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ABSTRACT: Information extracted from remote sensing data can be applied to monitor the business 
and natural environments of a geographic area. Although a wide range of classical machine learning 
techniques have been utilized to obtain such information, their performance differs greatly in 
classification accuracy. In this study, we aim to examine whether quantum-enhanced machine learning 
can improve the performance of classical machine learning algorithms in binary classifications of 
satellite remote sensing data. Using 16 pre-labeled datasets, we apply Support Vector Machine-
quantum annealing solver (SVM-QA) - a type of quantum machine learning algorithm, with optimized 
(Gamma) value on the task of image classification and compare its results with the top performers of 
classical machine learning algorithms. The results show that in 10 out of 16 datasets, the hyper 
parameterized SVM-QA classifier outperforms the best classical machine learning algorithms in terms 
of classification accuracy. The findings suggest the potentiality of quantum computing in remote 
sensing. This study contributes to the literature of remote sensing image data classification and 
applications of quantum machine learning for problem solving. 
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1. Introduction  

Remote sensing is a method of gathering data about a 
particular object or a geographical area without physical 
contact. It can quickly provide static or dynamic geospatial 
data with various scales and resolutions.  Such datasets 
provide insights beneficial for society and the natural 
environment.  

Remote sensing datasets play an important role in 
many big data applications, e.g., spatial analysis, earth 
observation modeling, urban planning, and prompt 
response to rapid changes in demographic, economic, and 
technological landscapes [1-4]. Massive geospatial data 
have been collected from a wide range of sources, such as 
satellites [5], mobile devices [6], and aerial photography 
[7] etc. It is essential to extract valuable information from 
these remote sensing data using computationally efficient 
techniques [8-10].  

Remote sensing data classification aims to label images 
with a semantic class, typically involving pattern 
identification and classification based on content within 
given datasets [11]. Because of machine learning’s capacity 
of handling high-dimensional data and mapping classes 
with complex characteristics, it has been applied 
extensively to a wide range of remote sensing imagery 
classification - for example, delineation of cadastral 
boundaries [12], aero-images of the roof damage caused 
by earthquake in Japan [13], and urban land use and land 
mapping in France [1]. Although machine learning 
applications have demonstrated better accuracy than 
those using traditional parametric classifiers [14], the 
overall classification accuracy of the top algorithms is far 
from satisfactory [15].  

There are several issues that hinder breakthroughs in 
remote sensing data classification: the complexity and 
sheer volume of remote sensing geospatial data [9-10], 
difficulties in distinguishing intra-class diversity and 
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inter-class similarity, variations in scene images at 
different scales, and the challenge of processing scenes 
with multiple objects, among others [11]. With the 
development of advanced machine learning, techniques 
such as deep learning have been deployed to address these 
data-intensive problems, such trend makes it imperative 
to have more powerful computing resources and 
extensive training datasets [8]. The escalating demand for 
exceptional computing power and the shortage of large-
scale datasets due to the labor-intensive process of 
creating them, have become a bottleneck for remote 
sensing data processing [11, 16]. In addition, the use of 
different datasets and procedures in various studies has 
often led to conflicting and incomparable findings. As a 
result, many classification studies have yielded 
contradictory conclusions in identifying the best 
performers, making it laborious to select the optimum 
machine learning algorithm for a specific classification 
task.  

Quantum computing is a multidisciplinary field that 
applies quantum mechanics to provide solutions that are 
either impossible or computationally too expensive using 
traditional methods. It is among the latest rapidly 
advancing technological breakthroughs and provides a 
potentially effective alternative to address issues in remote 
sensing [8]. Although still in its preliminary stage, 
quantum computing can conceptually solve optimization 
processes that are core to many machine learning and 
deep learning algorithms expeditiously.  

Moving beyond the effort of selecting an optimum 
classifier from traditional machine learning algorithms, 
this study approaches remote sensing data classification 
from the paradigm of quantum computing and compares 
how it performs with classical machine learning. In this 
study, we aim to explore whether quantum machine 
learning delivers higher prediction accuracy than classical 
machine learning for binary classification of remote 
sensing images.  

The rest of the paper is organized as follows: Section 2 
provides an overview of the extant literature on quantum 
machine learning particularly on how support vector 
machine-quantum annealing (SVM-QA) solver - a type of 
quantum machine learning annealing algorithm has been 
applied in the analysis of remote sensing data. Section 3 
describes the characteristics of datasets used and explains 
how the best performing SVM-QA is selected for the 
comparison with the top-performing classical machine 
learning algorithms in terms of accuracy. Sections 4 and 5 
present and evaluate the results of this study, and section 
6 concludes this study and discusses future work.  

2. Related Work 

2.1. Classical Support Vector Machine (SVM) and Support 
Vector Machine - Quantum Annealing (SVM-QA) 

Kernel-based Support Vector Machine is one of the most 
popular and robust supervised machine learning 
algorithms for classification and regression [17]. It 
conducts classification by constructing an optimal 
hyperplane that separates labeled training data into 
different groups with maximum distance. Hyperplanes 
are boundaries that separate data into two different 
classes, with data points belonging to one class tending to 
fall on the same side of the hyperplane. Support Vector 
Machine classifiers categorize new data into different 
groups using these hyperplanes [18]. 

Support Vector Machine based classifiers have found 
applications in wide ranges of areas such as 
electrocardiogram (ECG) abnormality detection [19], 
water waste treatment [20], network security attack 
detection [21], and more. Its popularity can be attributed 
to the ability to handle high-dimensional and complex 
data, even for unstructured and semi-structured data, 
such as text and images.  

Support Vector Machine also has other advantages. For 
example, Support Vector Machine based classifiers do not 
have much divergence over small variations in training 
datasets, so they are more reliable and have the advantage 
of a low risk for overfitting. In addition, SVMs do not 
require extensive training data compared to deep 
Learning algorithms and can be used when only limited 
training data is available [17].  

Depending on the characteristics of datasets and 
features, SVM can implement either linear or nonlinear 
classifiers. Linear SVM Classifier (SVC) is suitable for 
classifying datasets with separable linear features, while 
nonlinear SVC is better fitted for datasets with nonlinear 
features. Nonlinear features are often transformed to 
linear ones since linear SVC is easier to implement. The 
transformation is called kernel trick, which helps finding 
the optimal hyperplane easily. The robustness of SVM 
comes from kernel trick, SVC can address complicated 
problems with the right kernel function. However, due to 
the computational complexity to find the solution O(n3) 
where n is the number of training data points, SVM 
classifiers are typically not used on very large datasets 
because of the extensive training time required [22]. 
Section 2 illustrates how the kernel trick is performed 
mathematically.  

Quantum computing is an exciting interdisciplinary 
research area aimed at solving complex problems that 
classical computers are too slow to handle [23]. Since 
quantum computing uses quantum bits, or qubits which 
has more than one state simultaneously, whereas classical 
computers employ bits which have either the state of 1 or 
0, it is significantly more cost efficient than their classical 
counterparts [10]. The increasing attention from both 
research and industry communities on quantum 
computing and machine learning has fueled the trend of 
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Quantum Machine Learning (QML) which combines the 
capabilities of both [10, 17]. Quantum Machine learning is 
a sub discipline of Quantum Artificial Intelligence (QAI), 
seeking to build quantum enhanced machine learning 
algorithms or novel methods which can improve the 
performance of classical algorithms [10, 24]. By taking 
advantage of qubits, quantum operations, and quantum 
computers processing capabilities, Quantum Machine 
learning can theoretically take quantum leap in the 
processing speed compared to classical machine learning. 
This makes QML effective in finding solutions to problems 
considered unsolvable in the classical computing 
environment. QML has been shown to overcome the issue 
of slow convergence and training when implemented in a 
quantum computing platform [23]. Because of Support 
Vector Machine’s advantages in robustness and scalability 
in processing complex data, we have chosen to apply 
quantum computing to satisfy the computation demand of 
machine learning in terms of time. The next section 
provides details on how SVM can be enhanced by 
quantum annealing and its formulation.  

2.2. Formulation of Support Vector Machine – Quantum 
Annealing (SVM-QA)  

Constructing SVM kernel functions on nonlinear 
classifiers is very tedious, it is time consuming even when 
the datasets are not big. Applying quadratic infeasibility 
penalties as an alternative for imposing constraints 
explicitly, this study has developed a general quadratic 
constrained model for SVM and recast it in the form of 
binary quadratic programming problem. This SVM-QA 
formulation can be solved by a number of quantum 
annealing solvers [25]. In the SVM-QA model, the support 
vector classifier can use the typical Radial Basis Function 
(RBF) kernel: 𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚) = 𝑒𝑒−𝜆𝜆‖𝑥𝑥𝑛𝑛−𝑥𝑥𝑚𝑚‖2 . The 𝜆𝜆 (lambda) 
value is the only adjustable parameter in the kernel 
function and plays an important role in the model’s 
performance.  

Since Kernel-based machine learning algorithms, such 
as support vector machines (SVMs), can experience 
prolonged processing times when dealing with large-scale 
data, to address this issue, we first transform the radial 
basis function (RBF) kernel of the SVM into a quadratic 
integer programming model, then use binary 
transformation to make this model compatible with 
quantum computing platforms. For a data set with m 
attributes and N observations, the binary value of the 
response variable (classifiers) for ith observation 𝑦𝑦𝑖𝑖  is 𝑦𝑦𝑖𝑖 ∈
{−1, +1}; vector 𝑋𝑋 ∈ ℝ𝑁𝑁×𝑚𝑚 representing the training data, 
and vector 𝑌𝑌 ∈ {−1, +1}𝑁𝑁 , the support vector classifier in 
the decision functions that formulates the hyperplane is 
identified by coefficients  𝑎𝑎 ∈ ℝ𝑚𝑚  and bias 𝑏𝑏 ∈ ℝ: 

min
𝑎𝑎,𝑏𝑏

1
2
‖𝑎𝑎‖2   s.t.  𝑦𝑦𝑖𝑖(𝑎𝑎𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) ≥ 1,∀𝑖𝑖 = 1,2,⋯ ,𝑁𝑁         (1)   

Decision function (1) is the convex quadratic 
programming problem. The linear constraints in (1) can be 
transformed to the objective function by a vector of 
Lagrangian multipliers: 

𝛾𝛾 = [𝛾𝛾1, … , 𝛾𝛾𝑁𝑁]𝑇𝑇 and 𝛾𝛾𝑖𝑖 ≥ 0, ∀𝑖𝑖 = 1,⋯ ,𝑁𝑁 

ℒ(𝑎𝑎, 𝑏𝑏, 𝛾𝛾) = 1
2
‖𝑎𝑎‖2 − ∑ 𝛾𝛾𝑖𝑖[𝑦𝑦𝑖𝑖(𝑎𝑎𝑇𝑇𝑥𝑥𝑖𝑖 + 𝑏𝑏) − 1]𝑁𝑁

𝑖𝑖=1            (2) 

The Lagrangian problem (2) can be solved by Karush-
Kuhn-Tucker conditions [26] by setting both the gradient 
of (2) with respect to a and the derivative of (2) with 
respect to b to zero. This can be expressed as follows: 

∇𝑎𝑎ℒ(𝑎𝑎, 𝑏𝑏, 𝛾𝛾) = 𝑎𝑎 − ∑ 𝛾𝛾𝑖𝑖𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0             (3) 

𝜕𝜕ℒ(𝑎𝑎,𝑏𝑏,𝛾𝛾)
𝜕𝜕𝑏𝑏

= −∑ 𝛾𝛾𝑖𝑖𝑦𝑦𝑖𝑖𝑁𝑁
𝑖𝑖=1 = 0              (4) 

By substituting (3) and (4) in (2), we get the Lagrangian 
problem (5). 

ℒ(𝛾𝛾) =  ∑ 𝛾𝛾𝑖𝑖𝑁𝑁
𝑖𝑖=1 −   1

2
∑ ∑ 𝛾𝛾𝑖𝑖𝑁𝑁

𝑗𝑗=1
𝑁𝑁
𝑖𝑖=1 𝛾𝛾𝑗𝑗𝑦𝑦𝑖𝑖𝑦𝑦𝑗𝑗𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗                   (5) 

𝑥𝑥𝑖𝑖 represents the values of predictor variables, and 
𝑦𝑦𝑖𝑖the value of the classifier for observation i. The decision 
function of the SVM can be formulated as a problem of 
maximizing (5) subject to the constraints of the decision 
variable 𝛾𝛾𝑖𝑖 ≥ 0, ∀𝑖𝑖 = 1,⋯ ,𝑁𝑁, given in compact form in (6). 

max
𝛾𝛾

ℒ(𝛾𝛾) =  𝛾𝛾𝑇𝑇1𝑁𝑁 −   1
2
𝛾𝛾𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇⨀𝑌𝑌𝑌𝑌𝑇𝑇)𝛾𝛾,     𝛾𝛾 ≥ 0𝑁𝑁      (6) 

The decision variables in (5) and (6) are continuous. 
Following [25] and introducing precision vector of P and 
binary variables 𝛾𝛾�, we can convert decision variables 𝛾𝛾𝑖𝑖 , 
for i =1,…,N, into the sum of binary variables. This is the 
same as 𝛾𝛾�𝑃𝑃, thus,  

𝑃𝑃 = [𝑝𝑝1 , … , 𝑝𝑝𝐾𝐾] 

𝑃𝑃 = 1𝑁𝑁 ⊗ 𝑃𝑃𝑇𝑇  

1𝑁𝑁 ⊗ 𝑃𝑃𝑇𝑇 = �
𝑝𝑝1 ⋯ 𝑝𝑝𝐾𝐾
⋮ ⋯ ⋮
𝑝𝑝1 ⋯ 𝑝𝑝𝐾𝐾

� 

𝛾𝛾� = [𝛾𝛾�11, … , 𝛾𝛾�1𝐾𝐾 , … , 𝛾𝛾�𝑁𝑁1, … , 𝛾𝛾�𝑁𝑁𝐾𝐾] 

𝛾𝛾� = �
𝛾𝛾�11 ⋯ 𝛾𝛾�1𝐾𝐾
⋮ ⋯ ⋮
𝛾𝛾�𝑁𝑁1 ⋯ 𝛾𝛾�𝑁𝑁𝐾𝐾

� 

Now we have 

∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖𝐾𝐾
𝑖𝑖=1 , ∀𝑖𝑖 = 1,2,⋯ ,𝑁𝑁               (7) 

where 𝛾𝛾�𝑖𝑖𝑖𝑖 corresponds to the element of Lagrangian 
multipliers vector 𝛾𝛾 , and 𝑃𝑃𝑖𝑖  is an element of k-
dimensional precision vector of P, which is used to convert 
the continuous variable 𝛾𝛾𝑖𝑖  into a sum of binary variables. 
In (7), a combination of values of 𝑝𝑝𝑖𝑖, ∀𝑘𝑘 = 1, … ,𝐾𝐾, may be 
chosen. This means several 𝛾𝛾�𝑖𝑖𝑖𝑖 ,∀𝑘𝑘 = 1, … ,𝐾𝐾, may be equal 
to 1. 
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1𝑁𝑁 and 0𝑁𝑁 represent N-dimensional vectors of 1 and 0, 
the  ⨀ refers to the element-wise multiplication operation 
in equation (6). In (5), γi, γj are continuous variables. By 
applying the binary expansion method with the power of 
2, the continuous variable γi can be transformed into a sum 
of binary variables with a K-dimensional precision vector 
𝑃𝑃 = [𝑝𝑝1 , 𝑝𝑝2,⋯ , 𝑝𝑝𝐾𝐾]𝑇𝑇 , where 𝑃𝑃 = 1𝑁𝑁⨂𝑃𝑃𝑇𝑇  and ⊗  is the 
tensor product for two vectors. K is the researcher-set 
value for the desired precision. When K value is set larger, 
the size of Q matrix will grow accordingly, which would 
lead to longer computing time. Based on our experience, a 
value between 3 to 5 for K would be sufficient to evaluate 
the objective function with continuous variables and its 
binary expansion representation. The decision variable 𝛾𝛾𝑖𝑖 
can be transformed by 𝐾𝐾  binary variables 𝛾𝛾�𝑖𝑖𝑖𝑖 : 𝛾𝛾𝑖𝑖 =
∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝐾𝐾
𝑖𝑖=1 𝑝𝑝𝐾𝐾    ∀𝑖𝑖 = 1,2,⋯ ,𝑁𝑁  and ∑ 𝛾𝛾�𝑖𝑖𝑖𝑖𝐾𝐾

𝑖𝑖=1 ≤ 1,∀𝑖𝑖 = 1, … ,𝑁𝑁 . 
Then the binary expansion of vector of Lagrangian 
multipliers 𝛾𝛾 is the following, given:  

𝛾𝛾 = 𝑃𝑃𝛾𝛾�      where 𝛾𝛾� = [𝛾𝛾�11,⋯𝛾𝛾�1𝐾𝐾 ,⋯𝛾𝛾�𝑁𝑁𝐾𝐾]𝑇𝑇                    (8) 

With the binary expansion of 𝛾𝛾 in (8), the problem in 
(6) becomes: 

max
𝛾𝛾�∈𝔹𝔹𝑁𝑁𝑁𝑁

ℒ(𝛾𝛾�) =  𝛾𝛾�𝑇𝑇𝑃𝑃𝑇𝑇1𝑁𝑁 −   1
2
𝛾𝛾�𝑇𝑇𝑃𝑃𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇⨀𝑌𝑌𝑌𝑌𝑇𝑇)𝑃𝑃𝛾𝛾�         (9) 

The problem in (9) then has the form of Quadratic 
Unconstrained Binary Optimization (QUBO) [27] 

max
𝛾𝛾�∈𝔹𝔹𝑁𝑁𝑁𝑁

ℒ(𝛾𝛾�) =  𝛾𝛾�𝑇𝑇𝐷𝐷 −   1
2
𝛾𝛾�𝑇𝑇𝐴𝐴𝛾𝛾�             (10)  

where 𝐷𝐷 = 𝑃𝑃𝑇𝑇1𝑁𝑁 and 𝐴𝐴 = 𝑃𝑃𝑇𝑇(𝑋𝑋𝑋𝑋𝑇𝑇⨀𝑌𝑌𝑌𝑌𝑇𝑇)𝑃𝑃.     

Thus, in lieu of placing constraints, we apply 
Lagrangian multipliers and binary expansion method to 
first develop a general quadratic constrained 
programming model for SVM in (1), and the recast in the 
form of quadratic unconstrained programming (QUP) 
model in (9). The transformed SVM model formulation 
can be solved using several quantum annealing solvers 
[17].  

2.3. Quantum Machine Learning (QML) and Remote Sensing 

Quantum annealing algorithms are designed to 
process qubits, which are quantum data that can operate 
in a quantum computing environment. Since many 
classical data are multi-dimensional and difficult to map 
into qubit data [23, 28], the range of problems that 
quantum annealing algorithms can address is limited, and 
many proposed solutions are still in the conceptual stage. 
Regardless, due to the quantum computing’ s capabilities, 
it is expected to eventually play an important role in 
solving complicated problems [8, 10, 17], one of which is 
the classification of remote sensing satellite images. 
Applications of Quantum Machine Learning in remote 
sensing data processing are relatively few and are mostly 
used as proof of concept [8, 23, 28]. 

Current literature of QML applications primarily 
focuses on the fields of earth and space sciences, for 
example, there have been experiments with quantum 
neural networks using reference earth observation data, 
exploration of methods to directly map certain types of 
earth observation data to quantum data [28], and 
investigations into the application of quantum computing 
in space exploration [29]. Since Support Vector Machine is 
a popular algorithm for supervised classification tasks, 
capable of processing complex data such as text and 
images, and requiring relatively small training data [23], it 
is the algorithm of choice in QML application of 
processing remote sensing image data when the labeled 
datasets are limited [23], also used in this study.  

3. Methods  

3.1 Datasets 

 This study uses the datasets from HyperLabelMe [16], 
a web platform that provides pre-labeled datasets for 
benchmarking remote sensing image classifiers. 
Motivated by the goal of providing benchmarking data 
and increasing comparability of study results, the Image 
and Signal Processing (ISP) group at the Universitat de 
Val`encia has collected, harmonized, and shared a big 
database of forty-three text-based datasets harmonized 
from multispectral and hyperspectral remote sensing 
images. Each dataset consists of an n by m matrix of 
numerical values. In this study, sixteen datasets with 
binary classification classes are selected for testing and 
comparison purposes. Researchers can test their 
classification algorithms using these datasets and share 
their results on this site to benchmark other studies. 

 In this study, we have implemented quantum 
annealing enhanced Support Vector Machine, a quantum-
enhanced machine learning algorithm, and applied it to 16 
sets of hyperspectral remote sensing datasets from 
HypberLabelMe platform. Table 1 describes the 
characteristics of the datasets used in this study which 
includes their names, sensors used, and dataset scales etc. 
9% of the instances in each dataset are labeled. For the 
unsupervised and semi-supervised learning approaches, 
the instances are fed to the algorithms without labels. 

Table 1: Dataset Description 

Data Name & 
Sensor 

Row Column Bands Labeled Unlabeled 

Naples95  
(Landsat) 

200 200 7 500 5,000 

Naples99  
(Landsat) 

200 200 7 500 5,000 

Naples99(full)  
(Landsst)  

400 400 7 500 5,000 

Mexico 
 (Landsat) 

360 512 2 500 5,000 

Barrax 
(MERIS) 

1,247 1,153 13 500 5,000 
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France 
(MERIS) 

2,399 2,241 13 500 5,000 

Abracos 
(MERIS) 

321 490 15 500 5,000 

Ascension 
Island 
(MERIS) 

321 490 15 500 5,000 

Azores 
(MERIS) 

321 493 15 500 5,000 

Barcelona  
(MERIS) 

321 493 15 500 5,000 

Capo Verde 
(MERIS) 

321 492 15 500 5,000 

Longyearbyen 
(MERIS) 

321 493 15 500 5,000 

Mongu 
(MERIS) 

321 489 15 500 5,000 

Ouagadougou 
(MERIS) 

209 492 15 500 5,000 

Rome95 
(Landsat) 

200 200 7 500 5,000 

Rome99 
(Landsat) 

200 200 7 500 5,000 

3.2 Classification Workflow 

Fig 1 illustrates the workflow of the remote sensing 
image classification used in this study.  

 
Figure 1: Classification workflow 

 The input dataset is split into a training set and a 
testing set. This study uses 80% of each input dataset 
which is a commonly used ratio as the training set and the 
remaining 20% as the testing set. Since there are variables 
that do not contribute to the prediction accuracy of the 
model, and some even reduce the prediction accuracy, 
recursive feature elimination (RFE) [30] is used to remove 
such attributes while constructing prediction models. This 
process is captured in the step feature selection to the 
training data. The kernel functions of SVM formulated and 
solved by quantum annealing solvers are used in 
classifications. 

3.3 Evaluation process 

To investigate whether quantum machine learning can 
deliver consistent and reliable results, this study has 
included two sets of evaluations. In one evaluation, we 
have selected benchmarks from our own tests using 
sixteen supervised, semi-supervised, and unsupervised 
machine learning algorithms. In another test, the 
benchmarks have been identified from evaluation results 
of seven traditional machine learning algorithms shared 
by other researchers on HyberLabelme platform. To 
improve the generalization of the findings, this study has 
taken the recommendation of including multiple 
classifiers for a specific classification task in the evaluation 
[14-15]. In both rounds of evaluations, only the algorithm 
that has the best AUROC value for every dataset is 
identified for that group, and has been used for 
benchmark purpose. Thus, quantum machine learning is 
compared against only the best performer for each of the 
16 datasets in two rounds of evaluations. This approach 
would demonstrate whether quantum machine learning 
delivers consistent results, and having two evaluations has 
also increased the reliability of the study.  

Table 2 has listed all eighteen algorithms used as 
benchmarks in the two rounds of evaluations. The first set 
compares the results of SVM-QA with the best results 
posted on HyperLabelMe using seven classical machine 
learning algorithms: SVM, random forest (RF), extreme 
learning machines (ELM), k-nearest neighbor (KNN), 
linear discriminant analysis (LDA), logistics regression 
(LR), and fast and deep deformation approximations 
(FDDA). The results from HyperLabelMe were posted and 
made available for public access by other researchers. The 
second set compares the results of SVM-QA with the best 
results from our own implementation experiments using 
sixteen out of all eighteen methods listed in Table 2 
(excluding Fast and deep deformation approximations 
and Extreme learning machines used in the first 
evaluation). 

Table 2: Machine Learning Algorithms Used 

Type Machine Learning Algorithms                                                   

Unsupervised Fast and deep deformation approximations  
(FDDA) [31] 
K-nearest neighbor (KNN) [32] 
 

Semi-
supervised  
 
 
Supervised  

Ensemble method-regression trees (RT) [33] 
 and logistics regression (LR)  
 
Adaptive Boosting (AdaBoost) [34] 
Balanced bagging [35] 
Complement naive bayes (NB) [36] 
Convolutional neural networks [37] 
Copula-Based Outlier Detection (COPOD) [38] 
Ensemble method-random forest (RF) [39] and  
RUSBoost [40] 
Extreme learning machines (ELM) [41] 
eXtreme gradient boosting (XGBoost) [42] 
Linear discriminant analysis (LDA) [43] 
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Light gradient boosting machine (LightGBM) [44] 
Logistics regression (LR) [45] 
Neural Networks-multilayered perceptrons (MLP) 
[46] 
Random forest (RF) [39] 
Support vector machines (SVM) [47] 
v-Support Vector Machines (NuSVM) [48] 

Python 3.8 and standard packages from the SciKit 
Learn library are used in coding the 16 classical machine 
learning algorithms, and D-Wave quantum annealing 
solver is applied to solve the SVM-QA model.  
4. Results 

Identification of the optimal γ value is important for 
the QA module of SVM to achieve good performance in 
accuracy. To identify the most appropriate one, we have 
examined the impact of three commonly used γ values 
(0.125, 0.25, and 0.5) as SVM hyperparameters on the 
accuracy performance of SVM-QA.  

There are primarily two ways to measure the 
classification accuracy of the models [49]: accuracy and 
Area Under the Curve of the receiver operating 
characteristics (AUROC). Accuracy counts how many 
predictions are correct, whereas AUROC value presents 
the ratio of true positives to the portion of true negatives 
(a true positive refers to the case when the model correctly 
classifies the data, and a true negative occurs when the 
model correctly identifies the negative class), hence 
AUROC is more effective in assessing the performance of 
the models. AUROC has values from 0 to 1, the higher the 
value, the better the performance. In this study, we use 
AUROC to measure the performance of the classifiers. The 
findings indicate that a γ value of 0.125 yields the best 
accuracy for 10 out of 16 datasets (see Table 3). 

Table 3: SVM-QA AUROC with Different γ Settings 

Dataset   γ = 0.125               γ = 0.25              γ = 0.5 

Naples95      0.997      0.998      0.995 
Naples99      0.987      0.981      0.962 
Naples99 (full)      0.934      0.919      0.914 
Mexico      0.988      0.985      0.983 
Barrax      0.986      0.921      0.940 
France      0.972      0.972      0.977 
Abracos      0.972      0.950      0.876 
Ascension Island      0.996      0.991      0.971 
Azores      0.994      0.996      0.997 
Barcelona      0.968      0.978      0.939 
Capo Verde      0.933      0.927      0.863 
Longyearbyen      0.868      0.897      0.793 
Mongu      0.978      0.980      0.959 
Ouagadougou      0.972      0.971      0.971 
Rome95      0.960      0.945      0.922 
Rome99      0.864      0.843      0.819 

      The SVM-QA results with the γ value of 0.125 is 
selected to compare with the best-performing of classical 

machine learning methods on each of the 16 datasets (see 
Table 4). 

Table 4: SVM-QA vs Best Machine Learning Algorithms 

Dataset Name Best * 
AUROC1 

Columns 
 

Class SVM-QA 
AUROC 

Best ** 
AUROC2 

Naples95 0.96743 200 2 0.997 0.9943 
Naples99 0.95185,6 200 2 0.987 0.9827 
Naples99(full) 0.86741 400 2 0.934 0.9228 
Mexico 0.95901 512 2 0.988 0.9879 
Barrax 0.96781 1,153 2 0.986 0.9915 
France 0.98561 2,241 2 0.972 0.9711 
Abracos 0.98824 490 2 0.972 0.9993 
Ascension Island 0.98103 490 2 0.996 0.9949 
Azores 0.99802 493 2 0.994 0.9981 
Barcelona 0.96062 493 2 0.968 0.9716 
Capo Verde 0.94761 492 2 0.933 0.9232 
Longyearbyen 0.93123 493 2 0.868 0.9292 
Mongu 0.97141 489 2 0.97 0.9837 
Ouagadougou 0.97021 492 2 0.972 0.9858 
Rome95 0.90251 200 2 0.960 0.9421 
Rome99 0.82731 200 2 0.864 0.8616 

Note: AUROC1 refers to best result posted on HyperLabelMe 
using machine learning algorithms, numbered based on their 
performance: 1-SVM, 2-RF, 3-ELM, 4-KNN, 5-LDA, 6-LR, 7-
FDD; AUROC2 refers to best results from our tests with 16 
machine learning algorithms.  

 The performance of the classifiers varies 
depending on the datasets. To evaluate how QML 
compares to classical machine learning algorithms and 
produce more generalizable results, Table 4 presents a 
comparison of accuracy (AUROC) for SVM-QA with 
the best classifiers as benchmarks in two evaluations. 
One set of benchmarks is drawn from the results 
shared by other researchers on HyperLabelMe 
(column Best * AUROC1), while the other benchmark 
datasets are based on our own tests (column Best 
**AUROC2). 

Figure 2 illustrates the AUROCs obtained by 
applying SVM-QA on the 16 datasets, while Figure 3 
shows the AUROC obtained by applying other 16 
machine learning algorithms on the Naples95 dataset. 
D-Wave solver generates a Q matrix out of 80% of the 
training data and then randomly selects 50 samples 
from the matrix for training. The hyperparameters for 
SVM-QA are set as follows: B = 2, K = 2, χi = 0, γ = 
0.125. Here, B represents the base used for the 
encoding, K is the number of binary variables used to 
encode the continuous decision variables, and χi is the 
multiplier for the encoding process. The SVM-QA 
values are highlighted in bold font when they surpass 
the results of both other researchers’ tests shared on 
HyperLabelMe and our tests. In addition, SVM-QA are 
highlighted in italics when they exceed HyperLabelMe 
results but are lower than the ones from our tests.  
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a) Naples95 

    
b) Naples99 

 
c) Naples99(full) 

 
d) Mexico 

                       
e) Barrax 

 
g) Abracos 

 
F) France 

 
      h) Ascension Island 

i) Azores 
 

j) Barcelona 
 

k) Capo Verde 
    

          l) Longyearbyen  

 
m) Mongu 

 
n) Ouagadougou 

 
o) Rome95 

            
p) Rome99 

Figure 2: AUROC of Applying SVM-QA on 16 Datasets 

Note: horizontal axis represents false positive rate, and vertical axis represents true positive rate.

Overall, our findings show that SVM-QA provides 
better accuracy. When compared to both the best results 
reported on HyperLabelMe and from our own results, 
SVM-QA performs consistently in classification accuracy, 
outperforming the reported 7 best machine learning 
algorithms in 10 out of 16 datasets and comes very close in 
the remaining datasets. 

5. Discussion  

Remote sensing data provides information to detect and 
monitor activities and changes in a geographical area with 
broad applications in a range of fields [11]. It plays an 
important role in scientific research areas such as 
astronomy, oceanic sciences, and atmosphere sciences, as 

well as commercial applications such as business location 
selection [50], geolocation-based social networks [51], 
smart waste collection systems [52], and also social well-
being initiatives like poverty alleviation [53]. 

The rapid growth of remote sensing data collected from 
various sources has made it imperative to develop and 
deploy advanced and robust data processing tools. As a 
result, machine learning and deep learning have been 
widely used in the classification of remote sensing data. 
However, the performance of these tools varies depending 
on the data’s characteristics. In addition, the increasing 
demand for computing power to develop advanced tools 
poses a bottleneck for classical machine learning. With 
quantum computing emerging as a recent technological  
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Figure 3: AUROC Curve of Applying 16 Machine Learning Algorithms on Dataset Naples95 

Note: horizontal axis represents false positive rate, and vertical axis represents true positive rate.

breakthrough, offering capabilities for solving 
computationally impossible complex problems and 
scaling faster than traditional computing, we are 
motivated to investigate its potential to overcome the 
classical machine learning bottleneck in remote sensing 
image data field.  

This study explores how Support Vector Machine, a 
popular supervised machine learning algorithm, performs 
when enhanced with quantum annealing. Using 16 
labeled and harmonized image datasets from 
HyperLabelMe, we have compared the classification 
accuracy of SVM with quantum annealing enhancement 
to a standard SVM and two sets of top performing classical 
machine learning algorithms respectively. The results 
suggest that SVM-QA demonstrates promising accuracy 
in classification, outperforming most top performing 
machine learning algorithms that do not have the 
quantum computing enhancement. Because of quantum 
computing’s capabilities to improve the performance of 
classical machine learning algorithms, there has been 
growing motivation to identify and expand quantum 
machine learning applications. However, literature on 
QML’s applications in satellite image classification 

remains somewhat limited. In [24], the authors report the 
application of quantum neural network in the satellite 
image classification and benchmarked it using low-
resolution satellite data. Their finding suggests that QML 
approach produces better results. Studies that have 
applied other types of data also reach a similar conclusion. 
For example, in [17], the authors compare the performance 
of SVM trained on a D-Wave quantum annealer to SVMs 
used on conventional computers with both synthetic and 
real biology data, and they find that QML offers more 
generalizable solutions than the conventional SVM 
approach.  

In this study, we have selected and applied the optimal 
γ(Gamma) value in the SVM-QA model implemented in 
the D-Wave computing environment. By comparing its 
classification results with those of over a dozen best 
classical machine learning algorithms on 16 
HyperLabelMe datasets, our study provides more 
generalizable findings. This study contributes to the 
existing literature by offering broader and more in-depth 
understanding into remote sensing image binary 
classification. It expands the potential applications of 

http://www.jenrs.com/


 Y. Liu et al., Quantum Machine Learning on Remote Sensing 

www.jenrs.com                           Journal of Engineering Research and Sciences, 2(12): 23-33, 2023                                      31 
 

QML in satellite data classification and provides insights 
into achieving more accurate results. 

6. Conclusion 

This study has investigated the performance of binary 
classification of quantum enhanced machine learning 
algorithm compared to over a dozen classical machine 
learning algorithms across 16 satellite image datasets. 
Since support vector machine is a popular machine 
learning algorithm, we use quantum enhanced SVM in 
this study. The results suggest that quantum enhanced 
machine learning approach has often outperformed the 
classical machine learning approach.  

Although SVM-QA has demonstrated superior 
performance compared to other machine learning 
algorithms, the evaluation is conducted in the context of 
harmonized hyperspectral remote sensing image datasets 
with small sample sizes and binary classification classes. 
We believe its potential with large datasets waits to be 
fully explored. We plan to evaluate SVM-QA’s 
performance on much larger datasets with multiple 
classification classes and much larger images collected 
using different types of sensors, such as synthetic aperture 
radar (SAR) and light detection and ranging (LiDAR).  

The development of quantum machine learning has 
made provision for the escalating development of 
computing, which will allow the accelerated progress of 
QML application to solve pressing and practical matters.  
Remote sensing is a field that requires multidisciplinary 
collaborations and inherently demands high computing 
power. We could leverage QML’s computing capability in 
conducting real-time remote sensing environmental 
monitoring, timely disaster response, and efficient 
resource management. Although still in its infancy, 
quantum computing will definitely play an indispensable 
role in the near future.  
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