the CASIA V4,
MICHE, and MobiFace datasets demonstrate good AUCROC
and low EER. The limitations mentioned by the authors in-
clude the necessity to strike a compromise between security
and recognition performance, hardware requirements, and
potential over fitting. In an effort to improve security, the
authors in [87] proposed a multi-round AES cryptosystem
with hierarchical hardware pipelined structures and biomet-
ric key generation. The system outperforms traditional AES
systems in terms of space and energy efficiency because to
resource sharing and simultaneous XOR operations. The
undefined dataset size and the restriction to area and energy
efficiency measurements are among the limitations.

Biometric characteristics are combined with crypto-
graphic methods in biometric cryptography systems to
protect authentication procedures, guarantee the privacy
of biometric data, and prevent unwanted access. However,
if the data is hacked, the intrinsic uniqueness of biometric
features presents privacy problems. Cancellable biometrics
are useful in this situation. In order to reduce the risk
of prolonged exposure in the event of a data breach, can-
cellable biometric approaches convert biometric data into a
non-reversible, pseudonymous form that can be updated or
revoked as needed. The security architecture gains an extra
layer of defence that improves user privacy and adaptabil-
ity by incorporating cancellable biometrics into biometric
cryptography systems. This addresses the reliability of
authentication as well as the flexibility of maintaining bio-
metric identifiers. This interaction emphasizes how crucial
it is to combine cancellable biometric techniques with cryp-
tographic security to offer a thorough and reliable solution
to biometric data protection.

2.2.3. Cancellable Biometric

Cancellable biometric templates are introduced to en-
hance the security of biometric authentication systems by
storing irreversible transformed versions of templates rather
than original biometric templates. This approach prevents
attacks and vulnerabilities while maintaining certain ad-
vantages, such as non-revocability. Techniques like mixing
mechanisms and many-to-one transfer functions are com-
monly employed for generating cancellable biometrics. A
basic block diagram of cancellable biometric is represented
in Figure 5 where template is generated using transfer pro-
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cess, if by any reason the template get compromise then
it is very easy to replace the old template with a new one
by changing the transformation process. Retaining identifi-
able biometric information despite transformation efforts
aimed at unlinkability, potential mismatches due to lack of
adaptation to temporal changes, increased computational
demands, privacy risks from potential reconstruction, and
usability issues regarding recognition reliability are some
of the challenges associated with using high-quality initial
biometric images for generating cancellable templates. In
order to guarantee the security and usability of cancellable
biometric systems in actual applications, it is imperative
that these variables are balanced.

Figure 5: Cancellable Biometric

A fingerprint template protection technique utilizing
fused feature-level structures that produce cancelable tem-
plates was presented by [88]. Improved performance was
seen with EER ranging from 1.6% to 17.6% in the FVC
2002 and 2004 datasets. Two drawbacks are the expense
of computing and the invertibility brought on by fusion.
In order to take advantage of flaws in partial fingerprint-
based authentication systems, the authors in [89] proposed
creating "MasterPrints," which are artificial or actual par-
tial fingerprints that match recorded templates for a large
number of users. Their method proved that it was possible
to impersonate users when tested on the FingerPass DB7
and FVC2002 DB1-A datasets; in some situations, Synthetic
MasterPrints performed better than Sampled MasterPrints.
Limitations include imbalanced datasets and limited appli-
cation to minutiae-based systems, which have prompted
more study into remedies. A one-factor cancellable bio-
metric authentication technique using Indexing First Order
hashing was suggested by [90]. It was assessed for ac-
curacy performance, non-invertibility, renewability, and
unlinkability. Tested on six datasets from the FVC 2002
and 2004 databases, yielding metrics for genuine-imposter
distribution and Equal Error Rate (EER) that are adequate.
Although it separates IDs from biometric templates, it as-
sures unlinkability and is susceptible to standard symmetric
key cryptosystem assaults. By using OIOM hash and MSH
to create a pseudonymous identification, the authors in [91]
promoted a one-factor cancellable palmprint recognition
technique that achieved a recognition accuracy of 98.07%.
although no specific limitations or restrictions are men-
tioned, experiments were conducted using the PolyU and
TJU palmprint databases. A global multi-biometric system
using deep neural networks for cancellable feature creation

was proposed by [92], which achieved good performance
on iris datasets (IITD Iris and MMU2). The technique ac-
knowledges constraints in sensitivity and adaptability and
blends dimensionality reduction, adaptive fusion, and re-
vocability. Aspects of security and privacy are explored,
and some adversarial threats are illustrated. In order to
provide maximum safety of sensitive data, the authors in
[93] provided the Secure Triplet Loss method for training
end-to-end deep learning models to build non-invertible
and unlinkable biometric templates. The approach is tested
on facial recognition and ECG tasks, showing that it can suc-
cessfully modify pre-trained models or create secure models
from scratch. The dataset utilized for experimentation is
not stated, despite constraints being addressed, such as
sensitivity to certain assaults and the effect of demographic
characteristics on system accuracy. Constrained Optimized
Similarity-based Attack (CSA) was introduced by [94] as
an improvement over earlier similarity-based assaults. It
incorporates algorithm-specific limitations to optimize pre-
image production for impersonation. The usefulness of CSA
is demonstrated through experiments using the labelled
Faces in the Wild (LFW) dataset and Index-of-Max (IoM)
hashing. The performance measures that are measured
include the total success rate, the False Acceptance Impostor
(FAI) rate, and the True Acceptance Impostor (TAI) rate.
The success of CSA is contingent upon data leakage and
constraint identifiability, which may restrict its application
in certain biometric systems. In order to prevent unwanted
access, the authors in [95] developed a non-invertible can-
cellable fingerprint template approach based on Delaunay
triangulation of minutiae points. When evaluated against
the FVC2002 database, the findings show promise in terms
of identification accuracy, resilience against fingerprint dis-
tortion, and comparison to modern approaches. However,
more research is necessary for wider validation due to con-
cerns including hacked acquisition equipment and dataset
size restrictions. A safe method for building fingerprint
templates that are optimized was disclosed by [96]. This
technique uses the quality of minutiae points to generate 3D
shell-shaped templates. Tested on nine fingerprint datasets,
the method yields a 0% Equal Error Rate (EER) and 100%
accuracy in separating authentic individuals from imposters.
Nevertheless, low-quality photos could be limiting its per-
formance, indicating a possibility for improvement through
multimodal biometric system integration. Using IoM hash-
ing and BioHashing, the authors in [97] developed the
first constrained-optimized similarity-based attack (CSA)
against cancellable biometrics (CB). By optimizing preim-
age creation through algorithm-specific limitations, CSA
outperforms Genetic Algorithm enabled similarity-based
assaults (GASA). Success rate (SAR) and false acceptance in-
dex (FAI) of CSA, assessed on the LFW dataset, demonstrate
the efficacy of CSA in breaking IoM hashing and BioHash-
ing security. However, there are drawbacks to CSA due
to its constant model complexity and dependence on hash
code size. A cloud and Internet-of-things-ready method for
cancellable biometric template generation was developed
by [98]. By using the Greatest Common Divisor (GCD)
between hazy biometric pictures, it guarantees authentica-
tion accuracy and non-recoverability. It is tested on several
biometrics and achieves low EER values (down to 0.04%)
and high AROC values (up to 99.59%), while it is recognized
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to have limits with respect to pre-defined distortions and
picture quality. A cancellable biometric authentication sys-
tem with feature-adaptive random projection that includes
feature extraction, transformation, and encrypted domain
matching was presented by [99]. EER, GAR, and FAR met-
rics evaluation on the FVC2002 and FVC2004 databases
revealed competitive performance. The need for more dis-
criminating feature descriptors and investigation across a
range of biometric features are acknowledged constraints. In
order to provide biometric data safety and reliable authenti-
cation, the authors in [100] suggested a user authentication
and key agreement system utilizing cancellable biometrics
and PUF in multi-server settings. Their methodology beat
state-of-the-art techniques when tested on the LFW dataset
and assessed using the CMC, ROC, DIR, and DET curves.
Recognized drawbacks include the requirement for assess-
ment against complex assaults and scalability issues with
larger data sets, indicating potential directions for further
study. BioCanCrypto, a biocryptosystem using fingerprint
cancellable templates that combines biocryptosystems and
cancellable biometrics, was proposed by [101]. It takes can-
cellable templates and extracts cryptographic keys using a
reusable fuzzy extractor with LDPC coding. tested using the
FVC2002 dataset, showing encouraging outcomes despite
low FRR and EER. The study is restricted to fingerprint data,
though, thus it might be worthwhile to investigate alterna-
tive feature spaces or data modalities. A unique biometric
template protection approach incorporating watermarking
and cancellable transformation was suggested by [102]. The
technique uses pair-polar coordinates with cancellable modi-
fication of minutiae and binary watermarking obtained from
fingerprint minutiae. tested on the BioSecure and FVC2002
DB1 datasets, showing better EER and resilience to assaults
than previous approaches. Investigating several biometric
modalities to improve accuracy and robustness is one of
the future research priorities. Absolute Value Equations
Transform (AVET), a non-linear projection technique that
ensures irreversibility by depending on the Absolute Value
Equations issue, was promoted by [103]. AVET surpassed
state-of-the-art approaches in bimodal circumstances and
produced competitive performances in uni modal settings af-
ter being evaluated on eight datasets for different biometrics.
A fixed sample size and susceptibility to brute-force attacks
are two limitations. Using deep fusion and deep dream,
the authors in [104] propose a multi-biometric cancellable
system (MBCS) that creates tamper-proof templates using
fingerprint, finger vein, and iris biometrics. It used a dataset
with nine pictures per modality, outperforming comparable
algorithms in EER, FAR, FRR, and AROC. All quantitative
evaluations showed positive results. Larger datasets, high
computing demands, and a drawn-out enrolment proce-
dure are among the acknowledged limits. A cancellable
multi-biometric identification system using ACM encryp-
tion and decimation to combine biometric data into a single
template was presented by [105]. Performance measures,
which were assessed using FVC 2002 and ICE 2005, included
EER and ROC curve analysis. Its stated drawbacks were the
need for better parameter estimate techniques and bigger
databases. CSMoFN is a revolutionary cancellable multi-
modal biometrics system that combines face and periocular
data, as reported by [106]. It uses pairwise angular loss and
ArcFace for training, and it achieves an EER of 6.67% on

average across six datasets and 2.12% on Facescrub. The
authors warn against potential CB template inversion con-
cerns while highlighting dual template-changeability and
acknowledging difficulty in fair comparison. A new can-
cellable multi-biometric system combining deep learning-
based fusion and selective encryption was developed by
[107]. AES encryption, PRNG matrix XORing of a chosen
ocular picture, and Viola-Jones facial segmentation are all
used. Although constrained by the size of the dataset, it
surpasses previous efforts with high entropy and low cor-
relation, quicker enrolment, and better metrics like EER
and AROC, indicating that medical imaging application is
a promising area for future study. A unique cancelable bio-
metric solution using deep learning for fingerprint and face
biometrics on smart phones was presented by [108]. It im-
proves security for Internet of Things applications by using
Siamese networks with visual and text encoders. Prolonged
testing shows improved performance compared to earlier
approaches, surpassing ciphering-based systems in EER,
FAR, FRR, and AROC, and attaining high accuracy metrics.
MBFH, a unique cancellable biometric method that makes
use of safe hashing and non-invertible transformations, was
invented by [109]. Multi-biometric acquisition, feature ex-
traction, Multi-Exposure Fusion (MEF), and SHA-3 hashing
are all included in the process. Tests using retina, finger
veins, palm, and dorsal vein pictures show high pairwise
distances and good performance in generating text and
visual templates, indicating flexibility for further improve-
ments such as adding white Gaussian noise. A biometric
template protection system for Euclidean and Cosine met-
rics was introduced by [110]. It used distance-preserving,
one-way, and obfuscation modules with location-sensitive
hash functions. Effectiveness against similarity-based and
linear inequality attacks is demonstrated by evaluation on
face datasets such as AR, CASIA, ORL, and LFW. However,
this approach is not always the best option and requires
pre-processing, which raises the computational costs sig-
nificantly. Despite defences against assaults, the authors
advise against assuming complete security in any situation.
Using the chaotic Baker map to encrypt biometric templates,
the authors in [111] provide a chaotic-based cancellable
face recognition system that is highly accurate (98.43%) and
adaptable to a variety of databases. The approach takes
care of lighting, occlusion, and emotions, but it also recog-
nizes the necessity for environmental adoption and trade-off
between performance and user privacy. A cancellable bio-
metric authentication system using image style transfer is
proposed by [112]. During registration, users supply a face
picture and a key image to create and store a template. In
order to get high AUC values (>0.9) in most circumstances,
authentication entails comparing freshly created templates
with stored ones. Correlation coefficients and ROC curves
are used to evaluate the results. One of the limitations is
the possibility of authentication using marginally similar
key images. This suggests that future research should put
limitations on key image parameters.

Widely utilized in forensic and law enforcement settings,
AFIS faces unique security issues such data breaches, spoof-
ing attempts, and system flaws that could jeopardize the
integrity and accuracy of fingerprint matching. In a similar
vein, these vulnerabilities also affect general-purpose user
authentication systems, which use fingerprints for iden-
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tity verification and access control in common applications.
Consumer-grade fingerprint authentication systems can
benefit from and benefit from the protective tactics included
in AFIS security measures. Developers can better address
similar risks in general-purpose systems by knowing the
vulnerabilities and countermeasures relevant to AFIS. This
will help to ensure that strong security mechanisms are
put in place to protect user data and prevent unwanted
access. In order to improve overall security and user trust in
biometric technology, it is crucial to transfer high-security
solutions from specialized applications to more commonly
used fingerprint authentication systems.

3. General Purpose User Authentication

Automated Fingerprint Identification Systems (AFIS)
commonly rely on minutiae-based fingerprint matching due
to its strong evidential value, versatility, storage efficiency,
and reliable matching performance. However, an emerg-
ing alternative approach in AFIS is pore-based fingerprint
matching, which offers distinct advantages. Pore match-
ing techniques can be broadly categorized into two main
methods: (i) pore alignment-based matching and (ii) direct
pore comparison-based methods. These techniques harness
the unique characteristics of pores within fingerprints to
enhance the accuracy and robustness of authentication sys-
tems. Figure 6 represents fingerprint image enhancement
and reconstruction, where first the image is normalized,
then ridge orientation is detected. After the ridge orientation
detection ridge reliability is estimated and the frequency of
the ridges are calculated. The above two step helps to find
the region of interest and then the region is passed through
Gabor filtering to remove noises to construct a higher quality
fingerprint image from a low quality fingerprint image.

(a) Original
Image (b) Normalized Image (c) Ridge Orientation

(d) Ridge Reliability Esti-
mation

(e) Ridge Frequency Cal-
culation

(f) Region of Interest De-
tection

(g) Gabor
Filtering

(h) Enhanced Fingerprint
Image

(i) Reconstructed Finger-
print Image

Figure 6: Fingerprint Image Enhancement & Reconstruction

Using global models, local analysis, and combination
approaches, the authors in [113] provide techniques to im-
prove fingerprint orientation extraction, obtaining an EER
of 0.206% on the FVC2006 DB2 dataset. In addition to

parameter tuning, they seek to increase recognition accu-
racy by addressing the shortcomings of benchmark datasets
through pre- and post-processing phases. Using the AMFM
fingerprint model and binary ridge pattern generation, the
authors in [114] proposed a method to reconstruct whole
fingerprint pictures from discrete points. Experimental
assessment on FVC 2002 datasets shows better results than
state-of-the-art methods with >86% of Successful Match
Rates at FAR=0.01%. Reduction in performance for tem-
plates with fewer detail points and sensitivity to orientation
field estimate accuracy are some of the limitations. Using
image quality assessment (IQA) for liveness detection span-
ning fingerprint, iris, and face recognition, the authors in
[115] provide a software-based technique for identifying
phony biometric features. With the use of 25 generic IQA fea-
tures, the technique performs competitively when compared
to state-of-the-art methods, exhibiting minimal complexity
appropriate for real-time applications and classification er-
ror rates below 3% and 21.4% Half Total Error Rate (HTER)
on fingerprint datasets. One limitation is that in order to
defeat obfuscation attempts, access to the entire picture and
the necessary processing resources are required. A local
model-based fingerprint classification technique including
core block extraction, area division, and classification phases
that is capable of managing noisy and incomplete data was
suggested by [116]. Assessment using the FVC 2000, 2002,
and 2004 datasets demonstrates higher accuracy (96.7% and
96.5%) in comparison to current techniques; low-quality
fingerprints are purposefully tested to gauge performance
in difficult scenarios. Using FVC2002 DB1 as an example,
the authors in [117] improved accuracy over previous tech-
niques by using a two-stage process for partial fingerprint
enrolment and a multi-scale texture-based A-KAZE strategy
for matching. In light of the algorithm’s reliance on enhance-
ment techniques and small dataset circumstances, potential
future research areas include synthetic fingerprint creation
and resilience in real-world applications. One open-source
and three commercial-off-the-shelf (COTS) extractors are
used by [118] to evaluate fingerprint minutiae extraction
performance and resilience against picture degradations.
Assessment utilizes several measures on a dataset consist-
ing of 40,000 artificially produced and 3,458 public-domain
fingerprint photos. The evaluation recognizes obstacles
such as noise, differences in finger location, and environ-
mental conditions that affect the accuracy of the system. By
merging global and local distance metric techniques, the
authors in [119] proposed the Global-Local Distance Metric
(GLDM) framework for improving bio-cryptosystem accu-
racy utilizing signature-based biometric features. Average
classification error rates of around 7% and 17%, respectively,
are obtained via experimental assessment on the PUCPR
and GPDS-300 datasets. Challenges include limited positive
samples for training and design restrictions in the signature
system. A CNN-based pore extraction method for finger-
print pictures was provided by [120], making it easier to
extract Level 3 features. Though it relies on high-resolution
photos and has difficulties identifying pores in occluded
or blurred images, the system outperforms previous algo-
rithms and achieves excellent accuracy across touch-based,
touch less, and latent fingerprint datasets. Future research
may concentrate on creating matching algorithms for diverse
fingerprint photos using derived pore properties. A new
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technique for high-resolution fingerprint pore comparison
using rotational invariant edge descriptors and Root-SIFT
descriptors was introduced by [2]. EERs and FMR1000s
for the FVC2002 datasets are 1.86% and 0.12%, respectively,
according to the evaluation. The authors support direct
pore comparison methods in spite of the possible loss of
actual correspondences, acknowledging the drawbacks of
comparing pores only on the basis of geometric distance. In
order to improve ridge structures and remove false minu-
tiae, the authors in [121] provide a fingerprint enhancement
and reconstruction method based on orientation and phase
reconstruction. Despite limitations such as age, dirt, and
medical issues impacting picture quality, validation on the
FVC2002 and FVC2004 datasets shows promise for enhanc-
ing interoperability among minutia encoders and matchers.
DeepPoreID was created by [122], which achieved higher
performance, especially with tiny picture sizes, by using
deep convolutional networks for descriptive pore character-
istics in fingerprint matching. Significant gains in EER and
FMR100 are shown by evaluation on high-resolution finger-
print databases; nonetheless, there are certain drawbacks,
such as a need for a sufficient number of pores and difficulties
with occlusion. It is underlined that high-resolution finger-
print databases are available as open-source resources for
more thorough testing. A homomorphic encryption-based
fingerprint authentication system that guarantees access
control while protecting biometric template data was inves-
tigated by [123]. Tested on FVC2002 DB2, the system shows
an EER of 9.23%. The computational time issues that were
found encourage research into more effective homomorphic
encryption techniques. For a thorough assessment, more
testing with bigger datasets and varied scenarios is advised.
The Shark Smell Optimization (SSO) technique was used by
[124] to study a fingerprint authentication system. Achieved
FAR of 0.00%, FRR of 0.00666%, and CVR of 99.334% after
evaluation on a dataset of 150 student fingerprint pictures.
The size of the dataset, lack of variety, and exclusive de-
pendence on the SSO algorithm are limitations. Future
research into more swarm algorithms and bigger datasets
is advised to get better results. Using fully homomorphic
encryption (FHE) and the TFHE library, the authors in [125]
created an effective fingerprint authentication system that
preserves privacy while guaranteeing safe processing and
storage of fingerprint data. Tested on NIST Special Database
9, the system reaches fingerprint matching in an average
of 166 seconds, acknowledging the time consumption of
the bootstrapping procedure and suggesting improvements
for the future. BioSec, a biometric authentication system
using fingerprint authentication for secure communication
among edge devices, was introduced by [126]. AES-128
bit encryption is used to protect biometric templates while
they are being sent and stored in databases. Assessed using
the FVC-2004 DB3 dataset with 70% accuracy, they recog-
nize the limitations of symmetric encryption vulnerability
and propose improvements to privacy mechanisms, study
of lightweight encryption methods, and investigation of
other biometric markers such as iris for enhanced security
and usefulness. In [127], the authors invented a blind and
reversible fingerprint image watermarking method using
the differential method and DCT domains. Assessed on
the FVC2002 fingerprint database, the technique employs
DCT-transformed sub-vectors to incorporate watermark bits,

facilitating direct watermark access throughout the extrac-
tion procedure. Evaluation measures included matching
score and PSNR, which demonstrated a respectable level
of fingerprint image security maintenance. The authors
pointed out drawbacks like as noise sensitivity and com-
pression, indicating that a bigger sample size would be
necessary to increase performance. A set of two finger-
print matching methods, employing mtriplets and cylinder
codes, fused with a supervised classifier for latent finger-
print recognition, was introduced by [128]. Achieved Rank-1
identification rates of 74.03% and 71.32% were evaluated on
NIST SD27, GCDB, and MOLF DB4 databases. This work im-
proves upon earlier approaches by evaluating matches using
cumulative match characteristic (CMC) curves and plans to
investigate other variables in further research for more accu-
rate matching characterisation. Using attention mechanisms
and Monte Carlo drop-out, the authors in [129] improved
upon previous approaches by introducing an explainable fin-
gerprint ROI segmentation model. High Jaccard similarity
and Dice score measurements were obtained by testing on
FVC datasets. Limitations include misclassification of back-
ground noise and performance changes caused by the size
of the sample. An unsupervised technique for evaluating
fingerprint quality based on minutiae detection confidence
is called MiDeCon, and it was proposed by [130]. tested
on FVC 2006 datasets; verification error and error-vs-reject
curves showed superior performance compared to NFIQ1
and NFIQ2. The study did not address the limitations and
limits of MiDeCon. ASRA, an Automatic Singular Value
Decomposition-based Robust Fingerprint Image Alignment
technique, was proposed by [131]. When tested on the
FVC2002 and FVC2004 databases, ASRA demonstrated ef-
ficacy and efficiency in alignment, but with recognized
shortcomings in terms of picture backgrounds and ROI
extraction. For approach efficacy, more validation on bigger
datasets is recommended. A unique fingerprint template
protection and authentication method utilizing visual se-
cret sharing (VSS) and super-resolution was suggested by
[132]. The approach demonstrated security and resilience
when tested on the FVC2002 DB1 dataset, while there are
some acknowledged drawbacks, such as the requirement
for higher-quality photos and the possibility of attacks on
the super-resolution process. A dual-filter architecture
and a novel texture descriptor, sDSIFT, were recommended
by [133] to improve spoofing detection in fingerprint au-
thentication systems. Tested using LivDet 2013 and 2015
datasets, the approach combines the dual-filter architecture
with sDSIFT to achieve competitive accuracy. Nevertheless,
shortcomings include the incapacity to distinguish between
different filter kinds and spoofs created using materials that
resemble real fingerprints. Three reliable methods utilizing
fingerprint, iris, and voice characteristics for multi-modal
biometric authentication were presented by [134]. The sec-
ond technique, which used an SVM classifier and sum FFC,
was evaluated on a dataset of 228 image and signal data, and
it obtained a 100% classification rate; however, its scalability
and real-world resilience were not evaluated. A secure
online fingerprint authentication system with a cancellable
fingerprint template design for privacy was provided by
[135] for Industrial IoT devices over 5G networks. Tested
on six public fingerprint databases, the system demon-
strates competitive efficiency and performance, however it
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recognizes the difficulties in preserving security while guar-
anteeing strong authentication over picture databases of
poor quality. Using an Arduino Mega 2560 and a fingerprint
sensor, the authors in [136] developed a fingerprint authen-
tication system based on embedded systems. It generates
templates using minutiae extraction and provides PIN and
fingerprint combinations for smart home access. Although
the accuracy is said to be high, low-end embedded systems’
cost and durability against assaults present obstacles. CNN
classification and Gabor filter-based feature extraction were
used by [137] to investigate a fingerprint authentication
technique. The approach beats other modern methods on
the FVC2006 database, with a validation accuracy of 99.33%.
Smaller training sets are still difficult to manage, despite
results. A deep CNN model for fingerprint authentication
was studied by [138], with 100% training and validation
accuracy. One limitation is the diversity of datasets, which
raises the possibility of strengthening robustness and gen-
eralizability. A multi-factor authentication approach was
created by [139] to reduce False Acceptance Rates (FAR)
and False Rejection Rates (FRR) in biometric systems. By
combining several fingerprint sample permutations, their
method increases system accuracy and fortifies it against im-
postor assaults. As opposed to single-factor authentication,
experimental results on datasets like CASIA-FingerprintV5
and FVC2002 show lower mistake rates; nonetheless, the
study admits several limitations, including addressing envi-
ronmental deterioration and dataset size. InfinityGauntlet,
a brute-force attack against smartphone fingerprint authen-
tication (SFA) systems, was revealed by [140]. It uses SPI
MITM to circumvent limit attempts and takes use of design
flaws. They tested the assault on several devices using
inexpensive equipment and a synthetic fingerprint generat-
ing technique, and they were able to detect four different
types of attacks. One limitation is that security regulations
demand the attack to be finished within 72 hours and that
sensor hot plugging support be provided. A unified model
for fingerprint authentication and spoof detection was de-
veloped by [141] using DualHeadMobileNet, a dual-head
convolutional neural network. The model, using integrated
datasets from FVC 2006 DB2A and LiveDet 2015, delivers
low spoof detection error rates and good authentication
accuracy. Computational effort and the requirement for big-
ger, more varied datasets for further studies are among the
limitations. Blind-Touch, a privacy-preserving fingerprint
authentication system using homomorphic encryption and
machine learning, was introduced by [142]. Using PolyU
and SOKOTO as benchmark datasets, the system attains
great accuracy, with F1-scores of 93.6% and 98.2%, respec-
tively. The influence of feature vector size on calculation
time and the computational cost of constructing a traditional
CNN with homomorphic encryption are among the chal-
lenges. The FingerPIN method, which combines PINs with
fingerprints for multi-factor authentication, was proposed
by [143]. According to a usability research, FingerPIN is
more secure, quick, user-friendly, and efficient than conven-
tional techniques. Restrictions include a limited sample size
and a brief period of data collection, indicating the need
for more study. An AVAO-enabled Deep Maxout Network
(DMN) for fingerprint-based person authentication was
proposed by [144]. The technique obtained an accuracy of
0.927 on the CASIA Fingerprint Image Database by employ-

ing the AVAO optimization algorithm of the method. The
authors pointed out constraints such as the need for strong
preprocessing and model training.

Fingerprints are being utilized more and more in general-
purpose user identification to confirm identity on a variety
of platforms, including secure facilities and mobile devices.
This calls for quick and accurate verification procedures.
Rapid fingerprint indexing and searching technologies are
essential for fulfilling these expectations because they allow
fingerprint records to be retrieved and matched quickly,
improving system performance and user experience. The
time needed for fingerprint verification can be greatly de-
creased by integrating sophisticated indexing and searching
algorithms into general-purpose authentication systems,
increasing the process’s efficiency and scalability. This syn-
ergy emphasizes how crucial it is to optimize fingerprint
search technologies to facilitate secure and seamless user
authentication, guaranteeing that the speed and accuracy of
the underlying verification procedures meet the convenience
of biometric access.

4. Fast Fingerprint Indexing and Searching

In various application domains, the rapid response and
high efficiency of an Automated Fingerprint Identification
System (AFIS) are paramount. To achieve swift results
from large datasets, a common approach involves using a
combination of fast and accurate algorithms. This entails
employing a fast algorithm to generate a subset of candi-
date fingerprints, followed by a more precise but slower
algorithm for final matching. Efficient fingerprint indexing
predominantly revolves around two strategies: (i) utilizing
Level-I features like ridge orientation and frequency maps,
and (ii) leveraging minutiae features. The primary aim of
fingerprint indexing is to reduce search space and time, es-
pecially when dealing with massive gallery image datasets.
This section highlights several algorithms that exemplify
this approach. Figure 7 shows the fingerprint processing
and matching in distributed environment where the features
from the fingerprint image is extracted at the client side and
passed it to a server, where multiple feature matchers run
in parallel to match the query feature in large fingerprint
database. After matching the result is again send back to
the client side.

To analyse huge databases efficiently, the authors in [145]
created a distributed fingerprint matching system. The sys-
tem achieves flexibility and scalability by using a two-level
distributed design. Studies using NIST and synthetic fin-
gerprint datasets showed that, when processing nodes and
thread counts rose, execution times improved while accuracy
remained similar to that of conventional AFIS. By paralleliz-
ing database searches, the authors in [146] introduced a
GPU-based fingerprint recognition system that achieves
fast processing rates. Although the approach can quickly
identify millions of fingerprints per second, its practical use
is limited by its 2% mistake rate. While highlighting the
promise of GPU-based algorithms, the paper also notes that
more development and integration into hybrid systems are
required to achieve higher accuracy.

Using locality sensitive hashing (LSH) and minute
cylinder-code SDK for effective indexing with pose lim-
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itations, the authors in [147] developed an absolute registra-
tion method for fingerprint indexing. Experiments using
databases such as the NIST Special Database 14 and a law en-
forcement fingerprint database shown increased efficiency
and accuracy. Among the drawbacks are the high dimen-
sionality of minutiae descriptors and the requirement for
additional study to improve resilience against noise and un-
predictability. In [148], the authors presented a fingerprint
indexing technique that uses convex core points and minu-
tiae pairs, combining candidate list reduction and k-means
clustering to achieve effective indexing. The methodology
outperforms state-of-the-art methods on six datasets by us-
ing coaxial Gaussian track coding and MBP representation
for precise matching. One limitation is that the hardware
and software utilized in the trials varied, and there is a lack
of information on the values of the parameters.

Figure 7: Fingerprint Processing & Matching In The Distributed Model

Improved retrieval efficiency was achieved by [149] us-
ing deep convolutional neural networks (DCNN) to build
a minutiae-centred fingerprint indexing approach. They
achieved superior results on five benchmark databases with
their unique aggregating methodology that made use of
1-D CNN. Metrics for evaluation included penetration and
error rates; higher penetration rates and lower error rates
were noted. Two of the limitations were the high process-
ing costs for MCC-based approaches and the low quality
photos in FVC2000 DB3a. To address the shortcomings of
minutiae-based approaches, the authors in [150] studied
DeepPrint, a deep network for obtaining fixed-length fin-
gerprint representations. Using the NIST SD4 and SD14
datasets, DeepPrint outperformed leading commercial off-
the-shelf (COTS) SDKs in terms of accuracy and search
speed. DeepPrint showed encouraging results in finger-
print identification, despite limits in benchmark saturation.
CNNAI, a CNN-based technique for fingerprint recognition
utilizing geometrical minutiae arrangements, was studied
by [151], and it outperformed state-of-the-art algorithms
in terms of identification rates. CNNAI demonstrated its
abilities by achieving Rank-1 identification rates of 84.5%
and 80% on the FVC2004 and NIST SD27 latent fingerprint
datasets, respectively. Reliance on a minimum of eight
minutiae points is one of the limitations, and using MINU-
EXTRACTNET to extract all minutiae presents difficulties
that might potentially impact identification rates. By devel-
oping a pore-based indexing technique for high-resolution
fingerprints, the authors in [152] significantly reduced pre-
selection error rates compared to previous approaches on a

variety of databases. The approach outperformed state-of-
the-art minutiae-based algorithms on DBI and IITI-HRFP, ac-
cording to tests conducted on datasets comprising DBI, DBII,
IITI-HRFP, and IITI-HRF. Restrictions include decreased ef-
ficacy on databases with high-resolution whole fingerprints,
which motivates more study into distortion correction meth-
ods. A latent fingerprint indexing technique integrating
minutiae-based features, global and local matching, and ma-
chine learning-based segmentation was suggested by [153].
Up to 94.77% accuracy was shown in experiments on the IIIT-
D dataset, with indexing times varying from 5.29 to 25.92
seconds. Managing incomplete perceptions, background
noise, inadequate ridge clarity, and nonlinear distortions
are among the difficulties. An MCC-based indexing tech-
nique for latent fingerprint recognition was described by
[154], beating competitors on the NIST SD4 and NIST SD14
databases by at least 1% and 3%, respectively. Although
effective, it can have performance issues with different kinds
of databases or with less-than-ideal detail extraction, and its
temporal complexity prevents real-time applications. Em-
ploying graph-based algorithms for indexing and refining,
the authors in [155] provided a pore-based fingerprint re-
trieval technique that outperformed previous approaches on
databases DBI and DBII in terms of speed and accuracy. Its
shortcomings, however, include the dependence of indexing
precision on cluster accuracy and the computational cost
that increases with the number of pores. Two fingerprint
search strategies utilizing classic inverted index methods
were proposed by [156]. They were examined on FVC2002
DB1a and a private dataset, with differences in document
generation methodologies and minutiae handling. The sec-
ond approach’s scalability and sensitivity to low-quality
minutiae were found to be limits, despite the fact that it
produced reduced error rates. Using highly discriminative
embeddings for constant-time identification and k-means
or LSH index table generation, the authors in [157] present
PalmHashNet, a palm print database indexing technique.
Evaluation on four benchmark databases shows above 99%
accuracy; nonetheless, there are several constraints, such
as assumptions about the positioning of the palm area and
unproven scalability on big datasets. By combining GIST
descriptors from face, iris, and palm print biometrics, the
authors in [158] developed an efficient multidimensional
spectral hashing (MDSH) technique for data retrieval from
multi biometric databases. Despite computational and mem-
ory constraints, experiments conducted on databases from
IIT Delhi reveal enhanced accuracy measures that surpass
tree-based indexing approaches and random hashing tech-
niques. More efficiency improvements are proposed, such
as lower memory use and processing costs, and investigating
alternatives to local features. To lessen the computational
burden in biometric identification systems, the authors in
[159] proposed a nearest quality score-based intelligent
search, which resulted in workload reductions of up to 38%
for face, 31% for iris, and 29% for fingerprint databases.
The technique, tested on the FERET, CASIA, and FVC2002
datasets, effectively indexes queries using sample quality
scores that may be applied to a wide range of biometric
features. Intraclass variability and susceptibility to vari-
ous quality estimator techniques affecting the number of
comparisons are challenges. FKPIndexNet is an innovative
approach for finger-knuckle-print (FKP) identification, de-
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veloped by [160]. It uses customized autoencoder networks
and similarity-preserving hash codes. The PolyU-FKP and
IITD FKP databases show 100% hit rate in experimental
findings at low penetration rates, indicating that index table
creation approaches have limitations. A signal-based fusion
approach for indexing biometric databases was presented
by [161], which reduced computational effort by up to 70%
without sacrificing biometric performance. Promising re-
sults are obtained when evaluated on benchmark databases
such as FERET and FRGCv2, however these need the re-
computation of indexes for new enrolments and high-quality
face photos. By utilizing cancellable methods and DNN-
based embedding extractors, the authors in [162] developed
a novel approach to multi-biometric indexing that preserves
privacy while improving biometric performance by 57%.
Evaluation using a composite dataset reveals advancements
but also points up extractor compatibility and dataset rep-
resentation constraints. In their investigation of AFR-Net,
an attention-driven fingerprint recognition network, the
authors in [163] combined CNN-based and attention-based
embeddings for improved performance. By utilizing a va-
riety of datasets, AFR-Net surpasses baseline models and
attains excellent accuracy metrics in verification and identi-
fication tasks. The lack of domain expertise in fingerprints
and the requirement for better latent fingerprint preparation
methods are among the limitations. An effective Gravita-
tional Search Decision Forest (GSDF) method for fingerprint
identification was created by [164] by merging the gravi-
tational search algorithm (GSA) and random forest (RF).
Comparing the GSDF technique to conventional machine
learning classifiers, it yields higher identification rates for
both entire and latent fingerprints. The authors agree that
although the technique beats current methods, additional
tuning is necessary for the recognition of low-quality latent
fingerprints.

Infant fingerprint identification presents a unique set
of challenges compared to adult fingerprint identification,
which has a well-established sector with reliable techniques
and tools for collecting and evaluating mature fingerprint
patterns. Because of their fingers’ quick growth and develop-
ment, infants’ fingerprints are more prone to distortion and
have less defined ridges, therefore effective identification
requires specific methods and modifications. It is necessary
to modify fingerprint capture and processing technologies
that have been developed for adults in order to address
these issues with newborns. Researchers and practitioners
can improve the overall efficacy and accuracy of fingerprint
identification systems across all age groups by linking the
methodology and technology utilized in both fields. This
will guarantee that the systems remain accurate and depend-
able from infancy through adulthood. For comprehensive
fingerprint identification systems that meet the needs of a
wide range of demographics, this integration is essential.

5. Infants’ Fingerprint Identification

Emerging as a challenging application, infants’ finger-
print identification plays a crucial role in maintaining accu-
rate records of a child’s vaccination history, nutritional needs,
and overall identity throughout their lifetime. Among var-
ious biometric options, fingerprinting emerges as one of

the most suitable choices due to its stability and unique-
ness. While alternative biometrics like iris scanning or facial
recognition are less feasible for infants due to practical chal-
lenges, fingerprints offer a reliable bio-marker. In the field
of infants’ fingerprint identification, limited research exists,
but several notable contributions have been gathered from
the literature. Figure 8 shows fingerprints of an infant at
different age, which demonstrate the different density of
ridges during different age of a infant.

Figure 8: Fingerprints of an Infant at different age: a) 4 months b) 6 months
c) 1 yr 3 months

A cost-effective, high-resolution fingerprint scanner for
newborns was created by [165]. They achieved a rank-1
accuracy of 73.98% by building a database with pictures
from 16,384 infants. In [166], the authors assessed the
accuracy of child fingerprint recognition using NFIQ 2.0
measures in a follow-up research. Using a 500 PPI dataset,
they were able to achieve TAR of 99.5% with FAR of 0.1%
for children aged 12 months. An inexpensive newborn
fingerprint identification system called InfantPrints was
created by [167]. It consists of a high-resolution matcher
and a specially designed fingerprint scanner. Assessed
on a 315 baby longitudinal database, the system demon-
strated excellent accuracy from enrolment at 2 months to
authentication at 1 year. Among the drawbacks is the
lack of a reliable automatic alignment technique for baby
fingerprints. Using wavelet feature extraction and K-NN
classification, the authors in [168] developed a baby’s foot-
print identification system. Using a 200x500 pixel ROI and
level 4 wavelet decomposition, the system obtained 99.30%
accuracy with a dataset consisting of 600 footprint photos
and 30 newborns. The modest sample size and the require-
ment for more testing on a bigger dataset for real-world
application are acknowledged constraints. A newborn fin-
gerprint identification technique using deep learning for
fingerprint categorization was described by [169]. The ap-
proach obtained 78.4% classification accuracy compared to
hand classification with a dataset consisting of 1,357 train-
ing photos, 166 validation images, and 1,181 test images.
The requirement for significant computer resources and the
difficulties in obtaining clear fingerprint pictures from some
newborns are among the limitations. Using fingerprint, iris,
and outer ear shape modalities, the authors in [170] created
and assessed biometric recognition systems for babies. For
the fingerprint and iris modalities, new hardware and soft-
ware were created, but the outer ear shape modality made
use of already-existing technologies. At a public clinic,
data on newborns and young children under the age of
one was gathered. FTA (failure to acquire) and equal error
rate (EER) were used as accuracy measures. With an EER
of 0.16%, the ear modality performed the best; neverthe-
less, inadequate reporting, inconsistent devices, and data
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collection from newborns and young toddlers presented
difficulties. A multi-instance contingent fusion approach
for newborn fingerprint verification was presented by [171],
which combined the left thumb and right index finger prints
of infants ranging in age from one day to six months. The
approach achieved 73.8%, 69.05%, and 57.14% accuracy for
1-month, 3-month, and 6-month intervals between enrol-
ment and query prints, respectively, by using a 500 ppi
fingerprint scanner and NIST feature extractor MINDTCT.
Among the limitations were the requirement for fusion with
increasing time intervals between photos and the lack of
supplemental information in permission forms. M²BRTPC,
a new Multi-modal Biometric Recognition for Toddlers and
Preschool Children, is presented by [172]. Its goal is to
identify children using minimum biometric characteristics
such as fingerprints, faces, and iris. Their research, which
acknowledged age range restrictions and the inherent diffi-
culties in biometric identification, improved performance
by 14.75e18.75% using iris and fingerprint data from over
100 children ages 18 months to 4 years. Using a pre-trained
ResNet-50 model, the authors in [173] investigated a finger-
print identification method for infants and toddlers, solving
issues with image clarity and quality. The process entails
cropping and enhancing images in order to precisely extract
fingerprint traits. Using a dataset of 154 participants, the
experimentation yielded an accuracy of 82.47%, a false rejec-
tion rate of less than 18%, and an authentication duration of
about 2 seconds per fingerprint, while taking into account
restrictions such as tiny fingerprint size and picture quality
limits. Employing the CLCF dataset supplemented with
a hybrid technique, the authors in [174] presented Child-
CLEF, a CNN-based children detection system employing
contactless fingerprints. The suggested Child-CLEF Net
model outperforms current systems with 98.46% accuracy
and 1.99% equal error rate by extracting minutiae and us-
ing BOZOROTH3 for identification. Larger datasets are
required, as is the exploration of other enhancement and
feature extraction techniques. Future developments should
take patch-based newborn identification into consideration.
These are some of the limitations.

Biometric identification systems for newborns and tod-
dlers have advanced significantly in terms of accuracy and
technological adaptability, but they still face significant
obstacles in terms of data quality, moral issues, and prac-
tical implementation. Improving algorithms, expanding
datasets, strengthening privacy protocols, and improving
usability will be crucial in tackling these issues and boost-
ing the dependability and relevance of these systems in
paediatric healthcare and other fields.

A key component of biometric authentication is finger-
print identification, which uses distinctive ridge and valley
patterns to confirm each person’s identity. Though useful,
it can have drawbacks such spoofing, ambient conditions,
and differences in fingerprint quality. In order to improve
accuracy and reliability, multi-modal identification systems
integrate various biometric modalities, such as voice prints,
iris patterns, fingerprints, and facial recognition. Multi-
modal systems are able to complement fingerprint data
with other biometric identifiers, making up for any one
modality’s shortcomings and offering a more robust and all-
encompassing authentication procedure. This integration
makes biometric systems more flexible and user-friendly

while simultaneously enhancing overall security. Know-
ing how techniques might improve fingerprint recognition
shows the possibility of developing more flexible and safe
biometric systems that take advantage of several biometric
properties.

6. Multi-modal Fingerprint Biometric

In [175], the author reported a multi-modal biomet-
ric system that combines face, fingerprint, and signature
modalities with feature extraction techniques including Prin-
cipal Component Analysis and Stationary Wavelet Trans-
form. In order to address problems like spoof attacks and
noisy data, they evaluate system accuracy on the YALE-
FVC2002KVKR database by applying score and decision
level fusion. Through the use of multi-modal strategies to
overcome restrictions, the project aims to boost the depend-
ability of biometric systems. In [176], the authors proposed
improved uni modal and multi-modal biometric recogni-
tion systems using fingerprints and ECG signals using both
traditional approaches and deep learning. When tested on
virtual datasets like the FVC2004 fingerprint database and
the MIT-BIH ECG database, multi-modal systems perform
better than uni modal ones. Some of the drawbacks are
the scarcity of ECG databases, the challenge of finding real-
world datasets, and the high processing costs related to deep
learning models. In [177], the authors have presented a deep
learning-based multi-modal biometric fusion model that
blends score, feature, and pixel layers to increase identifica-
tion accuracy. Evaluation on a simulated dataset combining
iris, fingerprint, and face data shows 99.6% accuracy using
Euclidean distance metric learning and modality-specific
network training for practicality. Limitations originating
from the dataset’s dependability may affect the accuracy
rates. A 98.5% accurate HGSSA-bi LSTM model that com-
bines fingerprint and iris biometrics is presented by [178].
When tested on the CASIA dataset, the model demonstrates
excellent sensitivity and precision, but it also acknowledges
the cost and complexity of multi-modal systems. In [179],
the authors offers "Secure Sense," a multi-modal biometric
system that incorporates face, fingerprint, and iris data
and achieves 93% accuracy. The limitations of uni modal
systems are addressed by decision-level fusion approach,
which enhances strong authentication by utilizing real-time
and web-based datasets.

7. Comparative Analysis

The Table 1 provides a comprehensive overview of un-
formatted fingerprint image authentication methods, en-
compassing various techniques aimed at enhancing the
quality and recognition accuracy of latent fingerprints. Each
method offers unique advantages and faces specific limita-
tions, highlighting the need for ongoing research to address
existing challenges and explore new avenues for improve-
ment. Future research in this field should focus on several
key directions. Firstly, there is a pressing need to develop
robust and scalable algorithms capable of handling diverse
and challenging latent fingerprints, including those with low
quality, partial information, or distortion. This may involve
further exploration of deep learning architectures, such
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as convolutional neural networks (CNNs) and generative
adversarial networks (GANs), to effectively enhance latent
fingerprint images while preserving crucial details and min-
imizing noise. Secondly, efforts should be directed towards
standardizing evaluation protocols and benchmark datasets
to facilitate fair comparisons between different methods and
promote reproducibility across studies. This includes the
creation of large-scale, publicly available databases encom-
passing a wide range of latent fingerprint images captured
under various conditions, which can serve as a common test
bed for evaluating the performance of different algorithms.
Additionally, research should address ethical considerations
surrounding the deployment of unformatted fingerprint
image authentication systems, including privacy concerns,
algorithmic bias, and potential misuse of biometric data.
Developing transparent and accountable frameworks for
data collection, storage, and usage is essential to ensure the
responsible and ethical implementation of these technolo-
gies in real-world applications. Furthermore, the integra-

tion of multi-modal biometric fusion techniques, such as
combining fingerprint with other biometric modalities or
contextual information, holds promise for enhancing the ro-
bustness and reliability of authentication systems, especially
in challenging scenarios or under adversarial conditions.
Lastly, advancements in hardware technologies, such as
high-resolution sensors and efficient processing units, can
significantly contribute to improving the accuracy and ef-
ficiency of unformatted fingerprint image authentication
methods. Collaborative efforts between academia, indus-
try, and regulatory bodies are essential to drive innovation,
address emerging challenges, and ensure the continued
advancement and responsible deployment of fingerprint
authentication technologies in various domains. By pur-
suing these research directives, the field of unformatted
fingerprint image authentication can continue to evolve and
meet the growing demand for secure and reliable biometric
authentication solutions.

Table 1: Comparative Analysis of Unformatted Fingerprint Image Authentication Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [4] 2012 Robust alignment algorithm,
descriptor-based Hough
transform

NIST Special Database
27 (NIST SD27)

Rank-1 accuracy 53.5% Performance highly correlated
with minutiae count and print
quality. Not effective for singular
point-based alignment.

2 [5] 2014 Feedback mechanism from
exemplar print

NIST SD27, WVU latent
databases

Improvement in iden-
tification accuracy

0.5-3.5% Trade-off between introducing
feedback and system complexity.
Effectiveness depends on exem-
plar print quality.

3 [6] 2016 Deformable Minutiae Clus-
tering

NIST SD27, FVC2002,
FVC2004, FVC2006,
NIST SD4

Accuracy Up to 85.6%
(Cylinder-
Codes), 83.3%
(m-triplets)

Slow speed, scalability issues, not
effective for latent-to-latent fin-
gerprint identification.

4 [7] 2017 Adaptive latent fingerprint
segmentation

NIST SD4, NIST SD 27,
IITD CLF,

Rank 50 identification 78.7%, Assumption of consistent ground
truth across examiners, limita-
tions of SIVV based metric.

5 [8] 2018 Collaborative filtering
model for enhancing
fingerprint image

FVC2004 EER, FMR100 4.54, 7.5 Fixed patch size limitation, sensi-
tivity to input quality.

6 [9] 2018 Convolutional neural net-
work (CNN) FingerNet for
latent fingerprint enhance-
ment

NIST SD27 Matching accuracy 47.7% Small dataset size, lack of ground
truth for region of interest.

7 [10] 2018 Automated latent finger-
print recognition system
with ConvNets

NIST SD27, WVU latent
databases

Rank 1 identification
accuracies

64.7%, 75.3% Poor ridge quality, background
noise, dependence on manual
ROI selection, long processing
times.

8 [11] 2019 Minutiae-based matcher im-
provement using rare minu-
tiae

GCDB Rank-1 identification 92.72% Need for manual intervention,
dataset size limitations.

9 [12] 2019 End-to-end latent finger-
print identification system

NIST SD27, MSP, WVU,
N2N, background set of
100K rolled prints

Rank-1 retrieval rates 65.7%, 69.4%,
65.5%, 7.6%

Challenges in cropping algo-
rithm, marking minutiae, and
scalability.

10 [13] 2020 Asynchronous processing
for Latent Fingerprint Iden-
tification (ALFI)

NIST SD27, FVC 2004,
FVC 2006

F1-score, Equal Error
Rate (EER)

4.18%, 3.36% Limited test set, single classifi-
cation approach, not tested on
non-fingerprint latent features.

11 [14] 2020 LQMetric: objective, auto-
mated tool for measuring
the quality of latent finger-
prints

NIST ELFT-EFS-2 eval-
uation

Clarity prediction,
AFIS performance

61.4% Performance not generally appli-
cable to other AFIS algorithms or
systems.

12 [15] 2020 Progressive GAN-based
method for latent finger-
print enhancement

NIST SD27 CMC curve metrics 76% Computationally expensive, lim-
ited dataset size, may not work
well with very weak features.

13 [16] 2020 End-to-end automated la-
tent fingerprint identifica-
tion system using DCNN-
FFT enhancement

FVC2002, FVC2004,
NIST SD27

Precision, recall, F1
scores

100% for
FVC2002 and
FVC2004,
84.5% for
NIST SD27

Computational time for minu-
tiae extraction, limited evalua-
tion dataset.

14 [17] 2020 Deep nested UNets architec-
ture for automatic segmen-
tation and enhancement

NIST SD27, IIITD-
MOLF

PA, MPA, MIoU 0.96,0.96,0.84 Lack of publicly available
databases with pairs of low-
quality latent and high-quality
fingerprint images.

15 [18] 2020 Non-minutia latent finger-
print registration method us-
ing dense fingerprint patch
alignment

NIST27, MOLF Deviation between
mated minutiae, reg-
istration performance

87.22%, 2.42 Relying only on 2D information,
computationally demanding.
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16 [19] 2021 Fusion of pores and minu-
tiae for latent fingerprint
identification

IIITD Latent database True detection rate,
false detection rate

82.89%,21.2% Limited database size, computa-
tional expense.

17 [20] 2021 Latent fingerprint identifica-
tion using Ratio of Minutiae
Triangles

FVC2004, NIST SD27 Rank-1 recognition ac-
curacy

78.75%,86.82% Handling of partial fingerprint,
computational complexity.

18 [21] 2021 Hybrid model using EDTV
for enhancement and Chan-
Vese for segmentation

NIST SD27, WVU DB Rank-1 identification 72% Limited database size, effective-
ness in handling complex latent
fingerprints.

19 [22] 2021 Adaptive latent fingerprint
segmentation and matching
using Chan-Vese based on
EDTV

NIST SD27 RMSE 0.1837301 Inadequate accuracy of existing
techniques for segmentation.

20 [23] 2022 Automatic latent fingerprint
identification system using
scale and rotation invariant
minutiae features

FVC2004, NIST SD27 Rank-1 identification
accuracy

97.5%,88.8% Handling partial fingerprints,
computational complexity.

21 [24] 2022 Minutia patch embedding
network (MinNet) model

EGM Test Dataset, FVC-
Latent Test Dataset, Ts-
inghua Distorted

Rank-1 Acc 92.39%,
85.88%

Limited success with partial or
severely distorted fingerprints

22 [25] 2022 Multi-scale fixed-length rep-
resentation approach

Hisign, NIST SD27,
MOLF, N2N

Rank-1 Accuracy 98.8%,99.81% Performance may vary on simu-
lated fingerprints, optimization
limited to study scope

23 [26] 2022 Residual encoder-decoder
architecture

IIIT-Delhi Multi Sen-
sor Latent Fingerprint
(MOLF) database

Rank-25, Rank-50 Acc 48.95%,
70.89%

Ridge-based, limitations in recon-
structing some parts of images,
evaluation on different databases
needed

24 [27] 2022 Analysis of fairness in latent
fingerprint prediction

FBI WVU BioCop 2008
database

AUC, SN, SP, PPV 65.7%,69.4% Limited to FBI BioCoP database,
quality measurements may not
fully represent unbiased quality
score, modelling assumptions of
LFIQ algorithm may not always
be satisfied

25 [28] 2023 Universal Latent Fingerprint
Enhancer (ULPrint)

MSP database, NIST
302 database, Synthetic
latent fingerprint

Rank-1 retrival 29.07% Scarcity of latent ,Challenges like
occlusion, background variation,
some failure cases mentioned

26 [29] 2023 FingerGAN for latent finger-
print enhancement

NIST SD27, IIIT-Delhi
MOLF

Rank-1 accuracy 76.36% Computational complexity, ab-
sence of true mates

27 [30] 2023 Combination of local and
global features with auto-
matic seg.

NIST SD 27, NIST
SD 302, MSP, MOLF
DB1/DB4, MOLF
DB2/DB4

Rank-1 Retrieval Rate 84.11%,70.43%,62.86%Challenges like low contrast, oc-
clusion, varying backgrounds,
some failure cases mentioned

28 [31] 2023 Hybrid technique called AC-
SACO for latent fingerprint
recognition

NIST SD-27 Precision, Recall, F-
score

82.07%,
98.86%,89.68%

May not work well for complex
backgrounds or overlapping la-
tent fingerprints, need to explore
other optimization techniques
and datasets for validation

29 [32] 2023 Generation of synthetic la-
tent fingerprints for data
augmentation

NIST SD27 ,MSP latent
Database

True Detection Rate 75.19%,77.02% Use of only one pre-trained fin-
gerprint matcher, lack of publicly
available operational latent fin-
gerprint databases

The Table 2 provides a detailed comparative analysis of
various fingerprint liveness detection methods, encompass-
ing a range of techniques such as feature extraction, ma-
chine learning, deep learning, and fusion approaches. Each
method demonstrates different strengths and limitations in
terms of accuracy, dataset applicability, and susceptibility
to spoofing attacks. For instance, deep learning-based ap-
proaches, such as convolutional neural networks (CNNs)
and stacked auto encoders, have shown promising results
in achieving high detection accuracy. However, they often
require large and diverse datasets for training to general-
ize well across different sensors and spoofing materials.
Future research in fingerprint liveness detection should
address several key challenges and explore new avenues for
improvement. Firstly, there is a need to enhance the robust-
ness and generalization capabilities of existing methods by
leveraging larger and more diverse datasets that encompass
various sensor types, image qualities, and spoofing materi-
als. Additionally, researchers should focus on developing
techniques capable of detecting low-resolution fingerprints
and effectively handling imbalanced datasets to mitigate
bias and improve overall performance. Secondly, the devel-
opment of adaptive and resilient liveness detection systems
that can dynamically adjust to evolving spoofing attacks is
crucial. This may involve exploring novel approaches such
as adversarial training, ensemble learning, and anomaly

detection to detect and adapt to emerging threats effectively.
Moreover, incorporating multi-modal biometric fusion tech-
niques, such as combining fingerprint with iris or face
modalities, could further enhance the robustness and relia-
bility of liveness detection systems. Furthermore, research
efforts should concentrate on addressing ethical consid-
erations related to the deployment of fingerprint liveness
detection systems, including privacy concerns, algorithmic
fairness, and transparency in decision-making processes.
Developing standards and guidelines for evaluating and
benchmarking liveness detection methods could also facili-
tate fair comparisons and promote reproducibility across
different studies. Lastly, advancements in hardware tech-
nologies, such as improved sensor designs and embedded
processing capabilities, can play a vital role in enhancing
the efficiency and real-world applicability of fingerprint
liveness detection systems. Collaborative efforts between
academia, industry, and regulatory bodies are essential to
drive innovation and ensure the responsible development
and deployment of liveness detection technologies in var-
ious domains, including cyber security, law enforcement,
and mobile authentication. By addressing these research
directives, the field of fingerprint liveness detection can
continue to evolve and meet the growing demand for secure
and reliable biometric authentication solutions.
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Table 2: Comparative Analysis of Fingerprint Liveness Detection Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [33] 2016 Combination of low-level
features, shape analysis, and
PCA

LivDet 2011, LivDet
2013

EER 3.95% Need for more testing on differ-
ent sensors and spoofing materi-
als.

2 [34] 2017 Co-occurrence array-based
feature extraction and SVM
classification

LivDet09DB,
LivDet11DB

Average classifi-
cation error

6.2% Loss of image information
through quantization, large fea-
ture dimension.

3 [35] 2018 Deep CNN using local
patches centred on minutiae

LivDet 2011, LivDet
2013, LivDet 2015

Average accu-
racy

99.03% (LivDet
2015)

Need for more diverse datasets
and ethical considerations.

4 [36] 2019 BP neural network using dif-
ference co-occurrence matri-
ces

LivDet 2013 Classification ac-
curacy

5.65% Lack of diagonal direction dif-
ference co-occurrence matrices,
challenge in distinguishing poor
quality images.

5 [37] 2020 Semi-supervised stacked
auto encoder-based hierar-
chical feature learning

LivDet 2011, LivDet
2013

Average classifi-
cation error

19.62% Insufficient size of the dataset,
difficulty in distinguishing poor
quality images.

6 [38] 2020 Adversarial attacks on deep
learning-based liveness de-
tection models

LivDet 2013, LivDet
2015

Error rate, FAR,
FRR

4.3%, 3.7% Limited diversity of fingerprint
databases, simplicity of finger-
print liveness detection models.

7 [39] 2020 Score-level fusion of finger-
print matching and liveness
detection

LivDet2015,
LivDet2019

Overall accuracy 96.88%
(LivDet2019)

Influence of finger pressure and
duration on detection accuracy.

8 [40] 2020 Genetic algorithm op-
timized DenseNet for
liveness detection

LivDet 2009, LivDet
2011, LivDet 2013,
LivDet 2015

Accuracy 98.22% (mixed
Livdet dataset)

Limited size of the dataset, re-
quirement for specific sensor-
matched datasets.

9 [41] 2020 Liveness detection using Cir-
cular Gabor Wavelet algo-
rithm and SVM

- Accuracy 99.968% (FAR) Limited experimentation on arti-
ficial spoofing methods.

10 [42] 2020 Fingerprint and iris fusion-
based liveness detection us-
ing statistical texture fea-
tures

ATVS, LivDet2011 Precision, accu-
racy

94.7% (fingerprint
detection), 97.8%
(decision-level
classification)

Applicability to certain types of
attacks, dependency on dataset
size.

11 [43] 2020 FLDNet CNN LivDet 2013, 2015 ACE 1.76% Improve accuracy on small fin-
gerprints

12 [44] 2021 One-class Convolutional
Auto encoder

- D-EER 2.00% Lack of generality

13 [45] 2021 Weighted MCNN LivDet 2011, 2013, 2015,
NUAA

Classification ac-
curacy

2.42% Diversity of sensors

14 [46] 2021 EaZy Learning LivDet 2011, 2013, 2015 Accuracy 60.49%, 67.80% Dependence on clustering
15 [47] 2021 Transformers + GANs LivDet 2015 Accuracy 68.52% - 83.12% Poor generalization
16 [48] 2021 Person-specific FPAD - Accuracy 100% Limited generalization
17 [49] 2021 Multi-CNNs + Genetic Algo-

rithm
Livedet datasets Accuracy +1.0% Fixed-scale input limitation

18 [50] 2022 CNN LivDet 2015 Accuracy 85.33% Challenges with various materi-
als

19 [51] 2022 Multi-filter Framework LivDet 2009, 2011, 2013,
2015

ACC, ACE 99.15%, 0.85% Extensive parameter configura-
tion

20 [52] 2022 MFAS 24 subjects Accuracy 100% Limitations in real-life scenarios
21 [53] 2022 A-iLearn model for incre-

mental learning
LivDet 2011, LivDet
2013, LivDet 2015

Overall Accu-
racy

Up to 49.57% im-
provement on new
fake materials

Possibility of over fitting, need
for further investigation of hand
crafted and deep features

22 [54] 2022 Static-based approach with
fusion of pores perspiration
and texture features

LivDet 2013, LivDet
2015

Average Clas-
sification Error
(ACE)

Biometrika: 0.11%,
Italdata: 0.24%,
Cross match:
0.21%

Limited amount of pore feature-
based algorithms, difficulty in
maintaining and updating algo-
rithms

23 [55] 2023 Lightweight FLD network
(LFLDNet) with CycleGAN
and ResNet with MHSA

LivDet 2011, LivDet
2013, LivDet 2015

Average Classifi-
cation Error

1.72 across all sen-
sors, 95.27% accu-
racy on small-area
fingerprints

Running speed affected by vari-
ous factors, need for exploration
of more effective FLD technology

24 [56] 2023 FPAD based on adversar-
ial data augmentation and
CNNs

LivDet2021 EER, BPCER,
APCER, Liv.
ACC

EER: 0.036, BPCER:
0.072, APCER:
0.000, Liv. ACC:
0.965

Limited dataset size, generaliz-
ability to other presentation at-
tacks, possibility of adversarial
attacks

25 [57] 2023 Fingerprint liveness detec-
tion using deep learning
with LPDJH descriptor

LivDet 2009, LivDet
2011, LivDet 2013,
LivDet 2015

Average EER LivDet 2011:
3.95%

Difficulty in detecting low-
resolution fingerprints, estima-
tion difficulty due to limited test
samples

26 [58] 2023 Fingerprint liveness detec-
tion utilizing CNNs

Socofing dataset Accuracy, FAR,
FRR

Accuracy:
98.964%, FAR:
0.215%, FRR:
7.251%

Imbalanced distribution in
dataset, varying quality and
characteristics of fingerprints,
computational constraints

The Table 3 offers a comprehensive comparative analy-
sis of various biometric cryptosystems, shedding light on
different methods, datasets, metrics, accuracies, and limi-
tations associated with these approaches. These biometric
cryptosystems encompass a wide array of techniques such
as fuzzy vault-based fingerprint cryptosystems, biometric
key binding schemes, cryptographic authentication schemes
based on discrete logarithm problems, and multi-biometric
template security mechanisms, among others. Each method
demonstrates specific strengths, including high accuracy,

robust security, and effectiveness in protecting biometric
templates. However, they also encounter challenges such as
susceptibility to privacy attacks, computational complexity,
limitations in dataset availability, and reliance on specific
biometric modalities. Several future research directives
emerge from this analysis. Firstly, there is a pressing need
for the development of more efficient and secure biomet-
ric cryptosystems capable of addressing emerging security
threats and vulnerabilities, including adversarial attacks,
privacy breaches, and database-level attacks. Secondly,
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research efforts should focus on enhancing the scalabil-
ity and usability of biometric cryptosystems, particularly
in real-world applications such as secure communication,
access control, and identity verification. Thirdly, the ex-
ploration of novel cryptographic primitives, deep learning
techniques, and hardware implementations could lead to
innovative biometric cryptosystems with improved perfor-
mance and reliability. Moreover, future research should
prioritize the development of biometric cryptosystems that
are compliant with regulatory requirements such as GDPR
and HIPAA, while also ensuring user privacy and data
protection. Additionally, efforts should be directed towards

standardizing evaluation protocols and benchmarks to facil-
itate fair comparisons and reproducibility across different
biometric cryptosystems. Furthermore, research should
focus on the integration of biometric cryptosystems with
emerging technologies such as blockchain and IoT to en-
hance security and interoperability in diverse application
scenarios. By addressing these future research directives,
the field of biometric cryptosystems can advance towards
more secure, efficient, and user-centric solutions, thereby
meeting the evolving needs of various domains including
cyber security, healthcare, finance, and law enforcement.

Table 3: Comparative Analysis of Biometric Cryptosystems

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [59] 2015 Alignment-free fuzzy vault-
based fingerprint cryptosys-
tem using highly discrimina-
tive pair-polar (P-P) minutiae
structures

FVC 2000 (DB1), FVC
2002 (DB1, DB2, DB3,
DB4), FVC 2004 (DB2),
FVC 2006 (DB2, DB3)

GAR, FAR 5.78%,0.06% Security proof relies on complex-
ity of brute force attack

2 [60] 2016 Feature level sequential fusion
algorithm for biometric cryp-
tosystems

Publicly available
finger-vein database

FAR 1.47% FAR Limited analysis of external secu-
rity threats

3 [61] 2016 ECC-free biometric key bind-
ing scheme using Graph-based
Hamming Embedding (GHE)
and Minutia Vicinity Decompo-
sition (MVD)

FVC 2002 (DB1, DB2) GAR, FRR, FAR GAR: 89%-
97%, FRR:
3%-11%, FAR:
0.061%-0.16%

Vulnerable to privacy attacks like
ARM and SKI, limited to match-
ing fingerprint images of the
same finger

4 [62] 2018 Biometric template security
mechanism based on two-
dimensional logistic sine map
(2DLSM)

CASIA iris database,
FVC 2002 (DB3)

Global shannon en-
tropy

7.90 noise sensitivity, inability to gen-
erate biometric templates in real-
time

5 [63] 2018 Secure cryptographic authen-
tication scheme based on dis-
crete logarithm problem

CASIA iris database Inner and outer
Hamming dis-
tance distributions,
FA, FR, BER

1.16%, 28.3% need for enhancing iris codes for
better performance

6 [64] 2019 Biometric-based cryptographic
key generation mechanism us-
ing convolution coding princi-
ples (BioKEY)

MIAS, FVC2002,
FVC2004

True positive rate 95.12% struggle with noisy or blurred
fingerprints, significant compu-
tational time

7 [65] 2019 ECC-based mutual authentica-
tion scheme for Smart Grid
communications using biomet-
ric approach

Inhouse Dataset Computation cost 8.92 ms vulnerability to certain attacks

8 [66] 2020 Fuzzy vault method for tem-
plate security of multimodal
biometric systems with face
and fingerprint images

Virtual face and finger-
print database

GAR 99% balancing security and accuracy

9 [67] 2020 Enhanced iris recognition ap-
proach using hyperelliptic
curve cryptography (HECC)

CASIA Iris V-4, IITD
iris datasets

Accuracy 99.74% limitations with fuzzy extractor’s
parameters and potential attacks

10 [68] 2020 Multibiometric cryptosystem
for user authentication

100 subjects with iris
and fingerprint modali-
ties

FRR, EER 0.01, 0.005 Limitations in accuracy and pre-
cision due to variability of bio-
metric data

11 [69] 2020 Multi-biometric template secu-
rity method based on unique
graph generation

CIE Fingerprints of
IITD Database

ERR Low ERR of
0.66%

Dependency on input sample
quality

12 [71] 2020 Multimodal biometric cryp-
tosystem using fingerprint and
ear

Fingerprint and ear im-
age datasets

accuracy 98.76% Reliance on systems for high ac-
curacy

13 [72] 2021 Biometric cryptosystem based
on random projection and back
propagation neural network

NIST SD4, Faces94 FNMR 2.90% Time-consuming training pro-
cess for off-line enhancement,
need for further research on
multiple-biometric template pro-
tection

14 [73] 2021 Fingerprint biometric cryp-
tosystem based on fuzzy com-
mitment scheme and CNN

FVC2000 DB2-A finger-
print database

FAR, FRR, EER FAR: 1.25%,
FRR: 1.15%,
EER: 2.83%

Challenge of determining refer-
ence point precisely, need for
larger training set

15 [74] 2021 Cancellable biometric authen-
tication framework leveraging
GA

ORL, FERET, LFW AROC 09998 Need for further validation on
larger and more diverse datasets

16 [75] 2021 Cancellable biometric security
system based on advanced
chaotic maps

In House EER 0.593 Non-invertibility of biometric
transformations, minor changes
in biometrics affect hash func-
tions

17 [76] 2021 Cancellable Biometrics Vault
(CBV) using chaffing and win-
nowing

CASIA-V3-Interval FRR, FAR 6.92%, 0.001% unsuitable for real-time applica-
tions due to computational com-
plexity

18 [77] 2021 Multi-biometric cryptosystem
based on Modulus Fuzzy Vault
algorithm

IIT Delhi Iris Database,
IIT Delhi Palmprint
Database, IIT Delhi Ear
Database, NIST Special

ROC curve, FAR,
FRR, GAR

0.96 Limited focus on specific algo-
rithms, need for experiments
with natural image databases
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19 [78] 2022 Machine vision gait-based bio-
metric cryptosystem using
fuzzy commitment scheme

CMU MoBo, CASIA A FAR, FRR 0% Recognition limitations due to
variations like complex back-
ground and occlusions

20 [79] 2022 Asymmetric cryptosystem
based on elliptic curve algo-
rithm and optical scanning
cryptography (OSC)

Inhouse Information
entropy

7.95 Speed limitations in encryption
and decryption, vulnerability to
cipher-text-only attacks

21 [80] 2022 Fuzzy extractor for generating
cryptographically strong keys
from biometric images using
deep learning and code-based
cryptosystems

LFW, CelebA Accuracy 93% Requirement for large storage ca-
pacities with deep learning, sus-
ceptibility to attacks based on ma-
chine learning model inversion

22 [81] 2022 Block chain-based user
re-enrolment scheme for
biometric-based authentica-
tion systems

Artificial dataset Time complexity 0.1515 Computational complexity de-
pendent on number of users, as-
sumption of non-adversarial par-
ticipants

23 [82] 2022 Secured multi-biometric tem-
plate protection using La-
grange’s interpolation

The Hong Kong Poly-
technic University
dataset

Accuracy 99.9816% Increase in database size, may not
meet all ISO/IEC 24745 require-
ments

24 [83] 2023 Hardware design of secure can-
cellable biometric cryptosys-
tem based on 3D chaotic map

ORL, FVC, LFW EER, AROC EER of
6.2460 × 1013,
AROC=0.9998

Needs further study on differ-
ent types of attacks and larger
datasets

25 [84] 2023 Cancelable biometric authen-
tication mechanism using 3D
chaotic maps, PWLCM, logis-
tic map, and DNA sequencing
theory

Various face and palm
print datasets

AROC, FAR, DH,
SSIM, PSNR

AROC = 1,
AFAR of
6.2 × 103,
ADH=0.8755,
PSNR=8.2061

Increase in computational re-
sources required

26 [85] 2023 Enhanced Biometric Cryptosys-
tem (BCS) using ear and iris
modalities based on BRIEF

AMI, UBIPr NRMSE 1.7486 Susceptibility to database-level
attacks, need for more sophisti-
cated security techniques

27 [86] 2023 Multi-biometric secure-storage
scheme based on deep learn-
ing and crypto-mapping tech-
niques

CASIA V4, MICHE,
ICUB, MobiFace

AUCROC, EER 0.054 Need for hardware implementa-
tion, possibility of over fitting,
trade-off between security and
recognition performance

28 [87] 2023 Biometric key generation and
multi-round AES cryptosystem
for improved security

Inhouse Energy efficiency 24.67 ms Lack of dataset details, lim-
ited encryption techniques tested,
limited performance metrics re-
ported

The Table 4 presents a comparative analysis of cancellable
biometric methods, offering insights into various techniques,
datasets, metrics, accuracies, and limitations associated with
these approaches. These methods encompass a wide range
of strategies such as protection methods for fingerprint
templates, generating masterprints for impersonation, one-
factor cancellable biometric authentication schemes, secure
triplet loss for training deep learning models, and multi-
server authentication using cancellable biometrics and PUF,
among others. Each method exhibits specific strengths,
including high recognition accuracy, robustness against at-
tacks, and effectiveness in protecting biometric templates.
However, they also face challenges such as computational
complexity, vulnerability to specific attacks, dependence
on dataset characteristics, and limitations in adaptability to
diverse biometric modalities. Several future research direc-
tions emerge from this analysis. Firstly, there is a need for the
development of more efficient and scalable cancellable bio-
metric techniques, particularly in addressing computational
complexity issues and improving performance across di-
verse biometric datasets. Secondly, research efforts should
focus on enhancing the security and robustness of can-
cellable biometric methods against evolving threats and

sophisticated attacks, including template inversion attacks,
brute-force attacks, and adversarial manipulations. Thirdly,
the exploration of novel approaches such as deep learning-
based fusion techniques, chaotic-based cancellable systems,
and image style transfer for biometric authentication could
lead to innovative solutions with improved performance and
reliability. Moreover, there is a need for standardized evalua-
tion protocols and benchmarks to facilitate fair comparisons
and reproducibility across different cancellable biometric
methods. Additionally, future research should prioritize
the development of cancellable biometric techniques that
are user-friendly, privacy-preserving, and compliant with
regulatory requirements such as GDPR and HIPAA. Further-
more, efforts should be directed towards investigating the
usability and acceptability of cancellable biometric systems
in real-world applications such as access control, identity
verification, and secure authentication. By addressing these
future research directives, the field of cancellable biometric
methods can advance towards more secure, efficient, and
user-centric solutions, thereby meeting the evolving needs
of various domains including cyber security, healthcare,
finance, and law enforcement.

Table 4: Comparative Analysis of Cancellable Biometric Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [88] 2017 Protection method for finger-
print templates using fused
structures at feature level

FVC 2002 and 2004
databases

EER, separability, KS
test

DB1: 2.19%, DB2: 1.6%,
DB3: 6.14%; DB1:
11.89%, DB2: 12.71%,
DB3: 17.6%

Computational cost for
large-scale databases,
non-invertibility

2 [89] 2017 Generating "MasterPrints"
for impersonation in partial
fingerprint-based authenti-
cation systems

FingerPass DB7
dataset, FVC2002
DB1-A dataset

Imposter Match Rate
(IMR)

6.77%, 1.31%,0.36%,
3.51%

Dataset imbalance, applica-
bility limited to minutiae-
based systems
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3 [90] 2018 One-factor cancellable
biometric authentication
scheme using Indexing First
Order hashing

FVC 2002 and FVC
2004

EER, genuine-
imposter distribution

4.26%, 2.67% Vulnerable to COA, KPA,
CCA; identifier unlinkabil-
ity

4 [91] 2019 One-factor cancellable palm-
print biometric recognition
scheme based on OIOM
hash and MSH

PolyU and
TJU palmprint
databases

Recognition accuracy 98.07% No explicit mention of limi-
tations

5 [92] 2020 Universal solution for multi-
biometric systems using
deep neural networks

IITD Iris and
MMU2

DI, EER DI: 10.35, EER: 0.12 Limited adaptiveness, need
for sensitive environment

6 [93] 2020 Secure Triplet Loss for train-
ing end-to-end deep learn-
ing models for cancellable
biometric templates

Off-the-person
ECG and un-
constrained face
images

EER 12.56%, 13.99% Vulnerability under specific
attack scenarios, impact of
variability factors

7 [94] 2020 Constrained Optimized
Similarity-based Attack
(CSA) on cancellable bio-
metrics using IoM hashing

LFW dataset Success rate, FAI rate,
TAI rate

99.19%, 98.58%,
0.2866%

Dependency on protected
template information

8 [95] 2020 Non-invertible cancellable
fingerprint template based
on Delaunay triangulation

FVC2002 database EER 1.6%, 2.5%, 2.8%, 3.3%,
2.4%

Concerns about compro-
mised acquisition device,
need for larger dataset

9 [96] 2021 Highly optimized user
template construction for
fingerprint-based authenti-
cation

Nine different fin-
gerprint databases

EER 0% Performance limited by im-
age quality, suggestion for
multi-modal system

10 [97] 2021 Constrained-optimized
similarity-based attack
on cancellable biometrics
using IoM hashing and
BioHashing

LFW dataset SAR, FAI 72.74%, 72.11% Fixed model complexity,
over fitting reliance on IoM
hash code size

11 [98] 2021 Cancellable template using
GCD

Facial, fingerprint,
iris, palm print

EER, AROC High AROC up to
99.59%, low EER down
to 0.04%

High-quality initial biomet-
ric images needed

12 [99] 2021 Feature-adaptive random
projection

FVC2002 DB1-
DB3, FVC2004
DB2

EER, GAR, FAR 1.0%, 2.0%, 4.0%, 11.0% Need for more discrimina-
tory feature descriptor

13 [100] 2021 Multi-server authentication
using cancellable biometrics
and PUF

LFW dataset CMC curve, ROC
curve, DIR curve,
DET curve

18th Lack of evaluation against
sophisticated attacks

14 [101] 2021 BioCanCrypto: biocryp-
tosystem on fingerprint can-
cellable templates

FVC2002 (DB1,
DB2, DB3)

EER, FRR 0.12%, 0.59%, 2.71% Limited exploration in dif-
ferent feature spaces

15 [102] 2021 Watermarking reinforce-
ment scheme

BioSecure,
FVC2002 DB1

FMR, GMR, EER 1.98% Limited to single biometric
trait

16 [103] 2022 Absolute Value Equations
Transform (AVET)

Eight datasets for
various biometrics

GAR 93.22%, 91.91%, 96.2% Fixed sample size, vulnera-
bility to brute-force attacks

17 [104] 2022 Multi-biometric cancellable
scheme using deep fusion
and deep dream

Nine images from
each biometric
modality

NPCR, PSNR, SSIM,
UIQ, SD, UACI

99.158%, 24.523, 0.079,
0.909, 59.582, 23.627

Computationally intensive,
requires enrollment of all
seven images

18 [105] 2022 Cancellable multi-biometric
identification scheme using
ACM

FVC2002, ICE 2005 EER, ROC curve 0.0005, 0.0019 Lack of large-scale database,
need for reliable parameter
estimation

19 [106] 2022 Cancellable SoftmaxOut Fu-
sion Network (CSMoFN)

AR, Ethnic, Face-
scrub, IMDB, Wiki,
YTF

EER 6.67%, 6.71% Risk of CB template inver-
sion

20 [107] 2022 Selective encryption and
deep learning-based fusion
technology

"Lena" image, face
images

Correlation, entropy,
ROC curve, AROC

0.0008, 0.0019 Limited size of the dataset

21 [108] 2023 Deep learning and style
transfer for cancellable bio-
metric system

1800 images
dataset segmented
into face and
fingerprint biomet-
rics

NCC, MSE, PSNR,
SSIM, UIQ, SD, UBER

Average NPCR: 99.26,
PSNR: 23.28, SSIM:
0.0405, UIQ: 0.7492, SD:
60.442, UACI: 24.268

Need for consistent physical
condition, reduced reliabil-
ity in certain environmental
conditions

22 [109] 2023 Multi-Biometric Feature
Hashing (MBFH)

Retina, finger
veins, palm, dorsal
vein images

Hamming, Spear-
man, Jaccard pair-
wise distances

Average values over 0.9
in Spearman, Jaccard,
and hamming distances

Applicability to adaptable
and featherless biometric
features, need for adaptabil-
ity for adding white Gaus-
sian noise

23 [110] 2023 Biometric template protec-
tion scheme for Euclidean
and Cosine metrics

AR Face, CASIA
FaceV5, ORL, LFW

EER 8.559, 0.154 Not optimal for other types
of biometric authentication
systems, slightly higher
computational costs due to
pre-processing

24 [111] 2023 Chaotic-based cancelable
face recognition system
using convolution kernels

AT&T, YALE, UFI,
LFW, FERET

Accuracy 98.43% Trade-off between system
performance and user pri-
vacy, need for adaptation
to environmental circum-
stances

25 [112] 2023 Biometric authentication
system using image style
transfer

Face image
database with key
images

Correlation coeffi-
cients, ROC curves

AUC values > 0.9 in
most cases

Problem of key image simi-
larity, need for restrictions in
setting key images in future
studies

The presented Table 5 offers a comprehensive analysis
of various general-purpose user authentication methods,
covering a wide range of techniques, datasets, metrics, accu-
racies, and limitations. These methods encompass diverse

approaches such as orientation extraction, fingerprint recon-
struction, fake biometric trait detection, local model-based
classification, partial fingerprint matching, minutiae extrac-
tion evaluation, and multi-modal biometric authentication,
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among others. Each method demonstrates specific strengths,
including high accuracy rates, robustness against attacks,
and efficiency in authentication processes. However, they
also encounter challenges such as dataset limitations, com-
putational resource requirements, dependence on specific
features, and vulnerabilities to spoofing attacks. Several
future research directions can be identified from this anal-
ysis. Firstly, there is a need for the development of more
robust and secure authentication methods, particularly in
addressing vulnerabilities to spoofing attacks and enhanc-
ing resistance against adversarial manipulations. Secondly,
research efforts should focus on improving the scalabil-
ity and efficiency of authentication systems, especially in
handling large-scale datasets and reducing computational
resource requirements. Thirdly, the exploration of novel
biometric features, fusion techniques, and machine learning

algorithms could further enhance the accuracy and relia-
bility of authentication methods across diverse modalities.
Moreover, the development of privacy-preserving authen-
tication techniques and the investigation of human-centric
design principles could ensure the usability and acceptabil-
ity of authentication systems in real-world scenarios. Lastly,
efforts should be directed towards standardizing evaluation
protocols and benchmarks to facilitate fair comparisons
and reproducibility across different authentication meth-
ods. By addressing these future research directives, the
field of general-purpose user authentication can advance
towards more secure, efficient, and user-friendly authen-
tication systems, thereby meeting the evolving needs of
various applications such as cybersecurity, access control,
and identity verification.

Table 5: Comparative Analysis of General Purpose User Authentication Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [113] 2011 Orientation Extraction FVC2006 DB2 Average Error 0.206% Limited benchmark
dataset

2 [114] 2012 Fingerprint Reconstruction FVC2002 DB1A, DB2A Successful Match
Rate

86.48%, 86.96% Performance limi-
tations for certain
scenarios

3 [115] 2013 Fake Biometric Trait Detec-
tion

Fingerprint, Iris, 2-D
Face

Classification Error
Rate

<3% Computational re-
sources, full image
access

4 [116] 2015 Local Model-based Classifi-
cation

FVC 2000, 2002, 2004 Accuracy 96.7%, 96.5% Allocation of low-
quality fingerprints for
testing

5 [117] 2016 Partial Fingerprint Matching FVC2000, FVC2002 EER 1.17%, 1.4% Dependence on en-
hancement algorithm

6 [118] 2017 Minutiae Extraction Evalua-
tion

FVC 2002, FVC2004,
Synthetic data

Average positional er-
ror, Average orienta-
tion error

3.48%, 0.06% Environmental varia-
tions

7 [119] 2017 GLDM for Bio-
Cryptosystems

PUCPR, GPDS-300 Classification Error
Rate

7%, 17% Limited positive signa-
ture samples

8 [120] 2018 Pore Extraction using CNN Touch-based, Touch-
less, Latent

Detection Rate, False
Alarm Rate

84.69%, 15.31% Need for high-
resolution images

9 [2] 2019 Pore Comparison FVC2002 DB I, II EER, FMR1000s 1.86%, 0.12% Dependence on align-
ment accuracy

10 [121] 2020 Fingerprint Enhancement &
Reconstruction

FVC2002, FVC2004 TAR 97.95%, 94.09% Impact of dirt, age,
medical factors

11 [122] 2020 DeepPoreID Matching DBI, DBII EER, FMR100 35% increase in EER Dependence on large
quantity of sweat pores

12 [123] 2020 Homomorphic Encryption FVC2002 DB2 EER 9.23% EER Time-consuming
encryption

13 [124] 2020 SSO Feature Extraction 150 images FAR, FRR, CVR FAR: 0.00, FRR: 0.00666,
CVR: 99.334%

Small dataset size

14 [125] 2020 FHE-based Authentication NIST SD9 EER 0.053% Time-consuming
encryption

15 [126] 2020 BioSec Framework FVC-2004 DB3 Accuracy 70% Vulnerability of sym-
metric encryption

16 [127] 2020 Reversible Watermarking FVC2002 PSNR, Matching
Score

99.61% Sensitivity to noise and
compression

17 [128] 2021 Ensemble Matching NIST SD27, GCDB,
MOLF DB1

Rank-1 identification
rate

74.03% Choice of supervised
classifier

18 [129] 2021 DRUnet Segmentation FVC Databases Jaccard similarity,
Dice score

97.21%, 94.73% Small training dataset

19 [130] 2021 MiDeCon Quality Assess-
ment

FVC 2006 FMR 10−1, Complex procedure

20 [131] 2021 ASRA Image Alignment FVC2002, FVC2004 Authentication accu-
racy

99% Dependence on ROI ex-
traction

21 [132] 2021 VSS & Super-resolution FVC2002 DB1 Genuine match rate 94%, Need for higher quality
fingerprint images

22 [133] 2021 Dual-filter Framework LivDet 2013, 2015 Accuracy 97.56% Framework agnostic to
filter type

23 [134] 2021 Multi-modal Biometric Au-
thentication

228 image signal data & EER,
ROC curves

Classification rate of
100%

Not tested on large scale
dataset

24 [135] 2022 Secure Authentication FVC2002 DB1-DB3,
FVC2004 DB1-DB3

EER 0.99%, 3.28% Balance between secu-
rity and performance

25 [136] 2022 Embedded System Authen-
tication

In-house Accuracy - Robustness against at-
tacks

26 [137] 2022 Gabor Filter & CNN FVC2006 Validation accuracy 99.33% Management of smaller
training sets

27 [138] 2022 Deep CNN Matching In-house Training & validation
accuracy

100% Lack of diversity in
dataset

28 [139] 2022 Multi-factor Authentication CASIA-FingerprintV5,
FVC2002 DB1

FAR 0.81% Limited size of dataset
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29 [140] 2023 Brute-force Attack In-house FAR 4.14106 Need for smartphones
to support sensor hot
plugging

30 [141] 2023 Joint Authentication &
Spoof Detection

FVC 2006 DB2A,
LiveDet 2015

TAR, FAR, ACE TAR = 100%, ACE =
1.44%

Need for larger and
more diverse datasets

31 [142] 2023 Homomorphic Encryption
& ML

PolyU, SOKOTO F1-score PolyU: 93.6%, SOKOTO:
98.2%

HE-based computation
challenges

32 [143] 2023 Multi-factor Authentication In-house System Usability
Scale

90% Small sample size

33 [144] 2023 AVAO enabled DMN CASIA Fingerprint Im-
age Database

Accuracy, Sensitivity,
Specificity

0.927, 0.938, 0.930 Need for robust pre-
processing

The Table 6 offers a comprehensive comparative analysis
of various fingerprint indexing methods, encompassing
different approaches, datasets, metrics, accuracies, and
limitations. Notable methodologies include distributed
frameworks, GPU-based systems, absolute registration ap-
proaches, minutiae-based algorithms, deep learning-based
models, and privacy-preserving indexing techniques. These
methods exhibit diverse strengths, such as high process-
ing speeds, improved accuracies, and workload reduction,
while also facing challenges like hardware/software depen-
dencies, scalability issues, and computational costs. Several
future research directions emerge from this analysis. Firstly,
there’s a need for continued exploration of deep learning
techniques in fingerprint indexing, especially in improving
accuracy and reducing computational costs. Additionally,
addressing scalability concerns and hardware dependencies

would be crucial for real-world deployment. Secondly, the
development of privacy-preserving indexing methods is
vital to ensure the security and confidentiality of biometric
data, especially in light of increasing concerns regarding
data privacy. Thirdly, research efforts should focus on
enhancing the robustness and generalization capabilities
of indexing algorithms, particularly in handling diverse
datasets with varying quality and characteristics. More-
over, investigating novel features and descriptors, as well as
exploring multimodal approaches, could further improve
indexing performance and reliability across different bio-
metric modalities. Lastly, efforts should be directed towards
standardizing evaluation protocols and benchmarks to facil-
itate fair comparisons and reproducibility across different
indexing methods.

Table 6: Comparative Analysis of Fingerprint Indexing Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [145] 2014 Two-level distributed frame-
work for fingerprint match-
ing

Large synthetic
database created
with SFinGe, NIST
databases

Spped up 312.8684 sec Distribution of synthetic fin-
gerprint dataset, hardware re-
sources, scalability of matching
algorithms

2 [146] 2015 Fingerprint identification
system using GPUs

FVC2002, DB14 EER 2% Potential benefits of GPU-
based algorithms, need for a
two-stage system for practical
applications

3 [147] 2016 Absolute registration ap-
proach with pose constraint

Public domain finger-
print databases, NIST
Special Database 14,
database of 1,000,000
rolled fingerprints

Error Rate 2.33% High dimensionality of the
Minutia Cylinder-Code (MCC)
descriptor, need for further re-
search on noise and variability

4 [148] 2017 Fingerprint indexing algo-
rithm based on minutiae
pairs and convex core point

FVC2000DB2A+B,
FVC2000DB3A+B,
FVC2002DB1A+B,
FVC2004DB1A+B,
NIST’s DB4 and DB14

TPR 2.18 Lack of detail regarding param-
eters, hardware/software dif-
ferences

5 [149] 2019 Minutiae-centred finger-
print indexing method with
deep convolutional neural
network (DCNN)

FVC2002 DB2a,
FVC2002 DB2b,
FVC2004 DB1a, NIST
special database 4,
NIST special database
14

Error rate, penetra-
tion rate

0.25%, 10% High computational cost for
MCC-based method

6 [150] 2019 DeepPrint: Deep network
for learning fixed-length fin-
gerprint representations

NIST SD4, last 2,700
pairs of NIST SD14

Rank-1 search ac-
curacy

98.80% Fixed length representation,
Saturation of existing bench-
marks

7 [151] 2020 CNN-based Combination of
Nearest Arrangement Index-
ing (CNNAI)

FVC2004, NIST SD27
latent fingerprint
databases

Rank-1 identifica-
tion rate

80%, 85.4% Dependence on the availability
of minutiae points, failure of
MINU-EXTRACTNET

8 [152] 2020 Pore-based indexing
method for high-resolution
fingerprints

Hong Kong PolyU high-
resolution fingerprint
databases (DBI and
DBII), IITI-HRFP, IITI-
HRF

Pre-selection error
rate, penetration
rate

67%, 49%,
42%,28%, 10%

Effectiveness limited on
databases of high-resolution
full fingerprints

9 [153] 2020 Latent fingerprint indexing
using minutiae based rota-
tional and translational fea-
tures

IIIT-D latent fingerprint
dataset

Accuracy, index-
ing time

Accuracy up to
94.77%, average in-
dexing time rang-
ing from 5.29 to
25.92 seconds

Challenges with partial impres-
sion, background noise, poor
ridge clarity, large non-linear
distortions

10 [154] 2021 Indexing algorithm based
on clustering of minutia
cylinder codes (MCC)

Public data, proprietary
data, synthetic data,
NIST SD4, NIST SD14

Error rate, Penetra-
tion Rate

53.9%, 0.01% Reduced search space, lower
performance on databases with
different characteristics or qual-
ity levels, time complexity

11 [155] 2021 Pore-based indexing and re-
finement

DBI, DBII Accuracy 95.16% Computation increase with
pores
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12 [156] 2021 Inverted index for minutiae-
based search

FVC2002 DB1a, Private
dataset

Error rate 0.42% High search rates

13 [157] 2021 PalmHashNet for palm print
indexing

CASIA, IIT Delhi,
Tongji, PolyU II

Accuracy Above 99% accu-
racy

Not tested on large datasets

14 [158] 2021 MDSH-based indexing for
multi biometric retrieval

IIT Delhi (iris, face,
palm print)

Hit rate, Penetra-
tion rate

68%, 100% Computational costs

15 [159] 2022 Quality score-based search
for biometric identification

FERET, CASIA,
FVC2002

Workload Up to 38% reduc-
tion

High intra-class variability

16 [160] 2022 FKPIndexNet for finger-
knuckle-print identification

PolyU-FKP, IITD-FKP Error rate, Penetra-
tion rate

0.32%, 100% Limitations in index table gen-
eration

17 [161] 2022 Signal-based fusion for bio-
metric database indexing

FERET, FRGCv2, ĲB-A Workload Reduced workload
by 30%

Requires high-quality images

18 [162] 2023 Privacy-preserving multi-
biometric indexing

Composite dataset Workload Workload reduc-
tion by 57%

Use of composite dataset

19 [163] 2023 Attention-Driven Finger-
print Recognition Network

NIST SD4, NIST SD14 Accuracy 99.93% Not using domain knowledge

20 [164] 2023 Gravitational Search Deci-
sion Forest for fingerprint
recognition

NIST SD27, FVC2004 Precision, Recall, F-
measure

93.90%, 96.25%,
95.06%, 96.25%

Recognition rate optimization

The Table 7 presents a comprehensive overview of vari-
ous methodologies employed for infant and child biometric
recognition, highlighting the diverse approaches, datasets,
metrics, accuracies, and limitations associated with each
method. Several studies focus on fingerprint recognition,
utilizing techniques ranging from image enhancement and
CNN-based ridge flow estimation to pre-trained CNN mod-
els. These approaches demonstrate promising accuracies,
with [166] achieving up to 99.5% True Accept Rate (TAR) for
infant fingerprints. However, challenges persist, such as the
lack of automated alignment methods and issues with small
fingerprint sizes and low image quality, as noted by multiple
authors. Moreover, alternative biometric modalities like
footprints, iris, and outer ear shape are explored, showing
potential for high accuracy, as evidenced by [168] 99.30%
accuracy in footprint identification and [170] low Equal Er-
ror Rate (EER) for outer ear shape recognition. Nonetheless,
these methods encounter hurdles related to data collection
challenges, limited dataset sizes, and transparency in pro-
cesses and facilities. Future research in infant and child

biometric recognition could address these limitations by
focusing on several key areas. Firstly, efforts should be
directed towards developing automated alignment tech-
niques to enhance accuracy and efficiency, especially for
infant fingerprints. Secondly, there is a need for larger and
more diverse datasets to ensure robust model performance
and generalization. Thirdly, exploration of multi-modal
biometric systems, as suggested by [172], could provide
enhanced accuracy and reliability by combining different
biometric traits . Lastly, advancements in image acquisition
technologies and computing resources could facilitate the
collection of high-quality images and alleviate challenges
associated with low image quality and computing resource
requirements, as highlighted by [169]. By addressing these
research directions, future studies can contribute towards
the development of more robust, accurate, and reliable
infant and child biometric recognition systems, thereby
enhancing their applicability in various domains such as
healthcare, security, and childcare.

Table 7: Comparative Analysis of Infant and Child Biometric Recognition Methods

Sl
No

Paper Year Method Dataset Metric Accuracy Limitation

1 [165] 2016 Image enhancement, CNN-
based ridge flow estimation

Infant fingerprint database Rank-1 identification
accuracy

73.98% Lack of automated fin-
gerprint alignment for
infants

2 [166] 2016 Evaluation of child fin-
gerprint recognition using
NFIQ 2.0 metric

Dataset of infants aged 0-5
years

True Accept Rate
(TAR), False Accept
Rate (FAR)

TAR: 99.5% (500
PPI), 98.9% (1270
PPI)

Piecewise linear model
interpretation, dataset
resolution variations

3 [167] 2021 InfantPrints system with
custom-built fingerprint
reader

Longitudinal infant finger-
print database

TAR, FAR 95.2%, 1.0% Lack of automated
alignment method

4 [168] 2021 Footprint identification us-
ing wavelet feature extrac-
tion and K-NN

Dataset of 30 babies with
footprint images

Accuracy, Precision,
Recall

99.30% accuracy,
90.17% precision,
89.44% recall

Small dataset size, sin-
gle feature extraction
method

5 [169] 2022 Neonate fingerprint classifi-
cation using deep learning

Dataset with manual la-
belling of fingerprint images

Accuracy 78.4% Computing resource
requirements, chal-
lenges in collecting
high-quality images

6 [170] 2023 Biometric recognition sys-
tems for infants (fingerprint,
iris, outer ear shape)

Dataset from volunteer in-
fants and children

Equal Error Rate
(EER), Failure to
Acquire (FTA)

EER: 0.16% (outer
ear shape)

Challenges in data col-
lection, limitations in fa-
cility and process trans-
parency

7 [171] 2023 Multi-instance contingent
fusion technique for infant
fingerprint verification

Dataset of infant finger-
prints

Verification accuracy 73.8% (1 month in-
terval), 57.14% (6
months interval)

Absence of ancillary in-
formation, greater time
interval necessitates fu-
sion

8 [172] 2023 Multi-modal Biometric
Recognition for Toddlers
and Pre School Children
(M²BRTPC)

Dataset of iris and finger-
print modalities from chil-
dren aged 18 months to 4
years

Accuracy 96.3% Restricted age range,
improvements over ex-
isting methods without
claiming absolute accu-
racy

9 [173] 2023 Pre-trained CNN model for
newborn and toddler finger-
print recognition

Dataset of fingerprint im-
ages from 154 subjects

Accuracy 82.47% Small size of finger-
prints, low image qual-
ity
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10 [174] 2023 CNN-based children recog-
nition system using contact
less fingerprints

CLCF dataset for experimen-
tation

Accuracy, Equal Error
Rate (EER)

Accuracy: 98.46%,
EER: 1.99%

Need for larger
datasets, exploration
of different enhance-
ment and extraction
techniques

Several important conclusions can be drawn from a com-
prehensive analysis of the literature on latent fingerprint
recognition and biometric identification systems. With a
wide range of strategies being investigated, such as deep
learning models, hybrid approaches, and sophisticated algo-
rithmic techniques, these systems have undergone tremen-
dous evolution. Due to this diversity, difficult fingerprint
identification problems like partial prints, noise, and in-
consistent quality have been significantly improved. The
literature does, however, also highlight enduring difficul-
ties. The comparison of various methods is made more
difficult by the absence of standard evaluation methodolo-
gies, and algorithmic bias and generalizability are raised
by the small size and lack of diversity of the datasets that
are currently accessible. Moreover, a lot of sophisticated
techniques, especially those centred on deep learning, have
a high computational complexity, which makes real-time
implementation challenging. Future work in this area has
to concentrate on creating uniform benchmarks, growing
datasets, maximizing computational effectiveness, and re-
solving moral issues with bias and privacy. Advantage,
disadvantage, area of improvement and ethical implication
of the fingerprint biometric studied in the manuscript are
discussed below.

• Advantage:

– Diverse Methodologies: The literature study demon-
strates the wide variety of approaches, such as hybrid
approaches, descriptor-based tactics, deep learning
models, and different algorithmic advancements, that
are employed in fingerprint recognition and biomet-
ric systems. Due to the variety of methods available,
researchers are able to tackle several facets of latent
fingerprint recognition issues, including handling par-
tial prints, noise, and quality differences. For instance,
descriptor-based methods may provide computational
efficiency, while deep learning models might enhance
accuracy by discovering complex patterns in finger-
print data. The use of hybrid techniques, which blend
conventional and cutting-edge methodologies, shows
an effort to capitalize on each approach’s advantages
and advance latent fingerprint recognition technology.

– Quantifiable Performance Metrics: Numerous studies
provide comprehensive performance indicators, like
F1 scores, recall, precision, and rank-1 accuracy, which
are essential for evaluating the efficacy of various tech-
niques. Benchmarking these measures against popular
datasets such as FVC2004 and NIST SD27 is common
practice. Researchers and practitioners find it easier
to compare the effectiveness of different techniques,
evaluate advances, and pinpoint areas that require ad-
ditional development when such measurements are
transparently reported. Because of its transparency,
the community is able to monitor advancements and
set performance standards for systems to come.

– Cutting-edge Techniques: Numerous novel methods

have been presented, such as deep learning-based
minutiae extraction, deformable minutiae clustering,
and data augmentation using Generative Adversarial
Networks (GAN). Especially for under-represented in-
stances, GAN-based augmentation might artificially
generate extra training data, hence improving the sys-
tem’s resilience. Latent fingerprint identification sys-
tems are becoming more accurate and scalable thanks
to deformable minutiae clustering and deep learning
techniques. This makes them more suitable for use in
forensic applications, particularly in challenging situa-
tions where the prints are imperfect or deteriorated.

– Real-world Testing: The fact that numerous suggested
techniques are evaluated on a range of databases and
datasets, including NIST SD27 and FVC2004, is a note-
worthy strength of the examined literature. This makes
it possible to test the algorithms in a variety of scenar-
ios, simulating the unpredictability of the actual world.
By doing this, scientists may evaluate how reliable
and broadly applicable their methods are, making sure
they work effectively outside of carefully regulated lab
environments. For technology meant to be used in
actual applications, including forensic investigations
and security systems, this real-world applicability is
essential.

• Disadvantages:

– Lack of Uniformity in Evaluation Standards: Al-
though a large number of research offer performance
indicators, there is a notable deficiency in uniform
assessment procedures between various inquiries. Di-
rect comparisons between approaches are challenging
because to variations in benchmarking procedures,
quality criteria, and dataset sizes. Because of this, some
accuracy statistics might be inflated, which makes it
more difficult to determine whether strategy is better
in an unbiased manner. A technique that works well on
a small, clean dataset, for instance, might not translate
as well to larger, messier real-world data. Additionally,
because there isn’t a single benchmark, reported accu-
racy gains may vary depending on the context and may
not apply to different circumstances.

– Dataset Limitations: The small size and lack of di-
versity of datasets used for testing and training is a
problem that keeps coming up in the literature. A lot
of research papers admit that their datasets are too
tiny or homogeneous to adequately capture the hetero-
geneity present in real-world circumstances, especially
when it comes to latent print datasets. This suggests
that the models may be over fitting to the unique fea-
tures of these small datasets, which raises questions
about their generalizability. A system that works well
on the dataset it was trained on but has trouble with
under-represented populations or situations, including
various skin kinds, lighting settings, or sensor types,
may also be introduced by a lack of diversity.
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– Computational Complexity: There is a drawback to
several of the sophisticated methods, especially those
that depend on deep learning: higher computational
demands. These techniques frequently call for addi-
tional processing power, memory, and time, but they
may provide considerable accuracy gains. It is difficult
to apply these techniques in real-time scenarios, such
as live fingerprint recognition at security checkpoints
or mobile devices with constrained computing power,
due to the rise in computational complexity. For exam-
ple, deep learning models can yield higher recognition
rates, but their resource needs make them impractical
for use in real-time, low-power devices.

• Areas for Improvement:

– Standardized Benchmarks and Evaluation Protocols:
The creation of uniform protocols for comparing finger-
print recognition algorithms across various datasets is
among the most urgent need. This would entail defin-
ing testing settings, dataset properties, and consistent
evaluation criteria. Researchers may more precisely
compare the performance of various approaches when
a consistent framework is in place, which helps them
determine which techniques are actually improving
the state of the art. Exaggerated performance claims
might be lessened by using a consistent evaluation
process, which would guarantee that all approaches
are examined under comparable circumstances [118].

– Larger and More Diverse Datasets: Future study
should concentrate on increasing the amount and diver-
sity of latent fingerprint databases in order to solve the
limitations of the present investigations. This would
include gathering information from a larger variety
of sources and in a greater variety of settings, includ-
ing various skin tones, ambient variables, and sensor
kinds. By using larger, more representative datasets
for algorithm training, researchers can improve system
robustness and minimize bias. It would be easier to
make sure that the algorithms can handle the whole
range of real-world issues if more diverse latent prints
were included, such as those with different levels of
noise, distortion, and completeness [145].

– Improving Computational Efficiency: Because many
of the methods are computationally demanding, opti-
mization is required to shorten processing times with-
out compromising accuracy. For real-time applications,
where speed is a crucial component, this is especially
crucial. To lessen their processing footprint, researchers
can concentrate on creating lightweight algorithms or
improving already-existing deep learning systems. For
example, the models could be deployed in resource-
constrained contexts like mobile devices or edge com-
puting platforms if they are optimized to perform well
on GPUs or embedded systems [25].

– Integration with Other Biometric Modalities: Inte-
grating fingerprint identification systems with other
biometric modalities, such facial recognition or iris
scanning, is another possible avenue for advancement.
When one modality is impaired (a partial fingerprint,
for example), this multi-modal method may enhance

overall accuracy and resilience. Combining informa-
tion from several biometric sources may also improve
security by making it more difficult for hackers to imper-
sonate the system. Future developments may proceed
in the direction of sensor fusion technique research and
the creation of reliable multi-modal biometric authen-
tication algorithms [42].

– Ethical Considerations and Privacy: Future research
must also address ethical issues including privacy con-
cerns, data protection, and algorithmic bias given the
growing usage of biometric technologies in sensitive
applications like security and forensics. Strong le-
gal frameworks are especially necessary for forensic
applications in order to guarantee the validity and ac-
ceptability of the data gathered using these systems.
Researchers should investigate the moral ramifications
of gathering and using biometric data, making sure
privacy laws like GDPR are followed, and creating clear
procedures for handling user consent and data [180].

• Ethical Implications:

– Privacy Concerns: Fingerprint biometric systems cre-
ate serious privacy concerns since they rely on the gath-
ering, storing, and processing of private information.
Biometric information, like fingerprints, is unchange-
able after it is compromised, unlike passwords or other
identity-related information. Biometric data is particu-
larly susceptible to exploitation because of this. Identity
theft, unapproved tracking, or monitoring might result
from unauthorized access to fingerprint databases or
data breaches. These worries are heightened by the
collecting of biometric data, frequently without users’
express or informed agreement. The collection, storage,
and sharing of this data must adhere to strict processes
in order to comply with data protection legislation,
such as the General Data Protection Regulation (GDPR)
in Europe. Crucial to ethical compliance are letting
users know how their biometric data is being used and
providing them with the choice to opt out. To reduce
these concerns, biometric systems should place a high
priority on openness, safe encryption, and privacy-
preserving methods like homomorphic encryption or
cancelable biometrics.

– Algorithmic Biases: The possibility of algorithmic bias
in fingerprint biometric technologies presents another
ethical dilemma. Research has indicated that the ac-
curacy of biometric systems can vary based on the
demographic attributes of the people being scanned,
including age, gender, and skin tone. For instance,
under representation of particular populations in train-
ing datasets may result in reduced accuracy for those
groups. Particularly in forensic or security scenarios,
where a false match or inability to identify a legitimate
individual can have dire effects, this bias can have
catastrophic ramifications. Misidentification in foren-
sic investigations may result in false allegations, and
in security applications, specific populations may be
unjustly singled out or denied access. In order to solve
this problem, more diverse datasets must be used, and
algorithms must be developed with fairness standards
in place. These problems can be lessened by routinely
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reviewing biometric systems for bias and including a
variety of demographic groups in the testing process.

– Legal Considerations: Particularly in forensic and gov-
ernment use cases, fingerprint biometric technologies
have a wide range of legal ramifications. The reliability
and admissibility of biometric evidence in court is one
of the main issues. Strict legal requirements must be
met by forensic fingerprint identification systems in or-
der for the evidence they produce to be trustworthy and
supported by science. But many contemporary biomet-
ric algorithms are "black-box," especially those that rely
on deep learning, which makes it challenging to under-
stand how they arrive at a given judgement. This raises
concerns about the accountability and transparency of
these systems. Furthermore, there are jurisdictional
differences in the legality of biometric data collecting,
thus it is crucial to make sure local regulations are
followed. While some nations have more permissive
rules, others have tight legislation requiring express
authorization for the use of biometric data. The ethical
application of biometric technology must be covered by
legal frameworks, with an emphasis on data protection,
user permission, and making sure that systems are
operated in a way that respects people’s rights.

This review study on fingerprint biometrics has some
major limitations, one of them being its scant discussion
of recent developments in fingerprint sensing technology
and their potential applications. Although the study thor-
oughly discusses the current state of the art in fingerprint
recognition, it does not go into great detail into cutting
edge advances like new capture methods, sophisticated
sensing materials, or the effects of recent advancements in
fingerprint sensor downsizing. The absence of these de-
velopments implies that the evaluation may not accurately
reflect the state of the field today and in the future, given the
potential impact they could have on the precision, usability,
and integration of fingerprint biometrics in a variety of
scenarios. This gap may allow significant technical trends
to go unnoticed, along with the implications they have for
research and real-world applications.

8. Conclusion

The adoption of creative solutions to current problems is
essential to the future viability of biometric authentication.
This entails creating reliable, scalable algorithms that can
efficiently handle a variety of biometric data. It is imperative
to establish uniform standards and evaluation procedures to
guarantee impartial assessments of diverse authentication
techniques. Strict ethical guidelines and openness cam-
paigns are necessary to solve issues with algorithmic bias
and data privacy in order to win over the public’s trust. Mul-
timodal fusion techniques that integrate various biometric
features can greatly improve dependability. Furthermore,
maximizing hardware technological developments is crit-
ical to increasing accuracy and productivity. The goal of
research should be to develop biometric systems that are
easy to use and prioritize both regulatory compliance and
privacy protection. Collaboration between academic re-
searchers, business personnel, and regulatory organizations
is essential to spur innovation and guarantee the responsible

application of biometric technologies across various sectors.
By implementing these tactics, biometric authentication will
be able to advance, satisfy the increasing need for reliable
and secure authentication methods, and improve security
and user experience across a range of applications.
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